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Based on the type of cells or tissues they tend to harbor or attack, many of the viruses are characterized. But, in case of neurotropic
viruses, it is not possible to classify them based on their tropism because many of them are not primarily neurotropic. While
rabies and poliovirus are considered as strictly neurotropic, other neurotropic viruses involve nervous tissue only secondarily.
Since the AIDS pandemic, the interest in neurotropic viral infections has become essential for all clinical neurologists. Although
these neurotropic viruses are able to be harbored in or infect the nervous system, not all the neurotropic viruses have been reported
to cause disrupted synaptic plasticity and impaired cognitive functions. In this review, we have discussed the neurotropic viruses,
which play a major role in altered synaptic plasticity and neurological disorders.

1. Introduction

Over the years, Central Nervous System (CNS) has been
shown to be themajor target site for viral infections. Different
viruses have different routes of entry and some viruses have
been shown to penetrate the CNS (neuroinvasion) and can
infect neurons and glial cells (neurotropism). Neurotropic
viruses are categorized into neuroinvasive and neurovirulent
groups and both of them are known to cause neuronal
dysfunction. Interestingly, neuroinvasive virus is capable of
accessing or entering the nervous system whereas neuroviru-
lent virus is capable of causing disease within the nervous sys-
tem. These neurotropic viruses such as coxsackie, Japanese,
Venezuelan equine, andCalifornia encephalitis viruses, polio,
mumps, echo, influenza, measles, and rabies cause acute
infection. Other viruses that come under this category are
members of the family Herpesviridae, such as Cytomegalo,
Varicella-zoster, Herpes simplex, and Epstein-Barr viruses.
The ones that cause a latent infection are Varicella-zoster and
Herpes simplex viruses, whereas other viruses like measles,
rubella, John Cunningham, and retroviruses such as human
T-lymphotropic virus 1 and human immunodeficiency virus

are also reported to be neuropathogenic [1]. All of these path-
ogens have different modes of entry into the human brain,
causing the neuropathogenesis that leads to the neurocog-
nitive disorders. However, the neuropathogenic mechanisms
that are involved in these disorders neither are clear nor are
elucidated yet and require further studies to identify the
therapeutic targets. Neuropathogenic mechanisms that lead
to these disorders need to be better understood to identify
therapeutic targets.

Viral infections of the CNS that injure or destroy specific
populations of brain cells are frequently associated with
behavioral disturbances. These events occur either directly
due to virus replication or indirectly as a result of the host
immune response against the infectious agent. Neurotropic
viruses can also persist in the CNS and, in the absence
of cell destruction or inflammation, cause defects in goal-
oriented behavior. Therefore, viruses may contribute to
human CNS disorders whose etiology remains elusive. The
finding of virally mediated impairment in neuronal function
in the absence of cell destruction raises the possibility that
noncytolytic viruses that persistently infect neurons may
contribute to many human CNS disorders whose etiology
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is unknown. Since neurons are not destroyed by the viral
infection, antiviral therapies resulting in viral clearance from
these cells may restore normal brain function. Studies to test
this hypothesis are currently underway.

Borna disease virus (BDV) is an enveloped virus with a
nonsegmented, negative-strand RNA genome belonging to
the Bornaviridae family within the Mononegavirales order.
This neurotropic virus infects a wide variety ofmammals, and
serological evidence suggests that BDV, or a BDV-like virus,
also infects humans. Infected hosts develop a wide spectrum
of neurological disorders, ranging from immune-mediated
diseases to behavioral alterationswithout inflammation, rem-
iniscent of symptoms observed in human psychiatric diseases
such as schizophrenia, mood disorders, and autism [2, 3].
BDV has a noncytolytic strategy of replication and primarily
infects neurons of the limbic system, notably the cortex and
hippocampus [4]. To date, the mechanisms responsible for
the cognitive impairment of BDV-infected animals are still
poorly understood. It is possible that neuronal infection
by BDV impairs signaling pathways that are important for
proper neuronal functioning and neuronal communication.
Recently, it was observed that BDV specifically interferes
with the activity-dependent enhancement of synaptic vesicle
recycling, one component of neuronal communication as
well as synaptic transmission [5]. Accordingly, in this review,
we have discussed synaptic plasticity changes and neurolog-
ical disorders in neurotropic viral infections, which affects
neurocognitive functions.

2. Synaptic Plasticity

Plasticity is fascinating and one of the most important char-
acteristics of the mammalian brain. Synapses have the ability
to undergo lasting morphological and biochemical changes
according to different and specific types of neuromodulators
and stimuli, which forms a cellular basis for memory and
learning. However, the relationship between a specific type of
memory and the form of its synaptic plasticity is still unclear
[6]. The responses that are involved can cause neural activity
to have the capacity to modify neural circuit functions,
which will give as a result different thoughts, behaviors, and
feelings. This modification affects the efficacy or strength of
synaptic transmissions and for more than a century has been
thought to play a critical role in the brain capacity to integrate
temporary involvements/feelings into stable traces of mem-
ory. In addition, it has been thought that synaptic plasticity
played an important role in neural circuitry development.
Evidence has demonstrated that certain prominent neuropsy-
chiatric disorders happened as a consequence of impairments
in synaptic plasticity mechanisms. Overall, many synaptic
plasticity functions as well as mechanisms and forms have
been described. Changes in enhanced or suppressed synaptic
transmissions can have a temporal span of milliseconds to
days or even longer [7].

3. Short-Term Synaptic Plasticity

Nearly every synapse studied in a variety of organisms,
from invertebrates to mammals, has shown various forms of

short-term synaptic plasticitywhich lasts for fewmilliseconds
to a couple of minutes [8]. It is believed that these forms of
synaptic plasticity play a significant role in short-term adap-
tations to transient changes in behavioral states, short-lasting
forms of memory, and sensory inputs. The majority of these
forms are produced by short outbreaks of activity that come
as a result of a temporary buildup of calcium in presynaptic
nerve terminals. This increment in calcium causes modi-
fications in the possibility of neurotransmitter release by
changing the biochemical processes that causes the exocyto-
sis of synaptic vesicles [7]. Short-term synaptic plasticity was
initially recognized as behaviorally significant in studies of
marine organisms such asAplysia [9]. One of themain effects
of short-term synaptic plasticity is to act on the information
processing function of synapses, allowing them to perform as
filters with different properties.

4. Long-Term Synaptic Plasticity

In the hippocampus, a repetitive stimulation of excitatory
synapses is able to result in a potentiation of synaptic strength,
lasting for hours to days, and it is referred to as long-term
potentiation (LTP) or long-term synaptic plasticity. Different
forms of long-term depression (LTD) are present in the
majority of synapses that show LTP. LTD is an activity-
dependent decline in the efficiency of neuronal synapses,
resulting in a long patterned stimulus. Therefore, an impor-
tant idea is that different patterns of activity are able to
modify synaptic strength in a bidirectional way at excitatory
synapses. Homeostatic plasticity has been recently recog-
nized as an additional form of synaptic plasticity [10] as well
asmetaplasticity [11]. Schematic representation of the synapse
(Figure 1(a)), establishing LTP (Figure 1(b)), and synapse
exhibiting LTP (Figure 1(c)) was shown in Figure 1. Figure 2
is showing the differentmechanisms of long-termdepression.

5. Rabies Virus

Rabies virus (RV) belongs to the Rhabdoviridae family and
infects many animals (bats, skunks, foxes, and dogs) and
human beings. RV in animal resides in salivary glands and
spreads among different hosts via bites/scratches. RV infected
animals can survive for years secreting virus particles in their
saliva. In contrast to other infected animals, human infection
results in fatal acute myeloencephalitis in untreated patients.
By binding to acetylcholine receptors (nAchR) and neural cell
adhesion molecules (NCAM), RV enters the axons of motor
neurons at the neuromuscular junction [12]. Transneuronal
spread occurs exclusively between synaptically connected
neurons and the infection moves unidirectionally from post-
synaptic to presynaptic neurons (retrograde spread). Once
rabies infection reaches the CNS, marked behavioral and
neurological symptoms begin anddeath almost always ensues
[13]. In contrast to neuronal dysfunction related severe clin-
ical manifestations, in postmortem examinations, only mild
lesions in the CNS were observed. Various studies reported
that fetal rabies causes neuronal dysfunction, including
ion channel dysfunction and neurotransmitter abnormalities
rather than neuronal damage [14–16], and downregulation
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Figure 1: (a) Synapse prior to long term potentiation: NMDA and AMPA are two types of receptors at the postsynaptic neuron, for the
neurotransmitter glutamate. NMDA receptors open in response to glutamate prior to potentiation. However, they are blocked by Mg2+. (b)
Establishing LTP: NMDA receptors release Mg2+ after depolarization of the postsynaptic membrane in response to the activity. Na+ and
Ca+ travel inside and induce the migration of internal AMPA receptors to the membrane. (c) Synapse exhibiting LTP: NMDA receptors are
unblocked when depolarization is triggered by AMPA receptors. These two receptors are now responsible for action potentials.

of synaptic plasticity regulated protein has been reported in
the silver haired bat rabies virus infection. Downregulation of
these synaptic plasticity proteins leads to the blocked synaptic
vesicle recycling, therefore, the reduced release and uptake
of neurotransmitters [17]. Song et al. reported the decreased
spine density in the street rabies virus infected hippocampus
of mice and also reported that these changes were related
to the depolymerization of filamentous actin (F-actin),

a cytoskeleton protein that helps to regulate the morphogen-
esis and dynamics of dendritic spines [18].

6. Poliovirus

Poliovirus is part of the Picornaviridae family and enterovirus
subgroup. The virus enters into the host and starts mul-
tiplying in the place of implantation, which is usually
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Figure 2: LTD mechanism: (a) Ca2+ ions enter in small quantities through NMDA receptors. (b) Activation of protein phosphatases.
(c) Dephosphorylation of AMPA receptors leads to endocytosis of AMPA.

the gastrointestinal tract and pharynx. Before the onset of
illness, the virus is present in the stool and throat. After the
onset of the disease, the virus is less in the throat, but it
will still be present in the stool for few weeks. Poliovirus
is also capable of entering the bloodstream, invading lym-
phoid tissue, and subsequently infecting the CNS. Poliovirus
was reported to enter the neurons by a receptor-mediated
endocytosis at the neuromuscular junction and traverse from
nerve terminal to the cell body using the host retrograde
axonal transport system. It can hijack the host transport
machinery using Tctex-1, a component of the dynein light
chain involved in retrograde axonal transport [19, 20]. In
in vivo intramuscularly injected mice with poliovirus, it
was observed that trafficking of poliovirus in peripheral
nervous system is difficult due to inefficient retrograde axonal
transport and this could be the reason for low incidence
of paralytic poliomyelitis in humans [21]. It replicates in
motor neurons of the brain stem and the anterior horn,
which leads to poliomyelitis and cell destruction. About
95% of the infected patients are asymptomatic and nearly
4%–8% of cases show a nonspecific but minor disease that
does not invade the CNS. In few days after a prodrome,
nonparalytic aseptic meningitis happens in 2% of infected
patients, whereas flaccid paralysis happens in less than 1% of
infections. After prodromal symptoms, paralytic symptoms
begin and these symptoms usually progress for the next 3
days. Usually, when the temperature goes back to standard
levels, there is no additional paralysis.

Of all poliomyelitis survivors, only 25% showed a relapse
of fatigue, weakening of the muscles, or paralytic symptoms,

and this is referred to as postpolio syndrome. It has been
suggested that the cause of this syndrome is a reappearance
of latent virus. However, there is no evidence yet to support
this argument [22]. After the initial acute infection, there are
some recovery mechanisms that occur in a short period of
time. Patients can experience temporary paralysis, followed
by a partial paralysis recovery.This temporary paralysis could
be happening as a consequence of temporary silencing of
neurons by transient virus infection, neuronal response to
transient inflammation or to transient release of inhibitory
neuroactive agents. Another probability would be when
local plasticity allows replacement of lost motor neurons
by cytolytic virus infection with uninfected neurons. The
mechanisms behind the loss of motor neurons are still
unclear. An understanding of this mechanismmay give us an
insight of postpolio syndrome as well as other motor neuron
illnesses [23].

Some data found in poliomyelitis cases demonstrated
that redundant systems and cells take over when loss of
neurons occurs. This is one of the main characteristics of
neurological diseases. However, there is a certain limit to
the amount of neurons that can be lost. Therefore, after a
certain percentage, symptoms only start to be more evident.
For instance, when dopamine neurons are lost in Parkinson’s
disease, it leads to muscle rigidity and tremor instead of the
flaccid paralysis seen in PV. Narcolepsy is another example,
in which hypocretin neurons are lost. This loss results in a
temporary flaccid paralysis during cataplexy. Positive correla-
tion has been observed between the severity of symptoms and
the number of neurons lost. However, asymptomatic cases
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are seen if there is less than 50% loss of neurons. In this
perspective, the combination of initial killed cells by PV and
the loss of neurons as a consequence of aging may lead to
the manifestation of postpolio syndrome. As a result, there
would be a high probability of insufficient motor neurons to
continue with normal functions on the affected muscles. An
alternative could be to target motor neurons with a low-grade
autoimmune mechanism when they are PV-initiated [23].

7. Japanese Encephalitis

Japanese encephalitis (JE) is caused by the JE virus (JEV),
which is a positive-sense and single-stranded RNA virus that
forms part of the Flaviviridae family.The transmission of this
virus occurs in a zoonotic way between water birds, pigs, and
mosquitoes. Humans are a dead end host because of low level
and transient viremia after being infected accidentally [24].
This disease is most commonly seen in Southeast Asia, where
it affects about 50,000 individuals and causes approximately
10,000 deaths per year. In new endemic areas, both children
and adults are found to be affected and, on the other hand,
mostly children are affected in regions where this infection
has been endemic for several years. In few areas, such asKorea
and Japan, this virus has been controlled for a long time by
immunization. In these areas, the virus may affect the elderly
only. Case studies reported that children with JE have severe
encephalitis characterized by a high frequency of seizures,
deep coma, andmortality rates. In addition, seizures aremost
commonly found in 64% to 80% of children in comparison to
only in 10% of adults [25–27].

The possible route of CNS entry of JEV is through the
capillary endothelial cells (CEC), as the entry between CECs
is inhibited by tight junctions [28]. In an in vivo mouse
model of intravenous JEV infection, it was shown that viral
titers increased exponentially in the brain (propagates in
neurons) 2–5 days after infection that led to the exponential
increase in the inflammatory cytokines and chemokines in
the brain. Increased blood-brain barrier (BBB) permeability
was observed only after 4th day of postinfection [29]. Most
individuals that survived JEV infection experience severe
neurological sequelae, such as language and cognitive impair-
ments, motor deficits, and learning difficulties. In JE individ-
uals, neuronal death can be caused by either the virus or as a
bystander method facilitated by a strong inflammatory attack
and microglial activation [30, 31]. Neuronal loss is regulated
by the CNS by inducing the differentiation of new astrocytes
and neurons from inhabitant multipotential neural progen-
itors cells (NPCs) [32]. These NPCs have the ability to self-
renew over their lifespan and are located in neurogenic zones
such as the dentate gyrus of the hippocampus and the subven-
tricular zone (SVZ) [33]. Active NPCs are vastly lost from
the SVZ by inhibiting their cycling ability as a result of JEV
infection. Therefore, the formation of neurospheres by SVZ
cells is greatly affectedwhen they are JEV infected.The critical
postnatal age is a predominant target and decreases the NPCs
population in the SVZ and damages the recovery process.
These might have a critical effect in JE survivors and their
neurological outcomes [34]. JEV-infected microglia secretes

inflammatory molecules that cause death of bystander
neurons. Certain proinflammatory cytokines such as IL-6,
TNF-𝛼, and ROS/NO and MCP-1 are secreted in high con-
centrations by the infected microglia [35]. Secretions in high
levels of these factors are antineurogenic and neurotoxic [36,
37].

8. Influenza Virus

Influenza is a serious health concern and economic burden
since it remains as the primary cause of disease and death
worldwide. Even though a lot of individuals recover from
this infection, the short- and long-term effects on the CNS
remain unclear. Cognitive and neurological consequences
related with this virus have been described for many decades
after the 1918 “Spanish” flu, as well as during the pandemic
of influenza A H1N1. However, mechanisms associated with
the symptoms are still unclear [38–41]. Most influenza strains
are nonneurotropic, including the ones responsible for pan-
demics [42–44]. This suggests that neurological symptoms
do not happen as a result of direct CNS viral infection but
because of a neuroinflammation that came from an induced
peripheral viral infection.

The peripheral innate immune system has been reported
to get activated, producing certain cytokines such as inter-
leukin-1𝛽 (IL-1𝛽), IL-6, and TNF-𝛼 within the brain. As a
result, this activation can have deleterious effects on emo-
tional and cognitive behavior [45–48]. Long-term potenti-
ation can be directly impaired and neurotrophins inhibited
[49] by inflammatory cytokines [50, 51]. Neurotrophins are
important for memory formation, synaptic plasticity, and
neuronal function and survival [52–54]. Also, hippocampal
neuronal morphology alterations occur after central and
peripheral administration of lipopolysaccharide (LPS) takes
place, inducing an innate immune response [55, 56]. While
spine density and dendritic branching changes have an
effect on synaptic plasticity [57, 58], induced inflammation
alterations in neuronal complexity result in a hippocampal
function deficit related to memory and learning. Infected
mice with influenza A/PR8/34 (H1N1) were observed to have
cognitive deficits and hippocampal neuroinflammation that
were related to substantial changes in dentate gyrus neuron
morphology and CA1 as well as the loss of neurotrophic
factors [59].

9. Herpes Simplex

Herpes simplex virus (HSV) is a double stranded DNA virus.
It was shown to enter the brain amygdala and hippocampus
through the olfactory nerve and locus coeruleus. It has the
tendency to enter latency within the CNS. In the infected
micemodel, both primary infection and reactivation of latent
DNA in the brain led to neuronal damage that resulted in loss
of memory, learning deficits, and behavioral change [60, 61].
In addition, it is transported transsynaptically, anterogradely,
and retrogradely. HSV infection of the CNS can be lethal
by affecting the inferior and medial temporal lobe. Some
of the symptoms seen in acute Herpes simplex encephalitis
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are Wernicke’s aphasia, headache, fever, epileptic seizures,
confusion, and low consciousness. Memory impairment may
persist when the limbic system and temporal lobe are affected
[62].

The viral DNA was found in very few young people and
children’s brains in comparison to elderly brains [63, 64],
which may prove that HSV1 enters into older people’s brain
as a result of a weakened immune system. In addition, 60%
of patients who are carriers of the APOE-e4 allele show a
higher risk factor forAlzheimer’s disease (AD)when the virus
is present [65]. It has also been reported that HSV1 can be
reactivated in brain, producing a recurrent infection [63].
Most of the time, HSV1 results in cell death. As a result, it
was suggested that HSV1 might be reactivated during stress,
inflammation, or immunosuppression conditions which may
lead to the neuronal damage and subsequently to the devel-
opment of AD, especially in APOE-e4 carriers. Neuropatho-
logical processes in case of HSV1 acting with APOE-e4might
occur due to the accumulation of AD-like tau (P-tau) and
beta amyloid (A𝛽) [63, 65]. Reactivation events are known
to occur in the peripheral nervous system. HSV1 is located in
the trigeminal ganglia, where it causes an evident damage by
the appearance of cold sores in approximately 40%of infected
individuals.

10. Varicella-Zoster

Varicella-zoster virus (VZV) is a human alphaherpesvirus
that infects up to 90% of the human population. Following
primary infection (varicella or chicken pox) which is more
common during childhood, the virus establishes a lifelong
latent infection in the dorsal root ganglia of the host and it
may cause neurological complications such as postherpetic
neuralgia (PHN), zoster-associated pain (ZAP), encephalitis,
segmental motor weakness, myelitis, or arteritis, which may
be fatal or may be followed by significant morbidity [66–
70]. The main clinical characteristics of Herpes-zoster are
dermatomal rash, acute pain, and neurologic symptoms [71].
Encephalitis and meningitis have also been observed to be
caused by VZV [72]. The CNS complications can occur
during primary infection and in the reactivation of VZV.
The more serious complications occur when VZV invades
the spinal cord or cerebral arteries after reactivation of the
virus.Themost common complication in 7 to 35% of infected
individuals is PHN. Its symptoms involve constant, severe,
stabbing or burning, dysesthetic pain. Although pathogenic
mechanisms of PHN are unknown, two possible mechanisms
are altered excitability of ganglionic or spinal cord neurons
and persistent or low-grade productive virus infection in
ganglia [73–75]. It has been observed that primary VZV
infection causes VZV to be persistent in dorsal root and
cranial nerve ganglia [71, 76–78]. When reactivation of VZV
occurs, the feature dermatomal rash of Herpes-zoster takes
place due to the movement of VZ virions through neuronal
cell bodies into the skin. Weakness or paralysis of ipsilateral
facial muscles is caused due to the zoster infection of the
seventh cranial nerve (geniculate) ganglion [79]. Lower
motor neuron type weakness in the arm and leg is caused

by the cervical or lumbar distribution of zoster, respectively
[80, 81].

11. Cytomegalovirus

Cytomegalovirus (CMV) is a common intrauterine pathogen
that causes congenital developmental abnormalities of the
CNS and developmental neurological disabilities such as
CMV encephalitis, characterized by focal areas of reactive
gliosis, reactive mononuclear cells, microglial nodules, and
ventriculoencephalitis [82]. In the immunocompromised
patients, CMVwas reported to reach the brain from the blood
and disseminated further by the CSF prior to the subsequent
movement into the brain parenchyma [83]. It has been
observed to be a lethal ventriculoencephalitis in individuals
with advanced AIDS [84]. It has also been reported that
CMV infects more cells in the subventricular and ventricular
areas of the brain in congenital infected adults and children
[84–86]. These results have also been observed in congenital
CMV mouse models [87]. Impairment of neural stem cells
(NSCs) may result in neuropathological effects that are
related to CMV brain infection [88]. Currently, the leading
cause of childhood disorders as well as birth defects in the
United States is the congenital CMV infection. Every year,
about 8,000 children show some neurological sequelae that
are associated with congenital CMV infection. Nevertheless,
the neuropathogenesis of this infection is still unclear.
Human neural precursor cells have been reported to be
vulnerable to CMV infection [89–91]. Alteration of the
cellular differentiation process of these cells is observed in
the presence of CMV infection [91, 92]. In CMV infected
mice models, the expression of immediate early (IE) genes
was held in the postnatal infected brain cortex. This might
have happened because of the development of infected NSCs
[93]. Likewise, IE expression in the cerebellum is related to
the late development and movement of precursor cells [94].
A better understanding of the relationship between NSCs
and CMV is critical for the development of neuropathogenic
mechanisms of viral infection.

12. Epstein-Barr Virus

Epstein-Barr virus (EBV) is a human herpesvirus related
to epithelial and lymphoid malignancies. This virus causes
transmissible mononucleosis. Occasionally, EBV is said to
produce an extensive variety of CNS infections, such as
Guillain-Barre syndrome, Bell Palsy, transversemyelitis, cere-
bellitis, aseptic meningitis, and encephalitis [95–98]. These
neurological complications occur during primary infection,
typically in childhood. For the first time, role of EBV in the
development of multiple sclerosis was reported by Fraser et
al. [99]. Multiple sclerosis is a chronic demyelinating dis-
ease of the CNS causing axonal pathology and episodic or
progressive neurological disability [100]. The role of EBV
in the pathogenesis of multiple sclerosis could be due to
the molecular mimicry between EBV and CNS antigens
that results in immunological cross-reaction and resultant
autoimmune damage in the CNS [101]. There is a strong
correlation between the frequency of CD8+ T cells and EBV
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infected B cells in the CNS and it indicates that immuno-
logical response found in the multiple sclerosis is primarily
against EBV, with bystander damage to the CNS [102, 103].

13. Human T-Lymphotropic Virus 1

Human T cell leukemia virus type 1 (HTLV-1) is a type C ret-
rovirus. Even though most of infected patients do not
show any symptoms, HTLV-1 is responsible for adult T cell
leukemia (ATL) and HTLV-1-associated myelopathy/tropical
spastic paraparesis (HAM/TSP), which is a progressive demy-
elinating disorder [104]. HAM/TSP is a progressive and
chronic inflammatory illness. In HAM/TSP, a deprivation
of white matter can be observed inside the lateral funiculi
spinal cord in the lumbar and thoracic tissue segments. The
brainstem and cervical spinal cord have also shown degen-
eration, even though this might have happened as a result
of Wallerian degeneration [105, 106]. The primary region of
neuronal damage was found inside the corticospinal tract.
Patients who exhibited this damage reported weakness in
their lower limbs [107]. HAM/TSP is usually present as a
spastic paraparesis. Sexual and urinary dysfunctions as well
as lower back pain are some of the common symptoms [104,
108, 109]. HAM/TSP can be divided into two phases.The first
phase is seen as an inflammatory response and the second
phase as a chronic degenerative stage [110].The inflammation
seen in the first phase affects the BBB and lymphocyte trading
into the CNS increases its chances of happening [111–114].

CNS cell loss and demyelination, occurring in HAM/TSP
individuals, could involve different mechanisms. Some of
these are the autoimmunemechanism of molecular mimicry,
the direct damagemechanism, and the bystandermechanism
[115]. HTLV-1-associated pathogenesis inside the CNS could
be related to an autoimmunemechanism that includesmolec-
ular mimicry. In addition, the direct damage mechanism
involves the infiltration of activated CD8+ cytotoxic T lym-
phocyte cells specific for HTLV-1 Tax protein. This indicates
a continuous manifestation of viral proteins or replicating
virus [116]. In this case, cellular damage occurs from the
release of inflammatory molecules and the directed lysis of
infected cells. The bystander mechanism involves the release
of proinflammatory cytokines in response to HTLV-1, which
causes damage in the CNS [117]. Proinflammatory cytokines
such as interferon-𝛾 (IFN-𝛾) and TNF-𝛼 are proposed to
cause loss and dysfunction of CNS cells as well as disruption
of the BBB [118].

Even though neurons are not proposed to harbor virus
in vivo [119], HTLV-1 neuronal infection demonstrated the
potential to do so in vitro by neuroblastoma cell line infection
and nontumorigenic origin neuronal cell line, such as HCN-
1a and HFGC [106]. As mentioned above, another proposed
mechanism is the autoimmune pathology of molecular mim-
icry. This mechanism involves the recognition of a host anti-
gen as a viral protein by the immune system.

14. Human Immunodeficiency Virus

Human immunodeficiency virus (HIV) is a neurotropic virus
that goes into the brain briefly after the infection [120].

HIV causes neurotoxic and inflammatory host responses
by replicating in brain microglia and macrophages. HIV
infection can also lead to neurological disorders known as
HIV-associated neurocognitive disorders (HAND). Motor,
behavioral, and cognitive abnormalities can be observed in
HAND. HIV-1 is classified into three groups (M, O, and N)
and into nine genetic subtypes (A–K). Among these, clades
B and C are the most circulating HIV-1 variants (>86%)
[121] worldwide. In North America, Australia, and Western
Europe, the leading one is clade B, whereas, in Latin America,
Africa, and Asia, the most common one is clade C. Before the
use of highly active antiretroviral therapy (HAART), 30% of
advanced HIV-1 infected individuals showed HIV-associated
dementia (HAD) symptoms [122, 123]. On the other hand,
Satishchandra et al. (2000) [124] along with other studies
[125] stated a very low frequency of HAD in about 2% of
patients that were HIV-1 clade C infected from India. After
the introduction and use of HAART worldwide, the fre-
quency of HAD has reduced significantly. However, 40–50%
of patients still show symptoms related to HAND [126–130].
HIV is transported by infected perivascularmacrophages and
monocytes through the BBB. A decreased neuronal function
and plasticity were observed in postmortem brains of HAND
patients. These can be seen at systemic and cellular levels.
At the cellular level, HAND patients showed a decreased
dendritic and synaptic density as well as a synaptodendritic
damage [130], which can cause a neural network interruption
and eventually lead to caspase-3-dependent neuronal apop-
tosis [131]. This can be observed at the system level as white
and greymatter degeneration in cortical and subcortical areas
[120, 132]. The basal ganglia are mainly affected [133, 134].
Recently, we have reported dysregulated synaptic plasticity
genes expression in clade B infected SK-N-MC neuronal cells
and clades B and C infected astrocytes. We have observed
induced apoptosis and decreased spine density in clade B
infected neuronal cells compared to clade C infected and
control cells. These observations indicate that HIV-1 clade B
is more neuropathogenic than clade C [135]. In the process
of exploring the epigenetic regulation of synaptic plasticity
genes expression in HIV infected neuronal cells, we have
observed HDAC2 upregulation in these cells. Inhibition of
HDAC2 by using the vorinostat resulted in the recovery of
synaptic plasticity genes expression in HIV infected neuronal
cells [136]. In HIV infection, the leading cause of reduced
neuronal function may be due to the synaptodendritic injury
rather than neuronal loss. Furthermore, a difficult issue for
neuro-AIDS is the number of HIV-positive individuals that
abuse illicit drugs. Heroin abuse is amajor risk factor for HIV
transmission,while abuse of stimulants has becomeone of the
risk factors for HIV. Alcohol and other drugs of abuse cause
oxidative stress to increase as well as brain atrophy and bad
performance in neurocognitive assessments [137].

15. HIV Induced Neuroinflammation
and Neurotoxicity

A better understanding of the cellular and molecular mech-
anisms of HIV neurotoxicity is required for the prevention
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of HIV neuropathology. HAND individuals usually expe-
rience prolonged symptoms of HIV encephalitis. In this
neuroinflammatory condition, the presence of HIV-infected
microglial cells, multinucleated giant cells, myelin loss, devel-
opment of microglial nodules, and astrogliosis is observed
[138–140]. When microglia, macrophages, and distressed
astrocytes get activated, the uptake of excitotoxic neurotrans-
mitters is reduced, inhibiting plasticity [141]. As a result, the
formation of dendritic synapses and spines is also reduced.
Furthermore, neuronal survival is compromised when the
release of IL-1𝛽, TNF-𝛼 [142], and CXCL12 [143] by infected
glial cells takes place [144–146]. Therefore, glial cells have the
capacity to decrease homeostasis-mediated plasticity by pro-
moting or exacerbating HIV-induced neurotoxicity. In vitro
data have demonstrated that cytokines can encourage neu-
ronal loss. Nevertheless, microglia’s role in HIV neuropathol-
ogy is still unclear, as microglia can also be activated by
dying and distressed neurons. Additionally, the basal ganglia
exhibit a selective susceptibility to synaptodendritic injury
that cannot be described only by inflammatory cytokines. All
these data support the idea that HIV stimulates the release of
different viral proteins and soluble host cell-derived factors
that may collaborate to cause the pathology of synapses.

16. Role of HIV Proteins in Neurotoxicity

Out of nine HIV proteins reported to cause neuronal injury,
the transactivator of transcription (Tat) protein is one of
the major viral proteins that is able to cause neurotoxicity.
Tat is vital for HIV replication and influences transcription
initiation and elongation [147] at the HIV promoter. In
addition, Tat can reduce neuronal survival by different mech-
anisms, such as inflammatory cytokine [148], impairment of
mitochondrial function [149], and activation of ionotropic
glutamate receptors [150]. HIV-infected cells can release Tat
[151] and it has been observed that the combination of HIV-1
clade B and Tat protein intensifies the production of reactive
oxygen species and inhibits redox expression compared to
clade C or its Tat protein. These data show that HIV-1 clades
B and C produce different effects of thiol alteration and redox
expression. In addition, HIV-1 clade B induces oxidative
stress, which leads to more immunoneuropathogenesis than
HIV-1 clade C [152]. Recently, we have reported that clade
B Tat differentially regulates the synaptic plasticity genes
expression compared to clade C [153]. While penetration
of antiretroviral drugs across the blood-brain barrier might
be crucial for the treatment of HAND, we are using the
nanotechnology based approach to inhibit HIV infection and
latency in the CNS cells by transferring the anti-HIV drugs
coupled with vorinostat [154]. Nef, Vif, Vpr, and Vpu are key
accessory proteins in HIV pathogenesis that affect some host
cell functions, such as cytoskeleton contraction [155], and
promote the release of virions and optimize viral replication
[156]. Once these proteins are released, they can induce
neuronal apoptosis [157] throughout different mechanisms,
such as the activation of caspase-8 (Vpr) and formation (Vpr
and Vpu) or direct binding (Nef) to ion channels. This will
lead to lethal abnormal membrane depolarization [158].

Glycoprotein gp120 is another structural protein that has
been reported to induce neuronal apoptosis. This gp120 has
a significant function in the viral infection cycle and binds
to chemokine coreceptors CCR5 and CXCR4, allowing con-
formational change and entering of the virus into cells [159].
Neuronal apoptosis can be induced by a short exposure of
neurons to gp120 [160, 161]. It has also been reported to
stimulate axonal degeneration [162] aswell as dendritic injury
[163, 164]. These two main effects are associated with the
synaptodendritic atrophy seen in HAD [165]. Gp120 trans-
genic mice have been reported to show dendritic reduction
and neuronal loss [166], which indicates that gp120 is capable
of reducing and affecting synaptic plasticity. Figure 3 is
showing the role of HIV infection, Tat, and gp120 in the HIV-
induced neurotoxicity.

In neuronal diseases including neurotropic viral infec-
tions, the peripheral innate immune system has been
reported to get activated, producing certain cytokines within
the brain. As a result, this stimulation can have deleterious
effects on synaptic plasticity, emotional, and cognitive behav-
ior. While current research in this area is ongoing, the role
of synaptic plasticity during neurotropic viral infections and
associated neurodegenerative diseases are the most recent
and least understood. While there is an agreement that many
neurodegenerative diseases are characteristic of a vigorous
inflammatory response, it remains unclear how this process
is related to disease processes.The interaction of viruses with
their hosts is remarkable in numerous ways. The interaction
between virus and host in vivo, especially in brain, is very
complicated by the categorized arrangement of cells, tissues,
and systems, which offer the appropriate protective response.
If this united response to viral infection is not sufficient, then
there is every possibility of resulting in disorders associated
with synaptic plasticity and cognitive effects. Damage to
brain cells can result from viral replication or by the action
of the activated immune system and may result in the
death of neuronal cells. Designing methods such as live-
cell and intravital imaging together with neuron culturing
methods supplemented by the capability to construct recom-
binant viruses will enable researchers to study some of the
fundamental characteristics of virus replication as well as
spread within and between neurons. These methodologies
will empower the scientists to understand the mechanisms
of how neurotropic viruses get entrance to and spread in the
brain. Newmethods, such as deep sequencing of viral nucleic
acid from clinical samples or single-molecule sequencing
will enable identification of more neurovirulent and/or neu-
roinvasive virus mutants and will provide a genetic view of
host barriers and viral bypass mechanisms and will help in
improving the other cognitive associated neurodegenerative
disorders.
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[107] A. Q.-C. Araújo, A. S. Andrade-Filho, C. M. Castro-Costa,
M. Menna-Barreto, and S. M. Almeida, “HTLV-I-associated
myelopathy/tropical spastic paraparesis in Brazil: a nationwide
survey,” Journal of Acquired Immune Deficiency Syndromes and
Human Retrovirology, vol. 19, no. 5, pp. 536–541, 1998.

[108] M. Nakagawa, S. Izumo, S. Ijichi et al., “HTLV-I-associated
myelopathy: analysis of 213 patients based on clinical features
and laboratory findings,” Journal of Neurovirology, vol. 1, no. 1,
pp. 50–61, 1995.

[109] H. Shibasaki, C. Endo, Y. Kuroda, R. Kakigi, K.-I. Oda, and S.-
I. Komine, “Clinical picture of HTLV-I associated myelopathy,”
Journal of the Neurological Sciences, vol. 87, no. 1, pp. 15–24, 1988.
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