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A frequent assumption in behavioural science is that most of an animal’s

activities can be described in terms of a small set of stereotyped motifs.

Here, we introduce a method for mapping an animal’s actions, relying

only upon the underlying structure of postural movement data to organize

and classify behaviours. Applying this method to the ground-based behav-

iour of the fruit fly, Drosophila melanogaster, we find that flies perform

stereotyped actions roughly 50% of the time, discovering over 100 dis-

tinguishable, stereotyped behavioural states. These include multiple modes

of locomotion and grooming. We use the resulting measurements as the

basis for identifying subtle sex-specific behavioural differences and revealing

the low-dimensional nature of animal motions.
1. Introduction
The concept of stereotypy—that an organism’s behaviours can be decomposed

into discrete, reproducible elements—has influenced the study of ethology, be-

havioural genetics and neuroscience for decades [1,2]. Animals possess the

ability to move in a vast continuum of ways, theoretically constrained only

by the biomechanical limits of their own morphology. Despite this, the range

of behavioural actions typically performed by an animal is thought to be

much smaller, constructed largely of stereotyped actions that are consistent

across time, individuals and, in some cases, even species [3,4]. A discrete behav-

ioural repertoire can potentially arise via a number of mechanisms, including

mechanical limits of gait control, habit formation and selective pressure to gen-

erate robust or optimal actions. In many instances, the search for an individual

behavioural neural circuit or gene begins with the assumption that a particular

action of interest is stereotyped across time and individuals [5,6].

Despite the centrality of this concept, with few exceptions [7–11], the existence

of stereotypy has not been probed experimentally. This is largely due to the lack of

a comprehensive and compelling mathematical framework for behavioural analy-

sis. Here, we introduce a new method for quantifying postural dynamics that

retains an animal’s full behavioural complexity, using the fruit fly Drosophila
melanogaster as a model organism to discover and map stereotyped motions.

Most prior methods for quantifying animal behaviour lie in one of two

regimes. One of these is the use of coarse metrics such as a gross activity

level (e.g. mean velocity or number of times the organism crosses a barrier)

or counting the relative frequencies of particular events engrained into the

experimental set-up (e.g. turning left or right in a maze). While this approach

allows for high-throughput analysis of various organisms, strains and species,

only the most gross aspects of behaviour can be ascertained, potentially

overlooking the often subtle effects of the manipulations of interest that

are only apparent at a finer descriptive level. The other common approach

for behavioural quantification is to use a set of user-defined behavioural cat-

egories. These categories, such as walking, grooming or fighting, are codified

heuristically and scored either by hand or, more recently, via supervised
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Figure 1. Schematic of the imaging apparatus.
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machine-learning techniques [12–16]. While the latter

approach allows for higher throughput and more consistent

labelling, it remains prone to human bias and anthropomor-

phism and often precludes objective comparisons between

datasets due to the reliance on subjective definitions of be-

haviour. Furthermore, these analyses assume, a priori, that

stereotyped classes of behaviour exist without first showing,

from the data, that an organism’s actions can be meaningfully

categorized in a discrete manner.

Ideally, a behavioural description should manifest itself

directly from the data, based upon clearly stated assump-

tions, each with testable consequences. The basis of our

approach is to view behaviour as a trajectory through a

high-dimensional space of postural dynamics. In this space,

discrete behaviours correspond to epochs in which the trajec-

tory exhibits pauses, corresponding to a temporally extended

bout of a particular set of motions. Epochs that pause near

particular, repeatable positions represent stereotyped beha-

viours. Moreover, moments in time in which the trajectory

is not stationary, but instead moves rapidly, correspond to

non-stereotyped actions.

In this paper, we construct a behavioural space for freely

moving fruit flies. We observe that the flies exhibit approxi-

mately 100 stereotyped behaviours that are interspersed

with frequent bouts of non-stereotyped behaviours. These

stereotyped behaviours manifest themselves as distinguish-

able peaks in the behavioural space and correspond to

recognizably distinct behaviours such as walking, running,

head grooming, wing grooming, etc. Using this framework,

we begin to address biological questions about the under-

lying postural dynamics that generate behaviour, opening

the door for a wide range of other inquiries into the

dynamics, neurobiology and evolution of behaviour.
2. Experiments
We probed the spontaneous behaviours of ground-based

flies (D. melanogaster) in a largely featureless circular arena

(figure 1). Under these conditions, flies display a multitude of

complex, non-aerial behaviours such as locomotion and groom-

ing, typically involving multiple parts of their bodies. To capture

dynamic rearrangements of the fly’s posture, we recorded videos

of individual behaving animals with sufficient spatio-temporal

resolution to resolve moving body parts such as the legs,

wings and proboscis.

We designed our arena based on previous work which

showed that a thin chamber with gently sloping sides prevents

flies from flying, jumping and climbing the walls [17]. To keep

the flies in the focal plane of our camera, we inverted the

previous design. Our arena consists of a custom-made

vacuum-formed, clear PETG plastic dome 100 mm in diameter

and 2 mm in height with sloping sides at the edge clamped to a

flat glass plate. The edges of the plastic cover are sloped to pre-

vent the flies from being occluded and to limit their ability to

climb upside-down on the cover. The underside of the

dome is coated with a repellent silane compound (heptane

and 1,7-dichloro-1,1,3,3,5,5,7,7-octamethyltetrasiloxane) to pre-

vent the flies from adhering to the surface. In practice, we find

that this set-up results in no bouts of upside-down walking.

Over the course of these experiments, we studied the behav-

iour of 59 male and 51 female D. melanogaster (Oregon-R strain).

Each animal was imaged using a high-speed camera (100 Hz,
1088� 1088 pixels). A proportional–integral–derivative feed-

back algorithm is used to keep the moving fly inside the

camera frame by controlling the position of the X–Y stage

based on the camera image in real time. In each frame, we

focus our analysis on a 200� 200 pixel square containing the

fly. We imaged each of the flies for 1 h, yielding 3.6 � 105

movie frames per individual, or approximately 4 � 107 frames

in total. All aspects of the instrumentation are controlled by a

single computer using a custom-written LABVIEW graphical

user interface.

Each of these flies was isolated within 4 h of eclosion and

imaging occurred 1–14 days after that. Flies were placed into

the arena via aspiration and were subsequently allowed

5 min for adaptation before data collection (electronic sup-

plementary material, figure S1). All recording occurred

between the hours of 9.00 and 13.00, thus reducing the

effect of circadian rhythms, and the temperature during all

recordings was 25+18C.
3. Behavioural analysis
The general framework of our analysis is described in figure 2.

Images are first segmented and registered in order to isolate

the fly from the background and enforce translational and

rotational invariance. After this, they are decomposed into pos-

tural time series and converted into wavelet spectrograms, thus

creating a spatio-temporal representation for the fly’s dynamics

within the images. These spectrograms are used to construct

spectral feature vectors that we embed into two dimensions

using t-distributed stochastic neighbour embedding (t-SNE)

[18]. Lastly, we estimate the probability distribution over this

two-dimensional space and identify resolvable peaks in the dis-

tribution. We confirm that sustained pauses near these peaks

correspond to discrete behavioural states.

3.1. Image segmentation and registration
Given a sequence of images, we wish to build a spatio-

temporal representation for the fly’s postural dynamics. We

start by isolating the fly within each frame, followed by

rotational and translational registration to produce a

sequence of images in the coordinate frame of the insect.

Details of these procedures are listed in appendix A. In

brief, we apply Canny’s method for edge detection [19],
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Figure 2. Overview of the data analysis pipeline. Raw images of the D. melanogaster are segmented from the background, rescaled to a reference size and then
aligned, creating a stack of images in the co-moving and co-rotating frame of the fly. These images are then decomposed via PCA into a relatively low-dimensional
set of time series. A Morlet wavelet transform is subsequently applied to these time series, creating a spectrogram for each postural mode separately. After normal-
ization, each point in time is mapped into a two-dimensional plane via t-SNE [18]. Lastly, a watershed transform is applied to a Gaussian-smoothed density over
these points, isolating individual peaks from one another.
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Figure 3. Generation of spectral feature vectors. (a) Raw image of a fly in the arena. (b) Pictorial representation of the first five postural modes, x̂1�5, after inverse
Radon transform. Black and white regions represent highlighted areas of each mode (with opposite sign). (c) First 1000 eigenvalues of the data matrix (black) and
shuffled data (red). (d ) Fraction of cumulative variation explained as a function of the number of modes included. (e) Typical time series of the projection along
postural mode 6 and ( f ) its corresponding wavelet transform.
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morphological dilation and erosion to create a binary mask

for the fly. After applying this mask, we rotationally align

the images via polar cross-correlation with a template

image, similar to previously developed methods [20–22].

We then use a sub-pixel cross-correlation to translationally

align the images [23]. Lastly, every image is re-sized so

that, on average, each fly’s body covers the same number of

pixels. An example segmentation and alignment is shown

in the electronic supplementary material, movie S1.
3.2. Postural decomposition
As the fly body is made up of relatively inflexible segments

connected by mobile joints, the number of postural degrees

of freedom is relatively small when compared with the 40 000

pixels in each image. Accordingly, a natural representation

for the fly’s posture would be to enumerate the relative

angles of each of the fly’s appendages as a function of time

[24–26]. Extracting these variables directly from the images,

however, is prohibitively difficult due to occlusions and the

complex fly limb and wing geometry.
As an alternative strategy, we find that nearly all of the var-

iance in the 4 � 104 pixel images can be explained by

projecting the observed pixel values onto a Euclidean space

of just 50 dimensions. We apply principal component analysis

(PCA) to Radon transforms of the images. PCA is a frequently

used method for converting a set of correlated variables into a

set of values of linearly uncorrelated eigenmodes. Results from

this analysis can be described as the space spanned by the

eigenvectors of the data covariance matrix, C, corresponding

to the largest m eigenvalues out of the total latent dimension-

ality of the data. While, in general, there is no rigorous manner

to choose m, here, we will keep all modes containing corre-

lations larger than the finite sampling error within our

dataset. According to this heuristic, we set m ¼ 50 (figure

3c), a number of modes explaining approximately 93% of the

observed variation (figure 3d). Details of this computation

can be found in appendix B.

We refer to these directions of correlated variation as pos-

tural modes. As seen in figure 3b, these modes are fly-like in

appearance, but do not lend themselves to intuitive interpret-

ation. However, projecting individual images onto these axes,
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we can convert a movie of fly behaviour into a 50-dimensional

time series,

Y ; {y1(t), y2(t), . . . , y50(t)}, (3:1)

as exemplified in figure 3e.

3.3. Spectrogram generation
The instantaneous values of the postural modes do not pro-

vide a complete description of behaviour, as our definition

of stereotypy is inherently dynamical. Previously published

studies of behaviour have searched for motifs—repeated sub-

sequences of finite length—within a behavioural time series

[11,27]. However, this paradigm is often confounded by pro-

blems of temporal alignment and relative phasing between

the component time series. Additionally, certain behaviours

(for example, wing grooming in Drosophila) involve multiple

appendages moving at different time scales, thus complicating

the choice of motif length.

As an alternative to this approach, we use a spectrogram

representation for the postural dynamics, measuring the

power at frequency f associated with each postural mode,

yk(t), in a window surrounding a moment in time, S(k, f; t).
More specifically, we compute the amplitudes of the Morlet

continuous wavelet transform for each postural mode [28].

Although similar to a Fourier spectrogram, wavelets possess

a multi-resolution time–frequency trade-off, allowing for a

more complete description of postural dynamics occurring

at several time scales [29]. In particular, the Morlet wavelet

is adept at isolating chirps of periodic motion, similar to

what we observe in our dataset. By measuring only the

amplitudes of the transform, we eliminate the need for pre-

cise temporal alignment that is required in any motif-based

analysis. Details of these calculations are shown in appendix

C, and an example spectrogram is displayed in figure 3f. For

the results presented here, we look at 25 frequency channels,

dyadically spaced between 1 and 50 Hz, the larger of which

being the Nyquist frequency of the system.

3.4. Spatial embedding
S(k, f; t) comprises 25 frequency channels for each of the 50

eigenmodes, making each point in time represented by a

1250-dimensional feature vector encoding the postural

dynamics. As correlations, often strong, exist between the

various mode–frequency channels, we expect that the dimen-

sionality of the manifold containing the observed values of

S(k, f; t) should be vastly smaller. As such, we would like

to find a low-dimensional representation that captures the

important features of the dataset.

Our strategy for dimensional reduction of the feature vec-

tors is to construct a space, B, such that trajectories within it

pause near a repeatable position whenever a particular

stereotyped behaviour is observed. This means that our

embedding should minimize any local distortions. However,

we do not require preservation of structure on longer length

scales. Hence, we chose an embedding that reduces dimen-

sionality by altering the distances between more distant

points on the manifold.

Most common dimensionality reduction methods, includ-

ing PCA, multi-dimensional scaling and Isomap, do precisely

the opposite, sacrificing local verisimilitude in service of

larger scale accuracy [30–32]. One method that does possess

this property is t-SNE [18]. Like other embedding algorithms,
t-SNE aims to take data from a high-dimensional space and

embed it into a space of much smaller dimensionality, preser-

ving some set of invariants as best as possible. For t-SNE, the

conserved invariants are related to the Markov transition

probabilities if a random walk is performed on the dataset.

Specifically, we define the transition probability from time

point ti to time point tj, pjji, to be proportional to a Gaussian

kernel of the distance (as of yet, undefined) between them

p jji ¼
exp (�d(ti, tj)

2=2s2
i )P

k=i exp (�d(ti, tk)2=2s2
i )
: (3:2)

All self-transitions (i.e. piji) are assumed to be zero. Each of

the si are set such that all points have the same transition

entropy, Hi ¼
P

jpjji log pjji ¼ 5. This can be interpreted as

restricting transitions to roughly 32 neighbours.

The t-SNE algorithm then embeds the data points in the

smaller space while keeping the new set of transition prob-

abilities, qjji, as similar to the pjji as possible. The qjji are

defined similarly to the larger space transition probabilities,

but are now, for technical reasons, proportional to a

Cauchy (or Student-t) kernel of the points’ Euclidean dis-

tances in the embedded space. This algorithm results in an

embedding that minimizes local distortions [18]. If pjji is

initially very small or zero, it will place little to no constraint

on the relative positions of the two points, but if the original

transition probability is large, it will factor significantly into

the cost function.

This method’s primary drawback, however, is its poor

memory complexity scaling (/N2). To incorporate our

entire dataset into the embedding, we use an importance

sampling technique to select a training set of 35 000 data

points, build the space from these data, and then re-embed

the remaining points into the space as best as possible (see

appendix D for implementation details).

Lastly, we need to define a distance function, d(ti, tj),

between the feature vectors. We desire this function to

accurately measure how different the shapes of two mode–

frequency spectra are, ignoring the overall multiplicative

scaling that occurs at the beginning and the end of behaviour-

al bouts due to the finite nature of the wavelet transform.

Simply measuring the Euclidean norm between two spectra

will be greatly affected by such amplitude modulations.

However, because S(k, f; t) is composed of a set of wavelet

amplitudes, it must therefore be positive semi-definite. As

such, if we define

Ŝ(k, f ; t) ;
S(k, f ; t)P

k0, f 0 S(k0, f 0; t)
, (3:3)

then we can treat this normalized feature vector as a prob-

ability distribution over all mode–frequency channels at a

given point in time. Hence, a reasonable distance function

is the Kullback–Leibler (KL) divergence [33] between two

feature vectors

d(t1, t2) ¼ DKL(t1jjt2)

;
X

f ,k

Ŝ(k, f ; t1) log2

Ŝ(k, f ; t1)

Ŝ(k, f ; t2)

" #
: (3:4)
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4. Results
4.1. Embedded space dynamics
Figure 4 shows the embedding of our spectral feature vectors

into two dimensions, the space (z1, z2), for all of the 59 indi-

vidual male flies. We first note that nearby points have

similar power (
P

k,f S(k, f; t)), even though the embedding

algorithm normalizes-out variations in the total power of

the postural motions. Embedding the same data into three

dimensions yields a very similar structure with less than 2%

reduction of the embedding cost function (equation (D 1);

electronic supplementary material, figure S3).

We generated an estimate of the probability density, b(z),

by convolving each point in the embedded map with a Gaus-

sian of relatively small width (s ¼ 1.5, figure 4b). Far from

being uniformly distributed across this space, b(z) contains a

large number of resolved local maxima. The locations

of these peaks provide a potential representation for the stereo-

typed behaviours that the flies perform. As expected, we find

that individuals display significantly less intra- than inter-

individual variation when their behavioural maps are

compared (electronic supplementary material, figure S4).

This space not only contains peaks, but the trajectory

through it also pauses at repeatable locations. Through numeri-

cal differentiation of z1(t) and z2(t), we observe a two-state

‘pause–move’ pattern of dynamics. Typical time traces of

z1(t) and z2(t) show this type of trajectory, with long stationary

periods interspersed by quick bouts of movement (figure 5a).

More quantitatively, we find that the distribution of velocities

within the embedded space is well represented by a two-

component lognormal mixture model in which the two

peaks are separated by almost two orders of magnitude

(figure 5b). The distribution of points in the low-velocity case

(approx. 45% of all time points) is highly localized with dis-

tinguishable peaks (figure 6). The high-velocity points, in

contrast, are more uniformly distributed.
4.2. Behavioural states
The embedded space comprises peaks surrounded by valleys.

Finding connected areas in the z1,z2 plane such that climbing

up the gradient of probability density always leads to the
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same local maximum, often referred to as a watershed trans-

form [34], we delineate 122 regions of the embedded space.

Each of these contains a single local maximum of probability

density (figure 7a). When the trajectory, z(t), pauses at one of

these peaks, we find that each of these epochs corresponds to

the fly performing a particular stereotyped behaviour. These

pauses last anywhere from 0.05 s up to nearly 25 s (figure 8a).

Observing segments of the original movies corresponding to

pauses in one of the regions, we consistently observe the flies

performing a distinct action that corresponds to a recognizable

behaviour when viewed by eye (electronic supplementary

material, movies S2–S11). Many of the movements we detect

are similar to familiar, intuitively defined behavioural classifi-

cations such as walking, running, front leg grooming and

proboscis extension, but, here, the segmentation of the movies

into behavioural categories has emerged from the data them-

selves, not through a priori definitions. Moreover, we see that

nearby regions of our behavioural space correspond to similar,

yet distinct, behaviours (figure 7c).

This classification is consistent across individuals (figures 8

and 9; electronic supplementary material, movies S3–S11).

The vast majority of these regions are visited by almost all of

the flies at some point (figure 8b). One hundred and four of

the 122 regions were visited by over 50 (of 59 total) flies, and
the remaining behaviours were all low-probability events,

containing, in total, less than 3% of the overall activity.
4.3. Behavioural states as periodic orbits
Periodic orbits in postural movements are suggestive of under-

lying low-dimensional dynamic attractors that produce stable

behavioural templates [35]. These types of motifs have been

hypothesized to form the basis for neural and mechanical

control of legged locomotion at fast time scales [36]. Because

our behavioural mapping algorithm is based upon similari-

ties between postural frequencies exhibited at different times,

a potential hypothesis is that pauses in behavioural space

correspond to periodic trajectories in the space of postural

movements (equation (3.1)). In our data, a fast running gait

(the bottom-most region of figure 10h) corresponds to periodic

oscillations of the postural time series with a clear peak at

12.9 Hz in the power spectral density (figure 10a,b). This fre-

quency is in good agreement with previous measurements of

the fly walking gait [37,38].

To systematically investigate the periodicity of the pos-

tural dynamics, for each behavioural bout, we map time

onto a phase variable, a cyclic coordinate defined on the

unit circle. This process is usually referred to as phase
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reconstruction. The method we use, PHASER [39], performs

Hilbert transforms to construct phase estimations from sev-

eral time series separately, then combines these estimates

via a maximum-likelihood estimate that uses Fourier-series-

based corrections. Here, we apply PHASER to the postural

mode time series, yk(t), treating the correlated motions

along all 50 postural eigenmodes as synchronized oscillators.

We performed this reconstruction for each multi-cycle behav-

ioural bout. After reconstructing the phases for all of the 5483

bouts of fast running observed in male flies, we observe a

clear periodic pattern across several of the postural modes

(figure 10c– f ).
This type of analysis also brings additional insight into

the subtle distinctions between our observed behavioural

states. If we construct phase-averaged orbits for seven of

the running behaviours, we observe many differences in the

gait dynamics (see appendix E, figure 10g). For instance, we

observe an increase in many mode amplitudes as the gait fre-

quency increases (e.g. in modes 3, 12 and 13), as noted in

previous work [40]. In addition, we also see subtle changes

in phase (e.g. in mode 4), as well as a near-elimination of a

period-doubled trajectory (seen in mode 14). This type of

observation could allow for a more thorough understanding

of speed control and gait transitions in hexapod locomotion.

We also find oscillatory postural dynamics for other stereo-

typed behaviours, with many behaviours resulting in a

periodic orbit in postural space (figure 10i). These behaviours
are found in many regions of behavioural space, suggesting

that much of behaviour is indeed confined to low-dimensional

postural dynamics. It is important to note that periodic trajec-

tories emerge directly from our analysis, even though the

wavelet transform used to define our feature vectors does not

preserve phase information.

4.4. Differences in behaviour between males and
females

To demonstrate the power of this method to detect subtle

differences in behaviour, we compared the behavioural

spaces of male and female fruit flies by embedding the pos-

tural time-series data from females into the behavioural

space derived from the male flies (figure 4). Figure 11a dis-

plays the male and female behavioural probability

densities. We find a striking difference between the two

sexes, with locomotory behaviours greatly enhanced but rest-

ing and slow motions largely suppressed in females when

compared with males. This is in agreement with previous

results, showing that young females are more active than

their male counterparts [41].

We then sought to isolate subtle behavioural differences

between the sexes that are evident in the fine-scale structure

of these maps. An example of this can be seen in the ‘wing

movements’ portion of the behavioural space (the lower left

corner of the map). First, we obtained both male and

female region-normalized (R-N) probability density functions

(PDFs) (figure 11c), where the integral of the behavioural

space density within the ‘wing movements’ region integrates

to one. Within the space of wing movements, we identified

regions that show statistically significant differences between

the two sexes using a Wilcoxon rank sum test [42] at each

point in behavioural space. This test determines the locations

of significant difference between the median male PDF value

and the median female PDF value ( p-value , 0.01). Regions

where significant differences were found are indicated by

the dashed lines in figure 11d.

Particular behaviours, such as left-wing grooming, are sexu-

ally dimorphic (figure 11d, solid box; electronic supplementary

material, movies S12 and S13). Male-preferred grooming

includes a kick of the middle leg on the left side of the body

that clears the profile of the wing and moves anteriorly before

pushing back towards the posterior. Female-preferred groom-

ing lacks this additional leg movement. We verified these

differences by isolating the mean postural-space orbits associ-

ated with each of these regions (figure 11f; electronic

supplementary material, figure S6). Importantly, while these

orbits are statistically different, the average frequencies for

the behaviours are not ( fmale¼ 3.49+0.15 Hz versus ffemale¼

3.28+0.08 Hz). We note that these results are consistent

across a large range of the behavioural-map smoothing par-

ameter s (electronic supplementary material, figure S5), such

that fine-tuning of the spatial structure of the behavioural

map is not necessary to obtain the results seen here.

It should be noted that future study is necessary to deter-

mine the ethological relevance of these findings and to

understand how much of the variance we observe is related

to the specifics of our experimental paradigm. However, the

fact that these distinctions are found without specifically look-

ing for any of them—emerging only from underlying statistics

of the behavioural map—provides quantitative verification that

the classifications we make are meaningful. Inherent in any
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unsupervised classification method is the question of how to

validate its accuracy. Here, there is no ground truth with

which to compare, since a significant aim of our work is to dis-

pense with a priori behavioural definitions. However, by

showing that meaningful distinctions and agglomerations can

be made between different behavioural instances, we provide

evidence that the approach introduced here can become the
basis undergirding a wide range of experimental investigations

into the behaviour of animals.

5. Conclusion
The ability to map and compare the behavioural repertoire of

individuals and populations of animals has applications
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beyond the study of terrestrial dynamics in fruit flies.

Combined with tools for genetic manipulation, DNA sequen-

cing, neural imaging and electrophysiology, the identification

of subtle behavioural distinctions and patterns between

groups of individuals will impact deep questions related to

the interactions between genes, neurons, behaviour and evol-

ution. In this initial study, we probed the motion of

individuals in a largely featureless environment. Extensions

to more complicated situations, e.g. where sensory inputs

are measured and/or controlled, genes are manipulated or

multiple individuals are present, are readily implemented.

Finally, we note that the only Drosophila-specific step in

our analysis pipeline is the generation of the postural eigen-

modes. Given movies of sufficient quality and length from

different organisms, spectral feature vectors and behavioural

spaces can be similarly generated, allowing for potential

applications from worms to mice to humans and a greater

understanding of how animals behave.
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Appendix A. Image processing
To isolate the fly from the background, we apply Canny’s

method for edge detection [19], resulting in a binary image

https://github.com/gordonberman/MotionMapper
https://github.com/gordonberman/MotionMapper
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containing the edge positions. We then morphologically

dilate this binary image by a 3 � 3 square in order to fill

any spurious holes in the edges and proceed to fill all

closed curves. This filled image is then morphologically

eroded by a square of the same size, resulting in a mask.

After applying this mask to the original image, we now

have our segmented image.

While our tracking algorithm ensures that the fly remains

within the image boundaries, the centre of the fly and the

orientation within the frame vary over time. Having obtained

a sequence of isolated fly images, we next register them both

translationally and rotationally with respect to a template

image. The template image is generated by taking a typical

image of a fly and then manually ablating the wings and

legs digitally.

For our first step, we rotationally align. This is achieved

through finding the angle that maximizes the cross-correlation

between the magnitudes of the two-dimensional polar Fourier

transforms for each image and the template. Because all trans-

lation information appears in the phase of the two-dimensional

Fourier transform, this rotational alignment, based only upon

the magnitude of the transform, is independent of any initial

translations between the images. Accordingly, once rotational

alignment is achieved, we can subsequently register the

images translationally via a cross-correlation.
Appendix B. Postural decomposition from
images
The aim of the postural decomposition is to take our set of

200 � 200 aligned images and create a lower-dimensional rep-

resentation that can be made into time series. Naively, one

would simply perform PCA on the images, using each pixel

value as a separate dimension. The fly images, however,

contain too many pixels to analyse due to memory limitations.

To make this problem more tractable, we analyse only the

subset of these pixels which have non-negligible variance.

Many pixels within the fly image are either always zero or

always saturated, thus containing almost no dynamical infor-

mation. Accordingly, we would like to use only a subsample

of these measurements. The most obvious manner to go

about this is to find the pixels containing the highest variance

and keep only those above a certain threshold. The primary

difficulty here, however, is that there is not an obvious trun-

cation point (electronic supplementary material, figure S2A).

This is most likely the result of the fact that the fly legs can

potentially occupy the majority of the pixels in the image

but only are present in a relatively small number in any

given frame. Hence, many of these periphery pixels all

have similarly moderate standard deviations, making them

difficult to differentiate.

A more compact scheme is to represent the images in

Radon-transform space, which more sparsely parameterizes

lines such as legs or wing veins. After Radon transformation,

the PDF of pixel-value standard deviations has a clear mini-

mum and we keep pixels whose standard deviation is

larger than this value (electronic supplementary material,

figure S2B). This results in keeping 6763 pixels out of 18

090, retaining approximately 95% of the total variation in

the images. If there are N images in our sample, we can rep-

resent our dataset, X, as an N � 6763-element matrix. We
then proceed to calculate the principal directions of variation

in these data using PCA, as seen in figure 3.

Lastly, the question remains of how many modes to keep

in our analysis, a task made more ambiguous due to the

smoothness of the eigenvalue spectrum. Our approach to

determining the truncation point is to compare the PCA

eigenvalues with a null model based on the noise properties

of our dataset. Specifically, we assume that the noise is due to

finite data collection. Although additional errors in image

segmentation and registration assuredly exist in our dataset,

this set null model provides an upper bound on the

number of statistically meaningful eigenmodes.

To calculate this truncation point, we take our data

matrix, X, and shuffle each of its columns independently

from one another, hence eliminating all meaningful corre-

lations between them. Given finite sampling (even if very

large), however, there will still remain some residual corre-

lations, resulting in off-diagonal non-zero terms in the

covariance matrix. Hence, if we diagonalize this new covari-

ance matrix, the largest eigenvalue provides a resolution limit

for our ability to distinguish signal from finite sampling

noise. Performing this analysis, we find that only 50 modes

have eigenvalues larger than this largest shuffled eigenvalue.

These 50 modes account for slightly more than 93% of the

observed variation in the data.
Appendix C. Wavelet calculations
We use the Morlet continuous wavelet transform to provide a

multiple time-scale representation of our postural mode

dynamics. More explicitly, we calculate this transform,

Ws,t[y(t)], via

Ws,t[y(t)] ¼ 1ffiffi
s
p
ð1

�1

y(t)c�
t� t

s

� �
dt, (C 1)

with

c(h) ¼ p�1=4eiv0he�1=2h2

: (C 2)

Here, yi(t) is a postural time series, s is the time scale of inter-

est, t is a point in time and v0 is a non-dimensional

parameter (set to 5 here).

The Morlet wavelet has the additional property that the

time scale, s, is related to the Fourier frequency, f, by

s(f) ¼
v0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ v2

0

q
4pf

: (C 3)

This can be derived by maximizing the response to a pure

sine wave, A(s, f ) ; jWs,t[e
2pift]j, with respect to s.

However, A(s, v) is disproportionally large when

responding to pure sine waves of lower frequencies. To

correct for this, we find a scalar function C(s) such that

C(s)A(s, v�) ¼ 1 for all s, (C 4)

where v* is 2p times the Fourier frequency found in equation

(C 3). For a Morlet wavelet, this function is

C(s) ¼ p�
1
4ffiffiffiffiffi

2s
p e1=4(v0�

ffiffiffiffiffiffiffiffi
v2

0
þ2

p
)
2

: (C 5)

Accordingly, we can define our power spectrum, S(k, f; t), via

S(k, f ; t) ¼ 1

C(s(f))
jWs(f ),t[yk(t)]j: (C 6)
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Last, we use a dyadically spaced set of frequencies between

fmin ¼ 1 Hz and the Nyquist frequency ( fmax ¼ 50 Hz) via

fi ¼ fmax2
� i�1

Nf�1 log2
fmax
fmin , (C 7)

for i ¼ 1, 2, . . . , Nf (and their corresponding scales via equation

(C 3)). This creates a wavelet spectrogram that is resolved at

multiple time scales for each of the first 50 postural modes.
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Appendix D. t-distributed stochastic neighbour
embedding implementation
For our initial embedding using t-SNE, we largely follow the

method introduced in [18], minimizing the cost function

C ¼ DKL(PjjQ) ¼
X

ij

pij log
pij

qij
, (D 1)

where pij ¼ 1/2( pjji þ pijj),

qij ¼
(1þ D2

ij)
�1

P
k
P

‘=k (1þ D2
k,‘)
�1

, (D 2)

and Dij is the Euclidean distance between points i and j in the

embedded space. The cost function is optimized through a

gradient descent procedure that is preceded by an early exag-

geration period, allowing for the system to more readily

escape local minima.

The memory complexity of this algorithm prevents the prac-

tical number of points from exceeding �35 000. Although

improving this number is the subject of current research [43],

our solution here is to generate an embedding using a selection

of roughly 600 data points from each of the 59 individuals

observed (out of �360 000 data points per individual). To

ensure that these points create a representative sample, we per-

form t-SNE on 20 000 randomly selected data points from each

individual. This embedding is then used to estimate a probability

density by convolving each point with a two-dimensional Gaus-

sian whose width is equal to the distance from the point to its

Nembed¼ 10 nearest neighbours. This space is segmented by

applying a watershed transform [34] to the inverse of the PDF,

creating a set of regions. Finally, points are grouped by the

region to which they belong and the number of points selected

out of each region is proportional to the integral over the PDF

in that region. This is performed for all datasets, yielding a

total of 35 000 data points in the training set.

Given the embedding resulting from applying t-SNE to

our training set, we wish to embed additional points into

our behavioural space by comparing each with the training

set individually. Mathematically, let X be the set of all feature

vectors in the training set, X0 be their associated embeddings

via t-SNE, z be a new feature vector that we would like to

embed according to the mapping between X and X0, and z

be the embedding of z that we would like to determine.

As with the t-SNE cost function, we will embed z by

enforcing that its transition probabilities in the two spaces

are as similar as possible. Like before, the transitions in the

full space, pjjz, are given by

p jjz ¼
exp (�d(z, j)2=2s2

z )P
x[X exp (�d(z, k)2=2s2

z )
, (D 3)

where d(z, j) is the Kullback–Leibler divergence between z and

x [ X, and sz is once again found by constraining the entropy
of the condition transition probability distribution, using the

same parameters as for the t-SNE embedding. Similarly, the

transition probabilities in the embedded space are given by

q jjz ¼
(1þ D2

z,j)
�1

P
x0[X0 (1þ D2

z,x0 )
�1

, (D 4)

where Dz,x’ is the Euclidean distance between z and y [ X0.
For each z, we then seek the z� that minimizes the

Kullback–Leibler divergence between the transition probability

distributions in the two spaces

z� ¼ arg min
z

DKL( pxjzjjqyjz) (D 5)

¼ arg min
z

X
x[X

pxjz log
pxjz

qy(x)jz
: (D 6)

As before, this is a non-convex function, leading to potential

complexities in performing our desired optimization. However,

if we start a local optimization (using the Nelder–Mead simplex

algorithm [44,45]) from a weighted average of points, z0, where

z0 ¼
X
x[X

pxjzy(x), (D 7)

this point is almost always within the basin of attraction of the

global minimum. To ensure that this is true in all cases, however,

we also perform the same minimization procedure, but starting

from the point y(x*), where

x� ¼ arg max
x

pxjz: (D 8)

This returned a better solution approximately 5% of the time.

Because this embedding can be calculated independently

for each value of z, the algorithm scales linearly with the

number of points. We also make use of the fact that this algor-

ithm is embarrassingly parallelizable. Moreover, because we

have set our transition entropy, H, to be equal to 5, there are

rarely more than 50 points to which a given z has a non-zero

transition probability. Accordingly, we can speed up our cost

function evaluation considerably by only allowing pxjz . 0

for the nearest 200 points to z in the original space.

Lastly, we find the space of behaviours for the female datasets

by embedding these data into the space created with the male

training set. We find that the median re-embedding cost (equation

D 5) for the female cost is only 1% more than the median

re-embedding cost for the male data (5.08 bits versus 5.12 bits)

indicating that the embedding works well for both sexes.
Appendix E. Phase-averaged orbits
After applying the PHASER algorithm, we find the phase-aver-

aged orbit via a von Mises distribution weighted average.

More precisely, we construct the average orbit for eigenmode

k, m(k)(f ) via

m(k)(f) ¼
X

i

y(k)
i

exp [k cos (f� fi)]P
j exp [k cos (f� fj)]

, (E 1)

where y(k)
i is the projection onto the kth eigenmode at time

point ti, fi is the phase associated with the same time point

and k is related to the standard deviation of the von Mises

distribution (s2
vM(k) ¼ 1� I1(k)=I0(k), where In(x) is the modi-

fied Bessel function of nth order). Here, we find the value of

k � 50.3, which is the k resulting in svM ¼ 0.1.

Because phase reconstruction only is unique up to an

additive constant, to compare phase-averaged curves of
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different behavioural bouts, an additional alignment needs to

occur. This is performed by first finding the maximum value

of cross-correlation between the phase-averaged curves for
each mode. Then, the phase offset between that pair of 50-

dimensional orbits is given by the median of these found

phase shifts.
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