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Abstract

Objectives

To determine the added discriminative value of detailed quantitative characterization of

background parenchymal enhancement in addition to the tumor itself on dynamic contrast-

enhanced (DCE) MRI at 3.0 Tesla in identifying “triple-negative" breast cancers.

Materials and Methods

In this Institutional Review Board-approved retrospective study, DCE-MRI of 84 women pre-

senting 88 invasive carcinomas were evaluated by a radiologist and analyzed using quanti-

tative computer-aided techniques. Each tumor and its surrounding parenchyma were

segmented semi-automatically in 3-D. A total of 85 imaging features were extracted from

the two regions, including morphologic, densitometric, and statistical texture measures of

enhancement. A small subset of optimal features was selected using an efficient sequential

forward floating search algorithm. To distinguish triple-negative cancers from other sub-

types, we built predictive models based on support vector machines. Their classification

performance was assessed with the area under receiver operating characteristic curve

(AUC) using cross-validation.
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Results

Imaging features based on the tumor region achieved an AUC of 0.782 in differentiating tri-

ple-negative cancers from others, in line with the current state of the art. When background

parenchymal enhancement features were included, the AUC increased significantly to

0.878 (p<0.01). Similar improvements were seen in nearly all subtype classification tasks

undertaken. Notably, amongst the most discriminating features for predicting triple-negative

cancers were textures of background parenchymal enhancement.

Conclusions

Considering the tumor as well as its surrounding parenchyma on DCE-MRI for radiomic

image phenotyping provides useful information for identifying triple-negative breast can-

cers. Heterogeneity of background parenchymal enhancement, characterized by quantita-

tive texture features on DCE-MRI, adds value to such differentiation models as they are

strongly associated with the triple-negative subtype. Prospective validation studies are war-

ranted to confirm these findings and determine potential implications.

Introduction
Breast cancer is a disease with several distinct biological subgroups [1,2]. Gene expression-
based molecular subtyping is used clinically in the selection of the most appropriate therapy
and has proved valuable for individualized management [3]. In particular, breast cancers that
overexpress the estrogen receptor (ER), progesterone receptor (PR), and/or human epidermal
growth factor 2 receptor (HER2) can be specifically targeted with hormonal and/or anti-HER2
therapies. Triple-negative (TN) breast cancers, however, lack expression of these three recep-
tors, so currently have no targeted therapy available and are limited to general cytotoxic che-
motherapies. TN cancers tend to be larger in size, are of higher grade, have lymph node
involvement at diagnosis, and have the poorest prognosis [4–7]. The ability to differentiate TN
cancers from other less aggressive subtypes using diagnostic imaging, could help identify and
stratify patients with this rare and particularly difficult subtype for the appropriate therapy ear-
lier than biopsy in the future.

Current methods of biopsy have limitations considering more than small samples of tissue,
hence meet some issues with large and/or heterogeneous cancers [8]. MRI, however, provides
anatomical and functional properties of whole tissues. Findings on MRI such as tumor size,
morphology, shape, and enhancement characteristics (such as rim enhancement) have been
shown as significant in differentiating breast cancer subtypes including TN breast cancers [9–
12], though such manual annotation of tumor characteristics are generally limited to a few
qualitative descriptors and are dependent on the operator [13]. On the other hand, computer-
aided diagnosis (CAD) has paved the way to improve diagnostic specificity by computing
quantitative information about the entire tumor non-invasively in an objective manner and
reducing inter-reader variability [14–17]. More recently, the radiomics approach of CAD has
emerged with the central premise that cancer imaging phenotypes reflect underlying gene
expression patterns and combining these sources of information will improve individualized
treatment selection and monitoring [18–20]. The approach has shown great promise consider-
ing whole tissues relatively comprehensively by automatically extracting and evaluating large
sets of advanced quantitative imaging features, including texture heterogeneity patterns [21].
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To date, most breast cancer studies have focused on characterization of the tumor itself [13–
17,22–26]. Relatively little is known about the diagnostic and prognostic significance of its sur-
rounding parenchyma tissue onMRI. Initial studies indicate that increased background paren-
chymal enhancement (BPE) on dynamic contrast-enhancedMRI (DCE-MRI) could lead to
higher rates of misinterpreting benign tissues as suspicious [27,28], though the precise reasons
for this enhancement are not clear. There is also evidence suggesting that tumor microenviron-
ment may help define and regulate breast cancer progression [29–32], as well as predict disease
recurrence following therapy [33]. Additionally, the appearance of BPE onMRI and parenchyma
on mammography have been associated with risk of developing breast cancer independently
[34–39]. We hypothesize BPE may also have prognostic significance with breast cancer subtype.

The purpose of this study was to determine the added discriminative value of detailed
quantitative characterization of BPE in addition to the tumor itself on DCE-MRI at 3.0 Tesla in
identifying TN breast cancers. Our work was based on semi-automated, volumetric segmenta-
tion of the tumor and its surrounding parenchyma. We extracted a variety of quantitative
imaging features of both regions in 3-D on DCE-MRI in addition to standard radiologist-eval-
uated clinical features and combined them with machine learning tools to obtain the optimal
subtype classification.

Materials and Methods

Study Population
Eighty-four women, presenting 88 lesions pathologically proven as invasive carcinoma, were
enrolled in the study. All underwent DCE-MRI before their surgical procedure in the period of
February 2012 to May 2013 and had pathology reports with molecular subtype results avail-
able. Four women with multiple lesions (one in each breast, treated as separate cases) were
included. Those found with multiple unilateral lesions, however, were excluded. Additional cri-
teria for exclusion from the study included having received neoadjuvant chemotherapy, hor-
monal therapy, or having artifacts on MRI exams. Patient demographics are summarized in
Table 1. This retrospective study was approved by the Institutional Review Board of Hokkaido
University Hospital and informed consent was waived according to Ethical Guidelines for
Clinical Studies of the Japanese Ministry of Health, Labour, and Welfare. All patient data were
anonymized and de-identified prior to analysis.

Pathological Subtyping
Expression of ER, PR, HER2 and Ki67, a marker of cellular proliferation and subtype [40,41],
were determined by immunohistochemical analysis of tumor specimens. Each tumor sample

Table 1. Patient and subtype demographics.

Parameter All By presence of receptor By St. Gallen consensus [3]

ER+ PR+ HER2+ TN LumA LumB

Patients, n 84 69 60 4 11 42 27

Lesions, n 88 73 63 4 11 45 28

Mean age, years 59.1 (11.0) 58.8 (10.7) 58.9 (11.0) 60.0 (10.2) 61.2 (12.3) 59.1 (9.9) 58.4 (12.1)

Mean BMI 23.2 (4.1) 23.5 (4.3) 23.9 (4.3) 22.5 (1.5) 22.3 (4.9) 23.3 (4.5) 23.9 (4.0)

Postmenopausal patients, n 61 51 42 4 10 33 18

Some overlap exists between subtypes defined and tumors may be represented in more than one category. Classification criteria are described in the

Pathological Subtyping section of the methods. Standard deviations are displayed in parentheses with mean measures. BMI = body mass index,

TN = Triple-negative, LumA = Luminal A, LumB = Luminal B.

doi:10.1371/journal.pone.0143308.t001
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was classified as ER+, PR+, and/or HER2+, or being triple-negative (TN) if negative for all
three. Additionally, cancers were classified as Luminal A (LumA, if ER+ and/or PR+, HER2-,
Ki67<14%) or Luminal B (LumB, if ER+ and/or PR+, HER2 over-expressed or Ki67≧14%), as
also clinically relevant in individualized therapy [3]. Tumor subtype demographics are also
summarized in Table 1.

Image Acquisition
MR imaging was performed using one Achieva 3.0T TX system (Philips Healthcare, Best,
Netherlands) with a 7-channel breast coil while patients lied prone. The dynamic protocol used
was in accordance with European Society of Breast Imaging [42] and American College of
Radiology guidelines [43]. In brief, 3-D T1-weighted images were acquired bilaterally in the
axial plane with a fat-suppressed gradient echo sequence (e-Thrive): Repetition time/echo time
4.9 ms/2.4 ms, flip angle 10°, field of view 320 × 320 mm, voxel size 0.8 × 0.8 × 1.6 mm (recon-
structed 0.8 mm isovoxel), and SENSE parallel imaging factor 2.4. Images at four time points
were acquired, each lasting one minute. The first image was taken immediately before injection
of contrast material (Gadopentetic acid with diethylenetriaminepentacetate, 0.1 mmol/kg) and
flushing with 20mL saline (t1), the second and third in the early phase at 1 and 2 minutes after
injection (t2 and t3 respectively), and the last in the late phase at 6 minutes after injection (t4).

Image Segmentation and Feature Extraction
MR images were reviewed retrospectively by a board-certified radiologist specializing in breast
MRI with 13 years of experience (F.K.), blinded of findings other than diagnosis as invasive
breast cancer. Clinical features concerning tumor morphology were evaluated according to
Breast Imaging Reporting and Data System (BI-RADS) MRI [44]. For mass lesions: shape,
margin, and internal enhancement characteristics were evaluated; and for non-mass lesions:
distribution and internal enhancement characteristics were evaluated. Morphology and mass
size (mass lesions via longest axis) were also included in the analysis.

Contouring of the affected breast was performed using images acquired at t3 (near max
intensity for all tissues) with automatic detection of the skin edge by thresholding plus semi-
automatic delineation of the chest wall and nipple at every slice by interactive placement of an
expanding polygon mask. The breast tumor was also segmented at t3, to better distinguish it
from background parenchyma, using a semi-automated gray-level intensity threshold 3-D
region-growing technique [45] that was manually modified as necessary. Subsequently, separa-
tion of the remaining non-tumor breast tissue into fibroglandular parenchyma and adipose tis-
sue compartments was performed semi-automatically at t1 (pre-contrast, as recommended for
assessment of fibroglandular tissue in latest edition of BI-RADS atlas) [44], using an adapted
fuzzy c-means clustering technique [46]. The unsupervised algorithm assigns a membership to
each voxel initiated with user-seeding and automatically determines a threshold best to sepa-
rate parenchyma and adipose tissue. An illustration of tissue compartment segmentation is
shown in Fig 1. At this point, breast density was calculated as the percentage of breast volume
that was made up of parenchyma and included in the analysis. All subsequent features were
extracted of the tumor and parenchyma compartments.

Three standard pharmacokinetic parametric maps were generated from each DCE-MRI to
capture enhancement quantitatively: contrast material rate in (from t1 to maximum), percent
enhancement (PE, from t1 to maximum), and signal enhancement ratio (SER, change from t1
to maximum relative to change from t1 to t4) [47].

Four first-order statistical features were calculated from the parameter maps of the tumor
and parenchyma compartments: mean, standard deviation, skewness, and kurtosis. Nine
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second-order statistical features, also known as gray-level co-occurrence texture features [48],
were calculated at a 1-voxel distance offset of the maps and averaged across the 26-directions
of 3-D space after rescaling to 8-gray level (3-bit) data: energy, contrast, correlation, variance,
homogeneity, sum mean, entropy, inertia, and cluster shade. Thirteen statistical textures of 3
parametric maps resulted in 39 features capturing enhancement heterogeneity for each tissue
compartment studied, which were included in the analysis. Those of the parenchyma are
defined here also as BPE texture or heterogeneity. All image processing was performed using
MATLAB R2012b (Mathworks, Inc., Natick, MA, USA) software.

Fig 1. Example of tissue segmentation performed of all cancer patients’ affected breast images. At top left (a), a dynamic contrast-enhanced MRI
exam at t3 is seen in the axial plane, illustrating one slice of the view used for contouring the breast and tumor. At top right (b), the result of breast
segmentation is shown. At bottom left (c), the segmented tumor is highlighted in blue. Finally at bottom right (d), the parenchyma segmented at t1 is
highlighted in pink. Breast subcompartment segmentation was performed in 3-dimensions.

doi:10.1371/journal.pone.0143308.g001
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Predictive Modeling for Differentiation
Based on the extracted imaging features, we aimed to distinguish TN breast cancers from other
subtypes using machine learning tools. In particular, we performed 5 classification tasks: differ-
entiating TN cancers against non-TN, ER+, PR+, LumA, and LumB cancers. Differentiating
TN from HER2+ cancers was not performed as the number of tumors combined from these
groups was insufficient given techniques used (n = 15).

To minimize bias in our evaluation, stratified 10-fold cross-validation was performed [49].
10 bootstrap repetitions of each were run, from which performance metrics (described below)
were averaged and confidence intervals were estimated. A two-step feature selection technique
was applied on imaging features before classification. First, features were ranked by the X2 sta-
tistic [50] to identify strength of association with the subtype in question; second, a sequential
forward floating search algorithm was used to identify a small subset of optimal features large
enough to capture data complexity [51]. Finally, a support vector machine (SVM) classifier
was trained [52,53] from the selected feature subset of preceding search steps. SVMmodels are
non-probabilistic binary linear classifiers, which represent the data in higher dimensionality
spaces, mapped so as to separate the categories with a divide that is as wide as possible. Both
steps of feature selection were encapsulated with the classifier within each training fold in
order to avoid feature selection bias and overfitting [53,54]. Feature selection and classification
were also performed with regularization, which served to penalize model complexity, as
another measure to avoid overfitting [53]. All predictive modeling was performed using Wai-
kato Environment for Knowledge Analysis (WEKA) 3.6.12 (University of Waikato, Hamilton,
New Zealand) [55].

Cluster Analysis
In addition to the supervised approach (differentiating subtype-labeled data) in the classifica-
tion modeling described above, an unsupervised approach was also taken with learning tasks.
Clustering of BPE texture features in a k-means manner, as used with gene analysis to reveal
groups with similar expression patterns [56,57], was performed without using knowledge of
subtype. All BPE texture features of included cases were normalized as z-scores and clustered
into two partitions using genomic data analysis framework Gitools 2.2.1 (Universitat Pompeu
Fabra, Barcelona, Spain) [58].

Statistical Analysis
Fig 2 summarizes the study’s radiomic analysis performed as described above. Classification
performance of predictive modeling was evaluated using accuracy, sensitivity, specificity, and
area under the receiver operating characteristic curve (AUC) values averaged over all bootstrap
folds of cross-validation. Wilcoxon signed-rank tests were used to test significance of paired
difference between classification models’ performance without inclusion of BPE-derived fea-
tures against those with in a non-parametric manner. p-values of less than 0.05 were inter-
preted as significant. All statistical analyses were performed using JMP 11.0.0 (SAS Institute
Inc., Cary, NC, USA).

Results

Differentiation of Molecular Subtypes
Performance metrics for subtype differentiation tasks are detailed in Table 2. Classification
models using both tumor and parenchyma features generally outperformed those based only
on tumor features, most notably in terms of accuracy, sensitivity, and AUC. The most
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remarkable discriminative performance was seen in the classification of TN against ER+ can-
cers. While the conventional model based on tumor features achieved an AUC of 0.780, the
model using both parenchyma and tumor features improved AUC significantly to 0.883
(p<0.01). Accuracy and sensitivity improved from 86.3% to 89.4% (p<0.01) and 35.5% to
62.0% (p<0.01) respectively with this task. Performance classifying TN against all other can-
cers improved similarly from an AUC of 0.782 to 0.878 (p<0.01) by including BPE texture fea-
tures, with accuracy and sensitivity improved from 86.9% to 90.0% (p<0.01) and 33.0% to
57.0% (p<0.01) respectively. Classifying TN against PR+ cancers improved from an AUC of
0.731 to 0.859 (p<0.01), with accuracy and sensitivity improved from 83.5% to 87.8%
(p<0.01) and 28.5% to 53.0% (p<0.01) respectively.

In differentiating TN against LumB cancers, a significant improvement by including BPE
texture features in terms of specificity from 73.8% to 90.0% (p<0.01) was also apparent in addi-
tion to improvements in accuracy, sensitivity, and AUC from 61.3% to 84.3% (p<0.01), 29.0%
to 69.5% (p<0.01), and 0.635 to 0.789 (p<0.01) respectively. Including parenchyma features

Fig 2. Summary of radiomic analysis performed in this study.Clinical features were evaluated by a radiologist according to Breast Imaging Reporting
and Data System directly from dynamic contrast-enhanced MRI (a). 3-Dimensional tumor (red) and parenchyma (light blue) compartments were segmented
(b), from which volumetric breast density was immediately estimated (c). Enhancement maps were then generated (d), from which textural features of tissue
compartments were extracted and defined as enhancement heterogeneity (e). Subsequently, two analyses were conducted using extracted features:
supervised learning of breast cancer subtype was performed with a support vector machine classifier (f) and unsupervised learning of background
parenchymal enhancement feature expression pattern was performed with k-means clustering (g).

doi:10.1371/journal.pone.0143308.g002
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did not significantly improve the ability to differentiate TN against LumA cancers, where per-
formance using only tumor features already achieved an AUC of 0.795.

Optimal Imaging Features
The most discriminating features selected in each classification task’s cross-validation process
are summarized in Table 3, indicated with percentage of cross-validation folds in which they
were selected as a simple indicator of significance. The Supplemental Table (S1 Table) elabo-
rates on this further by detailing distributions of selected feature values as well as their SVM
weights, whose magnitude indicates prognostic value. In tumor feature-based models, standard
clinical features such as mass size and mass shape proved to be most prevalent in differentiat-
ing TN from all other subtype groups, having been selected in all tasks as the top features. Mass
margin characteristics also proved to be prevalent in several models, as did internal enhance-
ment characteristics. Tumor morphology and breast density were discriminative in a couple of
models each. Tumor enhancement texture features also proved to be prevalent across many
differentiation tasks performed. Specifically, ‘mean of tumor SER’ and ‘inertia of tumor rate in’
proved to be effective discriminators of TN against all other, ER+, and PR+ subtypes. Several
other enhancement texture features, derived from tumor PE, proved discriminative across each
tumor-based models performed. Enhancement textures derived from tumor rate in were also
selected classifying all other and ER+ cancers from the TN subtype.

When parenchyma features were used in addition to those of the tumor in modeling cancer
subtype, BPE texture features overshadowed standard clinical, breast density, and tumor
enhancement features almost completely as most prevalent in nearly all differentiation tasks
performed. As seen in Table 3, though mass shape remained an effective discriminator of TN
against all other, ER+, and PR+ cancers, it appears BPE features ‘skewness of parenchyma SER’
and ‘standard deviation of parenchyma rate in’ were by far the most prevalent predictors in all

Table 2. Performance results of predictive modeling.

Differentiation
task

n Using tumor features Using both tumor & BPE features

Accuracy, % Sensitivity,
%

Specificity,
%

AUC Accuracy, % Sensitivity, % Specificity, % AUC

TN vs others 88 86.9 (85.1,
88.7)

33.0 (23.8,
42.2)

94.7 (92.9,
96.4)

0.782
(0.730,
0.833)

90.0* (88.1,
91.8)

57.0* (47.4,
66.6)

94.7 (93.0,
96.2)

0.878*
(0.838,
0.918)

TN vs ER+ 84 86.3 (84.2,
88.3)

35.5 (26.1,
44.9)

94.1 (92.3,
95.8)

0.780
(0.730,
0.830)

89.4* (87.5,
91.3)

62.0* (52.7,
71.3)

93.6 (91.7,
95.4)

0.883*
(0.843,
0.923)

TN vs PR+ 74 83.5 (81.4,
85.6)

28.5 (19.8,
37.2)

93.0 (90.7,
95.3)

0.731
(0.674,
0.788)

87.8* (85.7,
90.0)

53.0* (43.2,
62.8)

94.1 (92.2,
95.9)

0.859*
(0.817,
0.901)

TN vs LumA 56 79.6 (76.9,
82.3)

40.5 (30.9,
50.1)

88.8 (85.8,
91.8)

0.795
(0.745,
0.844)

81.8 (78.6,
85.1)

49.5 (39.8,
59.2)

89.8 (86.8,
92.8)

0.814
(0.756,
0.872)

TN vs LumB 39 61.3 (57.5,
65.2)

29.0 (20.3,
37.7)

73.8 (68.5,
79.2)

0.635
(0.577,
0.693)

84.3* (80.7,
87.8)

69.5* (60.7,
78.3)

90.0* (86.2,
93.8)

0.789*
(0.728,
0.850)

Metrics displayed as: mean (95% confidence interval). TN = Triple-negative, ER = estrogen receptor, PR = progesterone receptor, HER2 = human

epidermal growth factor 2 receptor, LumA = Luminal A, LumB = Luminal B, BPE = background parenchymal enhancement, AUC = area under receiver

operating characteristic curve.

*p<0.01 by Wilcoxon signed-rank test in comparing models including use of both tumor and BPE features against those using only tumor features.

doi:10.1371/journal.pone.0143308.t002
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differentiation tasks. ‘Variance of parenchyma SER’, ‘homogeneity of parenchyma PE’, and
‘cluster shade of parenchyma PE’ proved to be effective discriminators of TN vs all other, ER+,
and LumB cancers. Two texture features of tumor enhancement, ‘mean’ and ‘variance of tumor
PE’, remained in models differentiating TN against PR+ and LumB cancers respectively, as
were previously selected in tumor-based models differentiating the same.

Three of the most discriminative tumor and parenchyma features selected in comparisons
between TN and non-TN cases are presented in Fig 3. Box plots illustrate the distributions of
the three most predictive quantitative features found in differentiation tasks, and the differ-
ences in these distributions between the TN and non-TN group. Fig 4 presents visualizations of
the BPE feature ‘standard deviation of parenchyma rate in’ (also Fig 3B), in the form of

Fig 3. Box plots illustrating differences in distributions (quartiles as red boxes, grandmean indicated as spanning line) of the three most
predictive quantitative features found in differentiation tasks: the lesion’s ‘mass size’ feature (a), parenchyma’s ‘skewness of Signal
Enhancement Ratio’ feature (b), and parenchyma’s ‘standard deviation of rate in’ feature (c) compared between the triple-negative (TN) and non-
TN groups. p-values were calculated byWilcoxon Mann-Whitney tests.

doi:10.1371/journal.pone.0143308.g003

Fig 4. Examples of ‘parenchyma rate in’ parameter (also Fig 3B) maps from a non-triple-negative (TN) patient (left) and a TN patient (right)
illustrating the difference of a statistical texture feature betweenmembers of the two groups in image form. Slices of the ‘parenchyma rate in’
parameter map void of tumor tissue are presented in the sagittal plane. It is evident the variation of this background parenchymal enhancement texture
feature’s value is greater in TN cancers, where standard deviation is markedly higher at 352.9 as opposed to 133.8 in the non-TN patient.

doi:10.1371/journal.pone.0143308.g004
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pharmacokinetic enhancement maps, illustrating the difference of this BPE texture between
examples of one non-TN (left) and one TN (right) patient.

Clustering
A graphical heatmap representation of clustering results can be seen in Fig 5. Unsupervised k-
means clustering of cases into two partitions (highlighted orange and turquoise) based on BPE
texture features resulted in TN breast cancers showing a much higher presence in one partition
than the other, with 9 of 11 cases clustering together (left, highlighted orange bar). Values are
represented as z-scores illustrating the distributions of each feature and the signatures of fea-
tures across cases.

Discussion
Our study demonstrates that differentiation of breast cancer subtype with DCE-MRI can be
improved by CAD systems exploiting features of the surrounding parenchyma tissue. In pre-
dictive classification models based on imaging features of the tumor, we see performance met-
rics on the order with the current state of the art in the 0.7–0.8 range [25,26]. Based on our
results, adding quantitative imaging features of BPE greatly improves the discriminative ability
of such prediction models, bringing performance up to 90.0% accuracy and AUC up to 0.883.
Unsupervised clustering of BPE texture features into two partitions also revealed a significant
association between BPE heterogeneity and TN status. 9 of 11 TN cancers in our study grouped
together in one partition based only on BPE features, reinforcing the notion that BPE heteroge-
neity on DCE-MRI has a strong relationship with TN breast cancers

Fig 5. Unsupervised k-means clustering of breast cancer patients (n = 88) on the x-axis and quantitative background parenchymal enhancement
(BPE) feature expression (n = 39) on y-axis (as z-scores, with scale at bottom left. std = standard deviation). Correspondence of patient groups with
similar radiomic expression patterns can be seen where the majority of triple-negative (TN) breast cancers have grouped together in the left cluster (9 of 11
TN in partition highlighted orange at top left) due to association of the BPE heterogeneity feature signatures. 1st order statistical texture features are
highlighted as purple and similarly 2nd order statistical texture features are green at right indicating correspondence of feature groups with clustered
expression patterns.

doi:10.1371/journal.pone.0143308.g005
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To take the functional portion of breast tissue into consideration with the radiomics
approach of extracting comprehensive amounts of imaging features appears to be an improve-
ment over conventional methods of tumor-based image phenotyping. While the standard tool
to prove subtype in breast cancer remains to be tissue biopsy, we add to the growing under-
standing of imaging’s clinical importance and expand the role of MRI in more personal
approaches of breast cancer diagnosis. Beyond considering information from a limited portion
of the tumor with its inherent issues with false negatives especially when it comes to large or
heterogeneous targets [8], imaging has the ability to provide information on entire tissues and
their heterogeneity in a non-invasive manner. This ability appears valuable clinically in differ-
entiating molecular subtypes of breast cancer. To our knowledge, this is the first study to dem-
onstrate that quantitative texture features of BPE extracted from routine MRI are strongly
predictive of TN breast cancers.

Our findings appear consistent with recent developments toward the tumor’s local environ-
ment being gradually recognized as a key contributor in breast cancer progression and aggres-
siveness [29,30]. Likewise, Pathak et al. [59] demonstrated that in vivoMRI specifically, could
non-invasively monitor changes in tumor microenvironment, which could predict the cancer’s
ability to metastasize.

Our findings also appear consistent with recent works showing an association between BPE
and breast cancer diagnoses [34,39]. Existing evidence has linked increased BPE levels with
greater hormonal activity, particularly estrogen [60–62], and these two studies suggest BPE
could be a stronger predictor of breast cancer risk and potentially serve as an imaging bio-
marker of estrogen responsive malignant transformation. King et al. allude to presence of can-
cer having some systemic effects causing increased BPE and Dontchos et al. elaborate on this
further, acknowledging the possibility BPE is a marker of physiologically active tissue more
prone to tumorigenesis. Besides being consistent with associations found in our study, such
concepts appear to be supported by work linking local inflammation and breast cancer trans-
formation [63]. These findings, in support of our own, suggest that BPE could potentially help
physicians better tailor screening and management strategies with breast cancer. This is impor-
tant as we move into an era of more personalized approaches to medicine.

Furthermore, in a 2014 radiogenomic study, Mazurowski et al. reported on the relationship
between MRI enhancement dynamics of the tumor and parenchyma to LumB cancer [64].
Though we did not include the same measure explicitly in our analysis, our findings reflect
tumor and parenchyma enhancement characteristics both play significant roles in differentiat-
ing LumB cancers, in our case against TN cancer.

Our findings appear to be inconsistent with those of Ahn et al. [65], who concluded no asso-
ciation between BPE and aggressiveness of the primary cancer. Though in their study, the
method of BPE quantification differed and only postmenopausal woman were enrolled, our
findings indicate BPE is predictive of the more aggressive TN cancers against other subtypes.
We attribute our discovery to having been able to capture functional activity of a tumor’s active
microenvironment related to tumor progression [29–32] more broadly via extensive measures
of enhancement texture.

It is perhaps interesting to note the presence of ‘mean of tumor SER’ as important in differ-
entiating all other, ER+, and PR+ cancers against TN in tumor feature-based models. In 2011,
Arasu et al. showed use of SER volume parameters on MRI were significantly associated with
malignancy and improved diagnostic specificity without affecting sensitivity [47]. The follow-
ing year Hylton et al. showed tumor SER as a stronger predictor of pathologic response to
neoadjuvant chemotherapy than clinical assessment [66]. We elaborate on the utility of volu-
metric tumor SER in predicting molecular subtype of breast cancer.
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It is also perhaps interesting to discuss the presence of breast density as important in differ-
entiating ER+ and PR+ cancers against TN in tumor feature-based models. As it has been
shown to be largely in agreement with mammographically-derived density measures [67],
MRI-derived density also appears to be associated with breast cancer subtypes and tumor
aggressiveness [68]. Though the predictive value of this specific feature in our study appears to
be outweighed by that of BPE texture when available (breast density was no longer selected in
models which also made use of parenchyma enhancement features in our study), it is apparent
quantitative measures relating to parenchyma tissue may have prognostic value with breast
cancer subtype on DCE-MRI. Bearing in mind that breast density is a limiting factor for cancer
detection using mammography [36,69] and dense-breasted women are currently recom-
mended to be stratified for supplemental screening with MRI to compensate for this [70,71]
further emphasizes the potential value of considering the parenchyma in diagnostic imaging
and predictive modeling of breast cancer.

Compared with another recent study on identifying TN cancers using quantitative image
analysis by Agner et al. [26], our work has several strengths. First, we investigated not only
tumor features but also BPE features for predicting TN breast cancers. Second, our imaging
features were obtained by 3-D semi-automated segmentation of the tumor while Agner’s
approach was based on 2-D manual segmentation. Semi-automated image analysis can reduce
inter-observer variations and be scaled up relatively easily [72]. Both of which are critical com-
ponents of the radiomics approach. Finally, using the increased signal-to-noise ratio of 3.0T
MRI exclusively may have also contributed to the improved classification performance of our
study.

Our study has several limitations as well. First, it is a relatively small, retrospective study.
Larger prospective validation studies are warranted to confirm these findings and determine
potential implications. Also, our method for semi-automated tumor segmentation was at times
imperfect. Expert review of each MRI slice and appropriate correction was performed to best
separate tumor from the background parenchyma, but the technique leaves some room for
improvement. Lastly, due to the relatively large number of image features and exponentially
increasing computing constraints involved, it was not within the scope of this study to perform
exhaustive searches for optimal combinations of features. Here we adopted an efficient, locally
optimal selection technique (forward floating search), that takes interaction between variables
into account.

In conclusion, we demonstrated that quantitative image phenotyping of breast tumors and
their surrounding parenchyma on DCE-MRI could distinguish TN breast cancers from other
subtypes with higher accuracy than considering characteristics of the tumor alone. This is due
to heterogeneity of background parenchymal enhancement characterized by texture on
DCE-MRI being strongly associated with TN cancers. Considering heterogeneity of the tissue
surrounding cancer in addition to the cancer itself could make for more sensitive and compre-
hensive differentiation of breast cancer subtype.

Supporting Information
S1 Dataset. Data underlying findings reported in study. All data underlying the findings
reported in our study for public access. Rows list lesions included in the study and columns list
(from left to right) clinical features read by the radiologist, tumor enhancement texture fea-
tures, background parenchymal enhancement texture features, and subtype classifications.
(CSV)

S1 Table. Optimal imaging feature distribution and prognostic significance. Details of
imaging features selected as most discriminative in prediction models. Feature values (or
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numbers, with categorical features) are presented with their support vector machine (SVM)
weights. Bootstrap estimates of SVM weights indicate prognostic significance, where the larger
in absolute magnitude the weight, the more significant the feature (features were normalized
with use of SVM classifier, though are presented here in their original scale). Features are listed
alphabetically by differentiation task and model type. TN = Triple-negative, LumA = Luminal
A, LumB = Luminal B, SVM = support vector machine, BPE = background parenchymal
enhancement, std = standard deviation, n/a = not applicable, PE = percent enhancement,
SER = signal enhancement ratio.
(XLSX)
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