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An increased accumulation of immune-dysfunction-associated CD4+Foxp3+ regulatory T
cells (Tregs) is observed in aging oral mucosa during infection. Here we studied the function
of Tregs during oral cancer development in aging mucosa. First, we found heightened
proportions of Tregs and myeloid-derived suppressor cells (MDSC) accumulating in mouse
and human oral squamous cell carcinoma (OSCC) tissues. Using the mouse 4-
Nitroquinoline 1-oxide(4-NQO) oral carcinogenesis model, we found that tongues of
aged mice displayed increased propensity for epithelial cell dysplasia, hyperplasia, and
accelerated OSCC development, which coincided with significantly increased abundance
of IL-1b, Tregs, and MDSC in tongues. Partial depletion of Tregs reduced tumor burden.
Moreover, fungal abundance and dectin-1 signaling were elevated in aged mice
suggesting a potential role for dectin-1 in modulating immune environment and tumor
development. Confirming this tenet, dectin-1 deficient mice showed diminished IL-1b,
reduced infiltration of Tregs and MDSC in the tongues, as well as slower progression and
reduced severity of tumor burden. Taken together, these data identify an important role of
dectin-1 signaling in establishing the intra-tumoral immunosuppressive milieu and
promoting OSCC tumorigenesis in the context of aging.
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INTRODUCTION

Head and neck cancers (HNC) including OSCC are the sixth most common cancers, accounting for
an estimated 657,000 new cases and more than 330,000 deaths globally each year. The aging
population (age >65) has grown to 727 million in 2020 and will double to nearly 1.5 billion, roughly
~16% of the world population by 2050. A majority of all new cancers are diagnosed among elderly
adults (1). Therefore, the convergence of the aging population and a higher cancer incidence in this
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population will result in a significant rise in cancer. Aging
triggers the immune system to be in a chronic hyper-
inflammatory state known as inflammaging. An imbalance
between pro- and anti-inflammatory mechanisms due to the
combination of inflammaging and impaired immune-
surveillance may contribute to increased susceptibility of
elderly individuals to cancer (2–4). However, precise cellular
alterations in the tumor immune microenvironment (TIME) that
contribute to tumor growth and progression in the elderly are
not completely understood. HNC are among the most highly
immune-cell infiltrated cancer types, highlighting the
significance of immune cells in tumor development and
progression blockade. Immune-suppressive cells including
Tregs, MDSC, and tumor-associated macrophages (TAM) that
are important in immune tolerance, accumulate in tumors, and
are thought to contribute to poor immunologic responses against
tumors resulting in cancer immune evasion (5–14). Depending
on the tumor type, Tregs may constitute between 30 - 45% of
CD4+ T cells in solid tumors of nonlymphoid origin, with OSCC
cancers having the highest degrees of Treg infiltration (15, 16).
Tregs and MDSC have been shown to contribute to tumor evasion
and even hinder the success of a-PD1 cancer immunotherapy
(17–20). Thus there is considerable interest in understanding the
involvement of these cells in many cancers (21–25). However,
molecular mechanisms that instruct intra-tumoral Treg

recruitment, proliferation, stability, or functions in the context
of their interactions with anti-tumor CD8 cells and other
immune-suppressive cells remain elusive. Understanding these
mechanisms will lead to new combinatorial strategies in the face
of PD-1/PD-L1 blockade resistance, leading to improved patient
outcomes . Hav ing prev ious ly l inked some of the
immunosenescent cytokines in Treg accrual and aging
previously (26), we now show that dectin-1 signaling is
required for increased IL-1b, MDSC, and Tregs during
carcinogenesis, and that this enhancement in aged mice
contributes to the acceleration in tumor development in them.
MATERIALS AND METHODS

Mice and Human Samples
Mouse experiments were performed following all guidelines and
regulations under an approval from the CWRU Institutional
Animal Care and Use Committee. Young (3-4 months of age),
aged (20-24 months of age) C57BL/6 mice, TLR-2-/- and Dectin-
1-/- mice were purchased from Jackson laboratories. Human oral
tissue samples were obtained by excision (tumor resection),
cytobrushing (mostly epithelial cells), or by biopsy (control
tissue 2-3 cm from the tumor margin) under an approved
protocol approved by the University Hospitals Cleveland
Medical Center Institutional Review Board.
4-NQO Administration in Mice
4-NQO was dissolved in 1:1 solution of propylene glycol and
DMSO and administrated in drinking water (50 -100 mg/ml) for
Frontiers in Oncology | www.frontiersin.org 2
16 weeks, followed by the regular drinking water for another 6
weeks. Mice were sacrificed at the end of 24-25 week 4-NQO
regimen. Young mice developed OSCC tumors after 24- 25
weeks and aged mice around 21-22 weeks after the start of 4-
NQO administration (Figure 1A). Control mice received the
propylene glycol/DMSO vehicle. Mouse body weight was
measured every other day until sacrifice. 5-, 12 and 15- week
time-points were considered early timepoints for the evaluation
of immune cell changes in the tongue. Scores were assigned using
tongue immuno-histochemistry using established OSCC criteria
(27). Epithelial hyperplasia and dysplasia scores were designated
at 12 weeks after the 4-NQO regimen as follows: 0 = No immune
infiltrates and the presence of cohesive epithelium; 1 = Sparse
immune infiltrates with mild epithelial hyperplasia; 2 = Sparse
immune infiltrates and moderate epithelial hyperplasia and
dysplasia; 3 = Severe epithelial hyperplasia and dysplasia
and moderate hyperkeratosis; 4 = Severe epithelial hyperplasia
and dysplasia and hyperkeratosis; 5 = Presence of invasive
hyperkeratosis. OSCC scores were given at 20 or 24-25 weeks
after the 4-NQO regimen as follows: 0 = No immune infiltrates
and the presence of cohesive epithelium; 1 = Sparse immune
infiltrates with mild epithelial hyperplasia; 2 = Moderate
epithelial hyperplasia and dysplasia; 3 = Severe epithelial
hyperplasia and dysplasia and moderate hyperkeratosis; 4 =
Severe epithelial hyperplasia and dysplasia and hyperkeratosis;
5 = Presence of invasive hyperkeratosis, cell nests and OSCC.

Antibodies
Purified or fluorochrome conjugated mouse and human a-CD25
(3C7 and 7D4), CD4, IFN-g, Foxp3, CD45, CD8, CD11C, CD38,
HLADR, Phospho-Syk (Ser473), IL-1b, IL-6, Arg-1, PerCP-
eFluor 710 conjugated Ly-6G Monoclonal Antibody (1A8-
Ly6g), APC conjugated CD11b Monoclonal Antibody (M1/70)
and dectin-1 antibodies were all purchased from Life
Technologies/Thermofisher and BD-Biosciences.

Quantitative-PCR
DNAwas isolated frommouse saliva swabs using the PureLink™

Microbiome DNA Purification Kit (Invitrogen). ITS and
FungiQuant qPCR primers (28, 29) (Invitrogen), and SYBR
Green PCR Kit (BioBasic) were used for performing qPCR,
employing the real time PCR machine (Applied Biosystems).
The relative amount of fungal DNA of interest was estimated
from its Ct values, which were normalized to the host b-actin
DNA levels.

Histochemistry and Immunohistochemistry
of Proteins
For immunocytochemical hematoxylin and eosin (H&E),
and immuno-histochemistry staining, tongue tissues were
rinsed with PBS, fixed with 10% formalin overnight, and
rehydrated in 70% ethanol overnight for paraffin embedding.
This was followed by paraffin-sectioning and staining by the
commercial facility (Histoserv, Inc, MD). Antibodies were used
at 1-5 mg/ml concentrations.
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Flow Cytometry and ELISA
Cells were re-stimulated with PMA (50 ng/ml) and Ionomycin
(500 ng/ml) for 4 hours in complete RPMI-1640 (Hyclone)
supplemented with 10% FCS, 100 U/ml penicillin, 100 µg/ml
streptomycin, 2 mM glutamine, 10 mM HEPES, 1 mM sodium
pyruvate and 50 mM b-mercaptoethanol (30). Brefeldin-A
(10 µg/ml) added in last 2 hours before harvesting the cells
and supernatants. For single-cell flow cytometry staining, cells
washed in PBS or PBS/BSA before surface and intracellular
staining. Live-Dead viability staining was used to remove dead
cells in the flow cytometry analyses. Appropriate un-stain,
isotype, secondary antibody, single stain and FMO controls
were used. For p-Syk staining, the cells were washed, fixed and
were stained with Phosflow staining kit from BD Biosciences
using manufacturer’s protocol. For examining T cells, leukocyte
Frontiers in Oncology | www.frontiersin.org 3
singlets, Live-deadneg, CD45+CD3+CD4+ or CD8+ gates were
used. For examining MDSC, leukocyte singlets, Live-deadneg,
CD45+CD3neg gates were used. Data was acquired using BD
Fortessa cytometers and were analyzed using FlowJo 9.8 or 10.5.3
software. Mouse IL-1b and IL-6 ELISA kits from Boster Bio
(Pleasanton, CA) were used to assess the protein levels in
the supernatants.
Oral Candida Infection and Zymosan
Application
Mice were infected with Candida as previously described (31,
32). Briefly, they were sublingually applied under anesthesia by
placing a 3 mm diameter cotton ball saturated with 1 x 107

Candida albicans (SC5314) blastospores for 90 min. Mice were
A

B D

E FC

FIGURE 1 | Aged mice display accelerated development of OSCC and heightened levels of immunosuppressive cells in the tongue. 4-NQO was (50 mg/ml) administered
in drinking water. Time-points for readouts and various stages of OSCC development in this model are shown (A). H&E immunohistochemistry images of the tong15ue at
200X magnification at indicated times [IF, Infiltration; MD, mild dysplasia; SD, severe dysplasia/hyperplasia; HK, Hyperkeratosis]. Samples were processed for flow
cytometry (B). Statistics showing %Tregs (C, top) and Treg:CD8 ratio (C, bottom) in the draining cervical lymph nodes (CLN) (left), or tongue (right) at 16 weeks (D).
Contour plots (left) and statistics (right) showing % of PD-1 and IFN-g expressing CD8+ cells (E). Representative contour plots (left) and statistics (right) showing % of
CD11b and Ly6G expressing CD45+ cells. Arg-1 expression in MDSC (CD45+CD11b+Ly6G+) vs non MDSC (CD45+CD11b+Ly6G-neg) cells (F, top) and in MDSC in
young and aged 4-NQO treated mice (F, bottom) (Geometric Mean = G.M) (Mann-Whitney test *P < 0.05, **P < 0.05, ***P < 0.005; n.s, non-significant).
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re-infected as indicated. We applied Zymosan sublingually in the
same manner (33).

Statistical Analysis
Results represent at least two to three independent experiments.
P values were calculated by Mann-Whitney test in Prism 6.1
(GraphPad Software, Inc.) assuming random distribution.
Welch’s correction and student t tests were used where
indicated. One or two way ANOVA analyses were also used
for grouped analyses. P < 0.05* was considered significant.
RESULTS

Aged Mice Show Earlier and Exacerbated
Dysplasia/Hyperplasia, and OSCC
Development as well as Heightened Levels
of Immunosuppressive Cells in the Tongue
To obtain mechanistic insights into immunological changes
driving OSCC and to define aging-dependent alterations in
early immunological events during carcinogenesis, we used the
4-NQO oral carcinogenesis mouse model. This constitutes 16-
weeks of 4-NQO administration in drinking water followed by
another 6-weeks with regular drinking water (Figure 1A). We
compared young (3-4 months of age) and aged (20-24 months of
age) C57BL/6 mice treated with 4-NQO. Control mice received
the propylene glycol vehicle in drinking water. At indicated
times, we examined the tongue pathology by immuno-
histochemistry using established OSCC criteria (Figure 1B).
Thickened keratinized layer (Hyperkeratosis; HK), lesions
showing enlarged nuclei with increased nuclear to cytoplasmic
ratio, loss of typical epithelial cell organization (dysplasia),
intrusion into the connective tissue, and presence of cell nests
were used for scoring on a 0-5 scale. Aged mice demonstrated
earlier and higher incidence of accelerated progression of
hyperkeratosis, hyperplasia, and dysplasia during early time
points (12- 22 weeks) (Figure 1B). Also, more mice in the
aged group showed these changes at early time-points (Figure
S1). These data are consistent with a previous study that
elegantly showed similar results in aged mice (34). Since aging-
related differences in OSCC were not significant after 23-24
weeks, we focused on early events of carcinogenesis in defining
altered and accelerated dysplasia in aging mice. Therefore, we
examined the rest of the parameters at this early time (12- 16
weeks) window. We isolated the tongue/gingival tissues and the
oral draining cervical lymph nodes (CLN) and determined the
frequency of CD3+CD4+Foxp3+ Tregs by flow cytometry (n=6/
Veh. group; n=8/4-NQO group). 4-NQO carcinogenesis process
also increased the frequency of Foxp3+ Tregs in oral tissues and
draining lymph nodes, which increased with time (Figure 1C,
S2). Aged mice displayed significantly higher proportions of Tregs

when compared to younger mice (Figure 1C). Correlating with
the increase in Tregs, the percentage of CD3+CD8+ cells
decreased, and the aged mice had a significantly higher Treg:
CD8 ratio than young mice (Figure 1D, left). CD8+ T cells in the
tongue also upregulated PD-1 but showed a decreased expression
Frontiers in Oncology | www.frontiersin.org 4
of IFN-g in 4-NQO treated mice in both groups (Figure 1D,
right). Also, tongues from 4-NQO treated mice showed increased
accumulation of CD11b+Ly6G+MDSC cells that were at higher
levels in aged mice than young mice (Figure 1E). Consistent with
their MDSC phenotype, CD11b+Ly6G+ cells were Arginase-1high

(Arg-1), when compared to CD11b+Ly6G- cells (Figure 1F, top).
Moreover, the expression of Arg-1 was much more elevated in
aged 4-NQOmice than young 4-NQOmice (Figure 1F, bottom).
Thus, earlier epithelial dysplasia coincided with an increased
Tregs: CD8 ratio and CD11b+Ly6G+ Arg-1high MDSC in aged
tongues. Taken together, these results show that aging in the
context of the carcinogen 4NQO, causes premature development
of oral carcinogenesis, which is associated with increased
infiltration of immune-suppressive cells.

Heightened Levels of Intra-Tumoral Tregs,
MDSC, and IL-1b in OSCC Patients
To validate 4-NQO findings, we examined surgically excised
human OSCC tumors, control biopsies that included tissue
derived from a site 2-3 cm from the tumor margin, as well as
tumor lesion cytobrushings and contralateral control tissue
cytobrushings from patients (Figures 2A, S3). Tumor tissues
were obtained from 16 patients that included eight former
smokers, four current smokers, and four non-smokers. Similar
to 4-NQO treated mice, human OSCC tumors showed very high
proportions of CD25+Foxp3+ Treg cells, (sometimes up to 42%;
Mean 22%) (Figure 2B). This was significantly higher than what
is found in gingival mucosa of healthy individuals (*P<0.05) (26).
Among CD45+ cells, there were also higher proportions of
CD14negCD11B+CD33+ MDSC cells (Figure 2C), which had
higher ARG-1 expression, compared to non-MDSC cells (Figure
2D). Because IL-1b signaling is critical for induction of
immunomodulatory ROR-gt+FOXP3+ cells in oral mucosal
tissues and is implicated in oral tumor progression (26, 35, 36),
we examined the expression of IL-1b. IL-1b was significantly
increased in the supernatants derived from human tumors and
resected tumor supernatants (Figure 2E), as well as in immune
cells (Figure 2F). However, the IL-1 receptor antagonist (IL-
1RA) levels were significantly lower in tumor samples (Figure
S4) suggesting that IL-1 antagonism is associated with health
while IL-1b was associated with tumor development. Notably,
MDSC cells showed heightened levels of IL-1b than other cells,
implying that IL-1b is likely linked to immune-suppressive
milieu in tumors (Figure 2F).

Aged Mice Have a Distinct Treg Phenotype
and Elevated Levels of IL-1b Compared to
Young Mice
The degree of phenotypic and functional heterogeneity of tissue/
intra-tumoral Tregs can be high (37), and evaluating them solely
with FOXP3 and CD25 markers without examining anti-tumor
CD8+ T cells can sometimes be misleading. Besides recruiting
thymic Tregs into tumors via chemotaxis, Tregs can be induced
in situ in tumors due to the abundance of mediators such as nitric
oxide synthase, indoleamine 2, 3-dioxygenase 1, transforming
growth factor- b1, and adenosine released from tumor cells,
April 2021 | Volume 11 | Article 669066
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TAM, and MDSC (38). Some of these FOXP3+ cells may also be
critical for tissue repair or become dysfunctional depending on
the inflammatory cytokine milieu (39). Indeed we (26, 31, 40–43)
and others have shown distinct functions of T-bet+Foxp3+cells,
ROR-gt+Foxp3+ cells, and PD-1+Foxp3+ cells, whose functions
are significantly altered by cytokines including IL-6 and IL-1b in
an mTOR dependent manner in oral mucosa (26). Since CD25,
PD-1, T-bet, ROR-gt, Suppression of Tumorigenicity 2 (ST-2)
expression were all implicated in determining intra-tumoral Treg

functions positively and negatively in other tissues (7, 35, 44, 45),
we examined the expression of the molecules, in aged vs. young
Tregs, 16 weeks after 4-NQO administration. While the
expression of CD25 (ability to consume IL-2) (10, 30), Ki-67
(proliferation), and ST-2 (tissue Treg and tumorigenicity marker)
(7) did not change between young and aged Tregs, CD103 (TGF-
b1 dependent, tolerogenic, and tumor-specific T cell marker)
(46), PD-1, ROR-gt, and T-bet were significantly up-regulated in
aged Tregs (Figure 3A). Consistent with the higher expression of
ROR-gt in Tregs and earlier dysplasia in aging mice, increased
numbers of IL-1b expressing cells were found among infiltrating
immune cells in aged mice as early as 5 and 12 weeks after 4-
NQO administration (Figures 3B, C). IL-6 levels were also
elevated in aged tongue supernatants (Figure S5). Moreover, at
later times, IL-1b expression was found in epithelial tumor cells
and immune cell infiltrates in both the groups, but was
dramatically elevated in aged 4-NQO treated mice when
compared to their young counterparts (Figure 3D). These
Frontiers in Oncology | www.frontiersin.org 5
results showed that Tregs found in tongues during early tumor
development in 4-NQO treated mice are phenotypically distinct,
appearing to be functionally more immunosuppressive in aged
mice, and may be linked to higher expression of IL-1b in
the milieu.

Partial Treg Depletion Reduces
Tumor Progression
Although tumorigenesis coincides with increases in Foxp3+ Tregs,
the function of these cells has not been validated in the 4-NQO
model. Therefore, we employed Foxp3DTR-eGFP reporter (Foxp3
diphtheria toxin receptor; FDTR) mice that express the
diphtheria toxin receptor on Foxp3+ cells and allow targeted
Treg depletion by intraperitoneal diphtheria toxin (DT) injection
(20 mg/10 gm body weight; n=4/group) (30, 31). We took two
approaches; 1) Early and long-term Treg depletion where DT was
injected every 5 days, in the first 16 weeks of 4-NQO treatment 2)
Late and short-term Treg depletion where DT was injected every
5 days, from the 16th -21st weeks of 4-NQO treatment n=6/
group) (Figure 4A). Early Treg depletion caused systemic
a u t o immun i t y c h a r a c t e r i z e d b y s p l e n ome g a l y ,
lymphadenopathy, CD4 hyperactivation (CD44high, IFN-ghigh),
and mortality in 30% of mice which confounded the effects on
early tumorigenesis (not shown). However, late and short-term
Treg depletion caused only partial Treg reduction, but the mice
had significantly reduced dysplasia and OSCC at 24 weeks
(Figures 4B, C, S6A). The frequencies of CD11b+Ly6G+ and
A B

D E F

C

FIGURE 2 | Heightened levels of intra-tumoral Tregs, MDSC, and IL-1b in OSCC patients. Human oral tissue samples were obtained by excision (tumor resection),
cytobrushing (mostly epithelial cells), or by biopsy (control tissue 2-3 cm from the tumor margin) under an approved IRB protocol. H&E immunohistochemistry
images of the tongue at 200X magnification (A). Samples were digested by collagenase-1A and restimulated with PMA/Ionomycin for 4 hours. Contour plots gated
on CD45+CD3+CD4+ lymphocytes (B, top) and statistical analysis (B, bottom) showing % of Tregs and MDSC (C). ARG-1 expression in MDSC vs non-MDSC cells
(D). Supernatants were collected from these cultures and assessed for IL-1b using ELISA (E). Contour plots showing IL-1b expressing MDSC (left), non-MDSC
(middle), and T cells (right) (F). Mean +/-SEM are shown. (Mann-Whitney test *P < 0.05, **P < 0.05, ***P < 0.005, ****P < 0.0005).
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IL-1b+ cells were unchanged with Treg depletion, showing that
these components are likely upstream to Treg induction and
infiltration during tumorigenesis (Figures S6B, C). However, the
PD-1 expression was diminished and IFN-g expression was
Frontiers in Oncology | www.frontiersin.org 6
partially restored in CD8+ T cells (Figure 4D). Collectively,
these results show, for the first time in a 4-NQO OSCC model,
that infiltrating Tregs control anti-tumorigenic functions of CD8+

T cells and contribute to OSCC tumorigenesis and progression.
A

B

D

C

FIGURE 3 | Aged mice have distinct Treg phenotype and elevated levels of IL-1b compared to young mice. 16 weeks after 4-NQO administration, single-cell
suspension from tongue was re-stimulated with PMA/Ionomycin for 4 hours. Flow cytometry histograms showing indicated protein expression in CD45+ CD3+

CD4+Foxp3+cells (A). Tongue tissues were processed for IL-1b immuno-histochemical staining at 5 weeks (B). Supernatants collected at 12 weeks were processed
for IL-1b ELISA. Mean +/- SEM in 3 mice/group (Mann-Whitney test *P< 0.05) (C). Tongue tissues were processed for IL-1b immuno-histochemical staining at 24
weeks (D).
A

B DC

FIGURE 4 | Partial Treg depletion reduces tumor progression. Tregs were depleted in FDTR mice by injecting diphtheria toxin (DT) at late time points (every 5 days
between 16th -21st weeks of 4-NQO treatment) (A). Statistics showing CD4+Foxp3+cells based on flow cytometry analyses at 20 and 24 weeks (B).
Immunohistochemistry H&E staining (left) and OSCC score based on invasive hyperkeratosis, and nesting (0-5) (right) (C). Contour plots (left) and statistics (right)
showing PD-1 and IFN-g expressing CD8+ T cells (D). Mean +/- SEM in 6 mice/group (Mann-Whitney test *P < 0.05, **P < 0.05).
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Candida and Zymosan Exacerbate and
Accelerate Dysplasia and Hyperplasia
Previous evidence has shown that oral carriage of Candida is
higher in elderly individuals and patients with OSCC (47–51).
We and others have previously shown that Candida infection can
also induce IL-1b expression and Treg infiltration in oral mucosa
(26, 52). Since aforementioned results showed IL-1b was
positively linked with tumorigenesis, we hypothesized that
Candida infection and consequent IL-1b induction might
worsen OSCC outcome. Therefore, we examined the effect of
Candida infection and zymosan during carcinogenesis in 4-NQO
treated mice. We sublingually applied Candida (107

blastospores) or D-zymosan (TLR-2 depleted zymosan; 1 mg/
100ul) under anesthesia WT or TLR-2 knockout (TLR-2 KO)
C57BL/6 mice every week between 4th and 8th weeks of 4-NQO
administration. These treatments significantly accelerated and
worsened dysplasia/hyperplasia (Figures 5A, B), increased IL-
1b+ cells and Tregs in the tongue at 12 weeks (Figures 5C, D, S7),
and induced OSCC around 21 weeks (Figure 5E). Importantly,
premature OSCC development was also observed in TLR-2 KO
mice, revealing that zymosan and Candida mediated
exacerbation of OSCC development was independent of TLR-2
signaling. In fact, in the absence of TLR-2, the numbers of IL-1b+

cells were increased implying the involvement of anti-fungal
dectin-1 signaling in OSCC.
Frontiers in Oncology | www.frontiersin.org 7
Aged Mice Show Elevated Dectin-1
Signaling in Immune Cells in the Tongue
and Increased Fungal Abundance in Saliva
Dectin-1 is expressed by myeloid phagocytes (53) and binds
specifically to fungal b-1,3 glucans, endogenous galectins, and
annexins on apoptotic cells (54). Dectin1 signaling activation
induces the phosphorylation of Syk and consequently the
expression of IL-1b. We and others have shown that dectin-1
signaling can regulate Treg alterations and macrophage
metabolism (55–58). Fungal dysbiosis and dectin-1 have also
been implicated in inflammatory diseases and cancers (59–61).
Thus, previous reports and our above-mentioned results led us to
hypothesize that dectin-1 might be involved in OSCC
development and earlier predisposition of aged mice to OSCC.
Confirming the hypothesis, 4-NQO induced tumorigenesis
promoted a significant elevation of dectin-1 expression and
Syk activation in immune infiltrates (CD45+ cells) (Figure 6A).
Dectin-1 expression and Syk activation were further increased in
aged 4-NQO treated mice suggesting the involvement of dectin-1
signaling in accelerated tumorigenesis in aging mice (Figure 6B).
Although not-significant, there was also a trend towards
increased fungal abundance in the saliva of 4-NQO treated
mice, as measured by fungal abundance qPCR (28, 29).
Interestingly, aged 4-NQO treated mice that displayed
accelerated dysplasia and OSCC (Figure 1A), showed a
A B D

EC

FIGURE 5 | Candida and Zymosan exacerbate and accelerate dysplasia and hyperplasia. (A) 4-NQO was administered in WT or TLR-2 KO C57BL/6 mice as in
Figure 3A (6 mice/group). Zymosan (1mg), Candida (107 blastospores), or both were applied sublingually under anesthesia every week between the 4th and 8th

weeks of 4-NQO administration. H&E staining was performed to assess dysplasia and hyperplasia (A). Immunohistochemistry and flow cytometry were performed.
Statistics based on dysplasia and hyperplasia score (B), IL-1b immunohistochemistry (C), flow cytometry staining for Treg assessment (D), and OSCC scores (E).
OSCC scores were assigned based on hyperplasia, invasive hyperkeratosis, and nests after 20 weeks after 4-NQO administration. Statistics show Mean +/- SEM
(Mann-Whitney test *P < 0.05, **P < 0.05, ***P < 0.005, n.s, non-significant).
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significantly higher fungal abundance than control mice (Figure
6C). Together, these results revealed that increased fungal
abundance and resultant aberrant dectin-1 signaling might
play a role in accelerated tumorigenesis in aged mice.
Dectin-1 Deficiency Reduces
Immunosuppressive Cells and OSCC
Tumor Burden
Next, we investigated the role of dectin-1 in tumorigenesis using
the mice deficient in dectin-1 signaling (Dectin KO mice). By
monitoring body-weight we found that weight loss was much less
pronounced in Dectin-1 KO than WTmice (Figure 7A). Dectin-
1 KOmice also had significantly reduced IL-1b+ cells (Figure 7B,
S8), Treg induction (Figure 7C, S9), Treg : CD8 ratio (Figure 7D),
PD-1 induction in CD8+ T cells (Figures 7E, G), and MDSC cells
(Figure 7F). However, coinciding with IFN-g restoration in CD8
T cells (Figures 7E, G), mice showed significantly slower
progression of dysplasia and lower numbers and sizes of OSCC
tumors (Figures 7H, I). Based on the phenotype of Dectin-1 KO
mice, dectin-1 signaling appears to play a clear role in OSCC
development. Taken together, these results show dectin-1
signaling is critical for establishing an immunosuppressive
milieu and the development of oral tumorigenesis.
DISCUSSION

Aging skews host CD4+ T cells and Tregs towards an inflammatory
Treg type, which fails to control immunopathology during an
infection. Instead, there is an increased accumulation of Foxp3+
Frontiers in Oncology | www.frontiersin.org 8
cells, a proportion of which is associated with increased CD4+ T
cell hyperactivation and altered levels of IL-6 and IL-1b in mice
and humans in oral mucosa in vivo (26). To our knowledge, no
study has examined Treg interactions in TIME with relevance to
aging and OSCC carcinogenesis. While there are contentious data
on age-related changes in Tregs in blood (62, 63), there is no report
to date on intra-tumoral Tregs and their interactions with other
immune suppressive cells in the context of aging. In this study, we
found that mouse and human OSCC tissues showed not only an
increased accumulation of Tregs but also ofMDSC.Moreover, aged
mice showed increased and early filtration of these cells and were
also more susceptible to early dysplasia and tumor development
compared to youngmice. The 4-NQOmousemodel mimicked the
multistage carcinogenesis of human OSCC so that we could
investigate the immunological events in tumors and tumor-
draining lymph nodes in the early stages (27, 64). In this model,
we found that infiltration of immunosuppressive cells was one of
the early immunological events of OSCC initiation. We also
validated these findings in developed human OSCC tumors,
comparing them to adjacent normal control tissues. These data
provided a compelling link among aging, immunosuppressive
milieu, and oral cancer. While many previous studies have
shown that high levels of intra-tumoral Tregs associate with poor
prognosis, a few studies show that intra-tumoral Tregs in some
cancers correlate with improved disease outcomes (65–68).
However, multivariate analysis shows that Treg levels are not
independently prognostic of OSCC but cytolytic T cells that co-
infiltrate along with Tregs appear to drive the favorable prognosis
(15). Therefore we examined FOXP3+ cells in relation to CD8+T
cell frequency andMDSC. Increased intra-tumoral Treg: CD8 ratio
rather than increases in Treg frequencies is more informative about
A B C

FIGURE 6 | Aged mice show elevated dectin-1 signaling in immune cells in the tongue and increased fungal abundance in saliva. Tongue samples were processed
for flow cytometry. Contour plots (top) and statistics (bottom) showing dectin-1 expressing CD45+ cells (A). Contour plots showing % of Dectin-1+ and
phosphorylated SYK (p-SYK) expressing CD45+ cells (B). Saliva swabs collected at 12, 15, and 23 weeks were pooled. qPCR was performed to quantify fungal
DNA using ITS-2 and fungi-quant PCR primers (C) (28, 29). Relative abundance was standardized to input DNA using b-actin as reference. (Mann-Whitney test
*P < 0.05, **P < 0.05).
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pro-tumorigenic functions of Tregs during OSCC. Indeed,
examining Treg:CD8 ratio has allowed investigators to obtain
consistent data showing clearly that a higher ratio is associated
with poor prognosis and survival in human studies (69, 70). While
we also characterized the Tregs by examining their inflammatory
and tissue markers during early carcinogenesis in aging mice,
more studies are required to determine the mechanisms
underlying their altered phenotype and their contribution to
OSCC development.

IL-1b is a cancer-associated pro-inflammatory cytokine that
is abundant in breast, colon, lung, esophageal, as well as OSCC
cancers (71). It is linked to poor prognosis for patients with
esophageal cancer (72). Targeting IL-1b has been shown to
hinder oral carcinogenesis in the 4-NQO model, and is
Frontiers in Oncology | www.frontiersin.org 9
considered in the clinical settings (36, 73). IL-1b is also
involved in inducing immunomodulatory Foxp3+ROR-gt+ cells
in microbiome dependent manner (26, 31, 36, 43, 56, 74–81).
Foxp3+ROR-gt+ cells have been shown to be present in tumors
and contribute to tumor immune evasion and autoimmunity
control (35, 82). But the events preceding excessive IL-1b
expression and at the IL-1b/Treg interface are largely unknown.
Our data showed that there was excessive IL-1b production in
tongues of aged 4-NQO treated mice compared to young mice,
demonstrating that IL-1b is clearly associated with the
establishment of a worse immunosuppressive milieu. These
results are distinct from an acute infection milieu and steady
state-conditions where aging oral mucosa shows IL-1b
suppression (26). Although it is conceivable that early
A B D

E

F

G

I

H

C

FIGURE 7 | Dectin-1 deficiency reduces immunosuppressive cells and OSCC tumor burden. Statistics showing the body weight loss, comparing the indicated
groups (A). Tongue tissues were processed for immunohistochemistry (IHC) and flow cytometry at 23 weeks after 4-NQO administration. Statistics showing the
number of IL-1b+ cells in the entire field of 200X IHC image (B). Flow cytometry-based statistics showing % increase in Tregs in 4-NQO treated mice compared to
Veh. controls (C), Treg:CD8 ratio (D), the % of PD-1 and IFN-g expressing CD8 cells (E), the % of CD11b and Ly6G expressing CD45+ cells (F), and the statistical
analysis for all of the above (G). H&E immunohistochemistry of tongue (H), and blinded OSCC scoring (I). (Mann-Whitney test except for (B), where t-test with
Welch’s correction was performed, *P < 0.05, **P < 0.05, ***P < 0.005, ****P < 0.0005, n.s, non-significant).
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carcinogenesis environment triggers elevated levels of IL-1b in
aged mice, the sequence of events that promote elevated levels of
IL-1b, Treg accrual, and MDSC increase during aging need to be
addressed. Furthermore, we found increased dectin-1 expression
in immune infiltrates in aging mice. Also, signaling through
dectin-1 promoted Treg and MDSC accrual. While it is clear that
immune cells show activation of Syk signaling, the precise subset
of cells that responds through dectin-1 signaling hyperactivation
in the context of aging remains to be addressed. While we
hypothesize that changes in fungal stimulation emanating from
the commensal fungal microbome could lead to dectin-1
activation, this possibility remains to be further confirmed in
the future. The microbiome is a significant contributor to OSCC
in the 4-NQO mediated carcinogenesis model (83, 84). Aging is
also associated with changes in the resident microbiome, reduced
microbiota diversity, and an increase in certain types of bacteria
and fungi, resulting in local immunological changes, chronic
inflammation, and other geriatric sequelae (85–87). Candida
carriage and related co-morbidities are significantly more
frequent in elderly individuals (88). The role of microbiome
dysbiosis in enhancing dectin-1 signaling, immunosuppressive
settings, and OSCC development, and how these are
dysregulated during aging are critical questions to be addressed
and will be studied in future investigations. Taken together, our
study sheds new light on the immune-oncological events in
TIME providing some key insights into mechanisms of
immune evasion. By linking MDSC and Tregs with a higher
predisposition of aged oral mucosa to tumor development, our
study also provides important insights into mechanisms of
higher susceptibility of the aging population to oral cancer. By
revealing the pro-tumorigenic role of dectin-1 signaling and
Tregs, our study may also provide a way to control intra-
tumoral Tregs without affecting the peripheral Treg cell repertoire.
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