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Abstract

Membrane transporters carry key metabolites across the cell membrane and, from a resource

standpoint, are hypothesized to be produced when necessary. The expression of membrane

transporters in metabolic pathways is often upregulated by the transporter substrate. In E. coli,

such systems include for example the lacY, araFGH, and xylFGH genes, which encode for lac-

tose, arabinose, and xylose transporters, respectively. As a case study of a minimal system,

we build a generalizable physical model of the xapABR genetic circuit, which features a regula-

tory feedback loop via membrane transport (positive feedback) and enzymatic degradation

(negative feedback) of an inducer. Dynamical systems analysis and stochastic simulations

show that the membrane transport makes the model system bistable in certain parameter

regimes. Thus, it serves as a genetic “on-off” switch, enabling the cell to only produce a set of

metabolic enzymes when the corresponding metabolite is present in large amounts. We find

that the negative feedback from the degradation enzyme does not significantly disturb the posi-

tive feedback from the membrane transporter. We investigate hysteresis in the switching and

discuss the role of cooperativity and multiple binding sites in the model circuit. Fundamentally,

this work explores how a stable genetic switch for a set of enzymes is obtained from transcrip-

tional auto-activation of a membrane transporter through its substrate.

Introduction

Genetic regulatory circuits are fundamental building blocks of functioning cells and organ-

isms. One abundant class of these circuits are genetic switches. Although their construction

and function may differ, their common feature is bistability: their output gene expression will

flow to and remain at one of two steady-state levels. The distribution of gene expression in a

cell culture can then be bimodal. This is not to be confused with mere stochastic bimodality,

where the system is not stable, and the gene expression in each cell can fluctuate between the

two levels.
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One classic example of a genetic switch is a system where two repressor proteins each regu-

late the transcription of the other [1, 2] (illustrated schematically in Fig 1). Here, one stable

state is high expression of the first protein and low expression of the second, and the second

stable state is the opposite. This switch enables the system to have a memory: if something

induces expression of either one of the proteins, the system will remain in this state until a sig-

nificant perturbation occurs. Another well-known and even simpler example is an auto-acti-

vating circuit in which a protein activates its own transcription [3]. This gives the system an

“on-off” switch.

Through physical and mathematical modeling, we investigate a more complex switch sys-

tem where the bistability is due, as we will show, to a membrane transport protein. Such a

switch is common for metabolic processes in biology, for reasons discussed below. Existing

models in the literature tend towards one of two extremes: either highly detailed descriptions

of specific, complicated networks (e.g., [4]), or Hill function descriptions that coarse-grain all

complexity into a few parameters with inscrutable microscopic physical meaning. We aim for

a middle ground in this work. We seek an intuitive understanding through a simple model of

a minimal system, with only the essential components and interactions for the questions we

pose. Yet we still model these components explicitly and discuss the necessary model complex-

ity for a physically correct model.

The key feature of the type of system we investigate is the indirect activation of the trans-

porter gene by the transporter substrate, leading to positive feedback similar to the aforemen-

tioned “on-off” switch. An example for such an architecture is the lac operon, where lactose

indirectly activates the expression of lactose permease. Other examples in E. coli include the

araFGH and xylFGH operons, which contain genes for arabinose and xylose transporters,

respectively. For lac and araFGH, bistability has indeed been observed and attributed to such a

positive feedback loop, for example in the well-known study by Novick and Weiner (1957),

among other works [5–12]. A eukaryotic example is the glucose transporter GLUT-2 in liver

and β-cells [13, 14], though this system is much more complex than the following analysis.

It is quite conceivable that this auto-activation process is common to many substances that

a cell would want to consume. Such a switch enables the cell to sense and respond to its envi-

ronment: if the substrate enters the cell, it activates the production of membrane transporters.

The cell then starts accumulating the substrate, thereby “testing” the substrate’s presence in the

extracellular environment. If there is enough, the expression stabilizes at an “on” state and the

cell has, in a short-term sense, adapted. When there is not enough substrate, the operon, which

often encodes for a whole set of enzymes for this one metabolite, switches “off” again. Such a

Fig 1. A schematic of different genetic switches. (A) and (B) show the two most well-known genetic switches: (A)

two mutual repressors and (B) a self-activating gene. In (C), a very much simplified version of the circuit that we

investigate in this paper can be seen, where the similarity to the switch in (B) is clear. A complete version of the model

circuit can be found in Fig 3.

https://doi.org/10.1371/journal.pone.0226453.g001
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mechanism could plausibly be involved in various cases of short-term adaptation such as, but

not limited to, the lacZYA, araFGH, and xylFGH examples mentioned above.

A key element of this mechanism is the presence of a transcription factor which binds to

the transporter substrate and which is often expressed at a low level (often at copy numbers of

order * 10, [16, 27]). This is resource efficient for the cell, as this low copy number transcrip-

tion factor acts as an “always on” sensor to detect the substrate, allowing high copy numbers of

the membrane transporter and its attendant operon to be expressed only when their substrate

is actually present. The transcription factors LacI, AraC, and XylR all appear to fill this role [5–

12, 15, 16].

For our modeling, we focus on the xapABR genetic circuit from E. coli as a case study. It is

similar to lac, but less complex. Instead of lactose, its purpose is to make use of the nucleoside

xanthosine as an energy source [17, 18]. The circuit is made up of two operons: one that

encodes for XapR and another that encodes for XapA and XapB. XapR is a transcription factor

that is induced by xanthosine and activates the xapAB promoter, in close analogy to AraC,

XylR, and also LacI. (One might object that LacI represses its target operon, while XapR, AraC,

and XylR activate their target operons. However, the analogy we wish to draw is that the quali-

tative logic of their inducers are all identical, i.e., the presence of their respective inducer causes

their target operon to be transcribed.) The xapAB promoter has been suggested to have two

binding sites for XapR [19], but the promoter architecture and function is not yet fully under-

stood. The transcription of xapR seems to be constitutive and not auto-regulated [19]. Struc-

tural homology to other transcription factors suggests that XapR appears in dimers where one

dimer can bind two xanthosine molecules [20]. The protein XapA is a purine nucleoside phos-

phorylase that degrades xanthosine into components (ribose and xanthine) that can be fed

into metabolic pathways [17, 18]. XapB on the other hand is a membrane transporter of

xanthosine [19, 21].

Experimentally, we found that the expression level of xapAB among cells is bimodal and

that the system seems to be bistable (see next section). We aim to understand which of the cir-

cuit’s features are necessary for bistability and investigate its behavior in different parameter

regimes. After presenting some experimental background on the xap genes, we discuss the

details of our model. Lastly, we estimate the free parameters and then present the observations

we made through phase diagrams, followed by the results from stochastic simulations.

Experimental motivation

Our work was motivated by the experimental observation of bimodality in the xap circuit,

which is shown in Fig 2. We focus on the essential findings here and refer the reader to S1 Text

for more experimental details. Briefly, we placed a fluorescent reporter under the control of

the wild type (wt) xapAB promoter. This construct was placed in three different backgrounds:

ΔxapABR, ΔxapAB, and wt, and expression as a function of extracellular xanthosine concen-

tration was measured using flow cytometetry, as has been described previously [23]. The left

panel of Fig 2A shows that for increasing xanthosine concentration, expression in the wt-back-

ground increases in a switch-like way: it is nearly zero when there is little xanthosine (“unin-

duced state”), but increases drastically when there is more (“induced state”). In between, the

aforementioned bimodal distribution is obtained, where some bacteria are in the uninduced

expression state and others are induced.

When all genes of the xapABR circuit are removed, the xanthosine response of our reporter

construct disappears (see Fig 2A, middle panel). This is the result of removing the transcrip-

tion factor XapR that is induced by xanthosine. When only the genes xapAB are removed but

xapR is kept, a response to the xanthosine concentration is regained but it is no longer switch-
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like (see Fig 2A, right panel). Instead, the distribution remains unimodal and simply shifts to

higher expression as the xanthosine concentration is increased. As we will see later on, this is

because the circuit now lacks the positive feedback loop due to the xanthosine membrane

transporter XapB.

As mentioned in the introduction, there are two binding sites for XapR on the xapAB pro-

moter: one partially overlapping the polymerase -35 site and one further upstream. Working

in the ΔxapAB background, we measured the expression level of our reporter when driven by

two constructs: the wild-type xapAB promoter (Fig 2B, left panel), and the xapAB promoter

with the upstream binding site removed (Fig 2B, right panel). Clearly, removing one XapR

binding site dramatically reduced the responsiveness of the promoter to xanthosine (though

Fig 2. Experimental data on the xap circuit. (A) The expression of the xapAB promoter was measured for different extracellular

concentrations of xanthosine (vertical axis). The left panel shows the wild type circuit while the middle and right panels show the

effect of deleting the genes xapABR and xapAB, respectively. The wild type circuit behaves like a switch. Note that the fluorescence

scale of the middle panel is not comparable with the other two, and also that the chosen xanthosine concentrations are different. (B)

shows the fold-change in gene expression upon addition of xanthosine for the wt promoter (left panel) and for the promoter with

only the XapR binding site adjacent to the polymerase binding site (right panel). Note that the fold-change used here differs from

fold-change in, e.g., [22–24], in that no subtraction of autofluorescence was performed, which is adequate for the qualitative

comparison of these two promoters.

https://doi.org/10.1371/journal.pone.0226453.g002
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not apparent from Fig 2B, this response remains detectable in other measurements covering a

smaller dynamic range).

Already, we believe these data, combined with the prior knowledge of the field, clearly sug-

gest a minimal model of the xapABR system. The construction and exploration of this model

occupies the remainder of this work. We leave it for future work to quantitatively dissect and

test the model, in the manner of [22–24], for example.

Model

Step by step modeling of the system

In this section, we present our model of the xapABR genetic circuit. Fig 3 shows an overview

of this model. The qualitative picture of the circuit switching its state is as follows:

• In the initial absense of XapB, small amounts of xanthosine permeate into and out of the cell

(discussed in more detail below).

• The presence of xanthosine shifts XapR’s equilibrium from inactive to active.

• Active XapR binds to the xapAB promoter, increasing transcription.

• From this mRNA transcript, translation produces the two proteins XapA and XapB.

• XapB actively transports much larger amounts of xanthosine into the cell and XapA degrades

xanthosine.

Fig 3. Model of the xapAB circuit. The XapR dimers are induced by xanthosine and the induced XapR binds

cooperatively as an activator to the xapAB promoter. For these two steps, quasi-equilibrium is assumed. If both XapR

binding sites are occupied and the polymerase is bound, the gene is transcribed at rate rm. The mRNA decays at rate

γm, and both proteins are translated at rate rp and decay at rate γp. XapA degrades xanthosine with Michaelis-Menten

parameters ka and ka. Similarly, XapB is treated as a Michaelis-Menten enzyme which imports (kb,i, Kb,i) and exports

(kb,e, Kb,e) xanthosine. Furthermore, xanthosine enters and leaves the cell through non-specific transport, proportional

to rates knup and ξknup, respectively.

https://doi.org/10.1371/journal.pone.0226453.g003
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• Production of more XapA and XapB is balanced by degradation or dilution through cell

divisions.

Because xanthosine activates the transcription factor XapR, we have positive and negative feed-

back loops due to XapB and XapA, respectively. The remainder of this subsection discusses

each of the above steps in detail, leading us to a set of two coupled ODEs. More in-depth expla-

nations can be found in S1 Text.

Induction of XapR. We treat dimers as the only form of XapR that appears in the cell.

Each dimer can bind two xanthosine molecules [20]. The Monod-Wyman-Changeux (MWC)

model is used to describe the fraction of XapR dimers in the active state, which has the form

½XapR�A ¼ ½XapR�tot
1þ

½x�
KxA

� �2

1þ
½x�
KxA

� �2

þ ebDEx 1þ
½x�
KxA

KxA
KxI

� �2
: ð1Þ

A detailed discussion of the MWC model can be found in [26]. In Eq 1, [x] is the xanthosine

concentration, and [XapR]A and [XapR]tot denote the concentration of active and total XapR

dimers, respectively. Furthermore, KxI and KxA are the dissociation constants of xanthosine to

the inactive and the active XapR dimer, respectively, and ΔEx stands for the energy difference

between the inactive and the active states of the protein. We expect ΔEx > 0 and KxA < KxI for

inducible activation. This corresponds to XapR being mainly inactive in the absence of xantho-

sine and becoming mostly active at high concentrations of xanthosine.

Transcription. Transcription and translation of the xapAB operon, regulated by the

induced XapR, produce the two proteins XapA and XapB. We start with transcription and

assume that the binding of XapR and polymerase to the promoter is at quasi-equilibrium. The

polymerase binding is modeled as independent of that of XapR, and all influence of the activator

is pushed into the transcription rate. Furthermore, the binding energy of XapR to each of its two

sites is assumed to be the same. A discussion of these simplifications can be found in S1 Text.

In Fig 4, all possible states of the promoter in our model and their corresponding thermo-

dynamic weights are shown. [P] denotes the polymerase concentration, and ΔEcoop stands for

the interaction energy of the two XapR dimers. If cooperativity in transcription factor binding

is neglected, this is set to zero. Furthermore, KXapR and KP denote the dissociation constant of

XapR and polymerase to the promoter, respectively. In statistical mechanics language these

dissociation constants are equivalent to
NNS

V ebDEXapR and
NNS

V ebDEP , respectively, with NNS being

the number of non-specific binding sites on the DNA, V the volume of the cell, and ΔEXapR

and ΔEXapR, respectively, the interaction energies of XapR or polymerase with the promoter.

We consider only the state where both XapR binding sites are occupied as active and all

other states as inactive, meaning they have transcription rate equal to zero. Our experiments

show that the expression becomes very weak when one of the XapR binding sites is removed

from the promoter (see Fig 2B and S1 Text), suggesting that this simplification is reasonable.

Furthermore, we find that in the bistable parameter range, considering the single occupancy

states as active instead has almost no influence on the results (see also S1 Text).
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With [m] being the mRNA concentration, rm the transcription rate, γm the mRNA decay

rate, and pactive the probability of the promoter being in the active state, we obtain

d½m�
dt
¼ rmpactive � gm½m� ð2Þ

pactive ¼
w8

P8

i¼1
wi

¼
½P�

KP þ ½P�

½XapR�A
KXapR

� �2

e� bDEcoop

1þ 2
½XapR�A
KXapR

þ
½XapR�A
KXapR

� �2

e� bDEcoop
ð3Þ

Here, wi stands for the thermodynamic weight of the ith state in the order in which they are

listed in Fig 4. As written above, the partition function factorizes into a polymerase and a XapR

term because of our assumption of independent binding, which is further discussed in S1 Text.

Note that because rm implicitly contains the gene copy number per cell, it has units of M−1 s−1

and not just s−1. This rate equation gives the mean mRNA concentration h½mRNA�i ¼
rm
gm
pactive,

which we will need in the next paragraph. The mean can also be found from the full chemical

master equation, which is provided in S1 Text.

Translation. The next step in our modeling progression is translation. As a simplification,

we write [p] = [XapA] = [XapB] for the general protein concentration. This assumes that the

rates of transcription, mRNA decay, translation, and protein decay are the same for both pro-

teins, which, as discussed in S1 Text, does not have a significant influence on the results. We

write the following rate equation for the protein concentration, where rp denotes the

Fig 4. The promoter states. We consider only the completely occupied state as active and all other states (faded out in

the figure) as completely inactive. The parameters are the interaction energy of the two XapR dimers ΔEcoop and the

dissociation constants KXapR and KP of XapR and polymerase to the promoter, respectively. The concentrations of

polymerase and active XapR are denoted by [P] and [XapR].

https://doi.org/10.1371/journal.pone.0226453.g004
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translation rate, γp the protein decay rate, and h[m]i the mean mRNA concentration:

d½p�
dt
¼ rph½m�i � gp½p�: ð4Þ

Xanthosine dynamics. Having described how xanthosine activates the synthesis of XapA

and XapB through XapR, we now close the feedback loop by setting up a xanthosine rate

equation.

There are two significant mechanisms for transport of xanthosine across the cell membrane.

In the induced system, the main transporter is XapB, whereas in the uninduced system, there is

almost no XapB. Instead, xanthosine can enter the cell through the two nucleoside transporters

NupC and NupG, which have a very low affinity for xanthosine [21]. All these transporters,

XapB, NupC, and NupG, are powered by the proton gradient across the membrane [21], which

is why we assume their kinetic scheme to be similar to that of the lac permease (as it is described

in [26]). There can be import and export of xanthosine, and which one dominates depends on

the proton and xanthosine concentrations on the two sides of the membrane. In both cases, a

proton and a substrate need to bind to the transporter on one side of the membrane and detach

from it on the other side before the empty transporter moves back to the other side again. We

refer the reader to S1 Text for a detailed description of the transport and its modeling, and just

state the result here. We model influx and efflux separately. For XapB, we use Michaelis-Menten

kinetics with parameters kb,i, Kb,i for influx and kb,e, Kb,e for efflux. For the Nup transporters, we

also use Michaelis-Menten kinetics but, because of the transporter’s low affinity for xanthosine,

we can linearize the Michaelis-Menten term as kcat½x�=ðKM þ ½x�Þ � k ½x� (i.e., KM� [x] across

the physiologically relevant range for [x]). For the rate parameters k, we write knup for influx

and ξknup for efflux.

After transport into the cell, XapA degrades xanthosine. We model this using standard

Michaelis-Menten kinetics, with parameters ka, Ka (corresponding to turnover rate and Michaelis

constant, respectively). Transport and degradation then leads to the xanthosine rate equation

d½x�
dt
¼ kb;i

c
Kb;i þ c

� kb;e
½x�

Kb;e þ ½x�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

XapB

� ka
½x�

Ka þ ½x�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

XapA

0

B
B
B
B
B
@

1

C
C
C
C
C
A

½p� þ knupðc � x½x�Þ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
NupC & NupG

: ð5Þ

Recall that [x] is the intracellular xanthosine concentration, while c denotes the extracellular con-

centration. Because kb,i> kb,e and Kb,i< Kb,e, influx dominates at low intracellular xanthosine

concentrations. At much higher intra- than extracellular xanthosine concentrations, the efflux

term takes over. More details on the aforementioned steps and a discussion of passive diffusion

can be found in S1 Text.

Nondimensionalization

We have now formulated the behavior of the system in terms of the rate equations for mRNA,

protein, and xanthosine. These equations can be nondimensionalized, which reduces the

dimension of parameter space. We measure time in units of g� 1
p

and concentrations in units of

ka (except XapR, where the equations make it more natural to use KXapR). In Table 1, all the

nondimensional parameters and their definitions are listed. Furthermore, we define ½m�
a
≔ ½m�

Ka
,

½p�
a
≔ ½p�

Ka
, ½x�

a
≔ ½x�

Ka
, ½c�

a
≔ ½c�

Ka
, and τ≔ γpt. Using these definitions, the following equations are
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obtained

d½m�a
dt
¼ rm

½XapR�R;A
2e� D�coop

1þ 2½XapR�R;A þ ½XapR�R;A
2e� D�coop

� gmp½m�a ð6Þ

d½p�a
dt
¼ rp½m�a � ½p�a ð7Þ

d½x�a
dt

¼ kb;i
½c�a

Kb;i þ ½c�a
� kb;e

½x�a
Kb;e þ ½x�a

� ka
½x�a

1þ ½x�a

 !

½p�a

þ kZð½c�a � x½x�aÞ

with ½XapR�R;A ¼ ½XapR�R

1þ
½x�a
KwA

 !2

1þ
½x�a
KwA

 !2

þ eD�x 1þ
½x�a
KwA

1

KIA

 !2

ð8Þ

Table 1. Nondimensional parameters and their estimated values.

Param. Definition Estimated range Value used

ρm ≔ rm
gpKa

½P�

KPþ½P�
� 10−3±2 10−3

γmp ≔ gm
gp

� 101±0.5 101

ρp ≔ rp
gp

� 102±0.5 102

[XapR]R
½XapR�tot

KXapR

� 100±2 100

[c]a
c
Ka

(2 [0, 103]) 13

kβ,i ≔ kb;i

gp

� 104±1 5 � 104

kβ,e ≔ kb;e

gp

� 103±2 103

kα ≔ ka

gp
� 102±0.8 102

kη ≔ knup

gp

� 100±3 5�10−1

ξ = ξ � 0.8 ± 0.1 0.8

Kβ,i ≔ Kb;i

Ka

� 101±2 101

Kβ,e ≔ Kb;e

Ka

� 102±2 102

KχA ≔ KxA

Ka
� 102�1 � 10D�x � 5 102

KIA ≔ KxI

KxA

� 102±1 102

Δ�x ≔ βΔEx � 2 to 2(ln(KIA) − 1) < 12 5

Δ�coop ≔ βΔEcoop � 0 − 10 5

The left column shows all nondimensional parameters that appear in the final equations. In the middle are their

definition and estimated values. They are based on γp = 5 � 10−4 s−1 and Ka = 5 � 10−5 M. Note that the range of the

three MWC parameters depends on each other, but they can still be chosen independently. The range given for [c]a

denotes the estimated “interesting” range in which switching happens, but [c]a can of course exceed these values.

Details on the parameters and their estimation can be found in S1 Text. Finally, the last column shows the value that

we use for the rest of this paper, unless otherwise noted. An explanation of this choice will follow in the next section.

https://doi.org/10.1371/journal.pone.0226453.t001
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Very little is known about the xap system, and thus, there are almost no measured values

for the free parameters. Nevertheless, we were able to estimate a reasonable range by using

values from similar, well studied systems and by exploiting physical constraints or relations

between parameters. The results of these estimates are shown in Table 1. They are based on a

choice of γ p = 5 � 10−4 s−1 and Ka = 5 � 10−5M. A detailed derivation can be found in S1 Text.

Results and discussion

In the modeling process in the previous section, we have obtained three coupled differential

equations. In this section, we will analyze these equations with deterministic methods and sto-

chastic simulations. Analytical closed-form solutions could not be obtained and would, if they

existed, probably not be helpful due to their large complexity. Finding such solutions requires

solving a fifth order algebraic equation.

Deterministic phase portraits

A standard way to analyze dynamical systems deterministically is to plot phase portraits. In the

following, we present such plots where the state variables are the mRNA, the protein, and the

xanthosine concentration. Note that for the low copy numbers that can occur in our system, a

deterministic analysis is not necessarily meaningful. Nevertheless, in our case we find that sto-

chastic simulations agree well with the deterministic results. Thus, deterministic phase por-

traits are a valid starting point.

From a 3D to a 2D system. Fig 5A shows the 3D phase portrait for a representative set of

parameters (shown in Table 1), whose choice is explained below. The plot looks rather compli-

cated at first but can be understood intuitively. The three surfaces are the nullcline surfaces

and the gray lines point in the direction in which the dynamical system moves at each point.

The surfaces intersect in three points, which are the steady-state solutions of the dynamical

system. For this choice of parameters, the system first flows towards the mRNA nullcline

(independent of the initial condition), then it moves along that surface to the intersection with

Fig 5. Phase portraits showing bistability. 3D and 2D phase portraits for one set of parameters that leads to

bistability. The parameter values are listed in Table 1. Note that all the concentrations ([m]a, [p]a, [x]a) are measured in

units of Ka = 5 � 104 nM. The surfaces in (A) and the curves in (B) are the nullclines of the state variables, and their

intersection points, marked in red in (B), are the steady-state solutions of the system. The region shaded in gray in (B)

leads to negative concentrations and is unphysical. A vector plot of (B) that also shows the magnitude of flow at each

point can be found in S1 Text.

https://doi.org/10.1371/journal.pone.0226453.g005
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the protein nullcline, and lastly, it moves along that intersection line to one of the three inter-

section points of all three surfaces.

It is important to point out that, for a different set of parameters, the dynamics can be quite

different. There are, for example, scenarios where the xanthosine kinetics are roughly as fast

as the mRNA kinetics and the dynamics unfolds in two steps: first to the intersection of the

mRNA and the xanthosine nullcline, then along that curve to the protein nullcline and thereby

to a fixed point.

A usual simplification with genetic circuits like this is to assume the mRNA concentration

to be at steady-state, i.e., to write
d½m�a

dt
¼ 0 and solve this for [m]a([p]a, [x]a) to simplify the 3D

to a 2D system. This restricts the dynamics to the green surface in our plot, which is reasonable

here because as explained above, the system first flows towards that surface before either the

protein or the xanthosine concentration changes significantly. However, as already pointed

out, this is different for other parameter values, and thus, this assumption does not hold in

general. If the xanthosine dynamics are faster than the mRNA dynamics, the system first flows

towards the xanthosine nullcline. In that case, forcing it onto the mRNA nullcline leads to sig-

nificant changes in the dynamics.

Nevertheless, the steady-state solutions and the qualitative features that we address in this

paper remain the same. Because the 3D plots are rather hard to read, we will, in the following,

make the compromise to show a 2D version of the phase portraits but ensure that all of our

statements also hold true in 3D space. As explained above, it makes the most sense here to do

this by setting
d½m�a

dt
¼ 0. The resulting equations can be found in S1 Text. In particular, we

define r≔ rmrp

gmp
for everything that follows.

Bistability. We map the mRNA nullcline surface (green in Fig 5A) onto a plane to show it

as the 2D plot in Fig 5B. From this 2D plot, it can clearly be seen that for the chosen parame-

ters, there are three steady-state solutions. Because the system is restricted to the mRNA null-

cline surface, these steady-state solutions are the same as those in the 3D plot (
d½m�a

dt
¼ 0 on the

nullcline and
d½p�a

dt
¼ 0,

d½x�a
dt
¼ 0 for the 2D fixed points). One can see from the vector field that

the two outer fixed points (labeled 1 and 3) are stable and the middle one (labeled 2) is unstable

and serves as a sort of “switch-point” between the other two. This means that there are two

stable states the cell can be in, one at high (point 3) and one at low (point 1) expression. As a

result, there is bistability and the distribution of expression among cells can be bimodal,

depending on initial conditions.

The bistability corresponds to the experimental observations, so the model passes this sanity

check. Furthermore, the xanthosine and protein concentrations at the upper fixed point have

the expected order of magnitude: the xanthosine concentration is roughly 10 − 100 mM, and

there are roughly 500 proteins, which is just a bit lower than what was measured for the num-

ber of Nup transporters [16] which fulfill a similar purpose. We do not have well founded

expectations for the other fixed points, so no comparison can be made here. Nevertheless, the

orders of magnitude at the lower fixed point—roughly 1 − 10 nM of xanthosine and around 5

proteins—seem quite reasonable. Note that [x]a� [c]a at the lower fixed point because there is

only weak accumulation due to Nup and a few XapB transporters.

As already mentioned, we are working with one specific set of parameters here and we will

now explain this choice of values. Firstly, they were picked roughly in the middle of the range

that was estimated beforehand for this parameter (see Table 1 and S1 Text). Secondly, we

chose parameters that allow clear bistability in the phase portraits as well as in the stochastic

simulations (see later), which, of course, is not the case for any possible choice of parameters.

Thirdly, by the corresponding choice of parameters it was ensured that the mRNA number per
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cell at the “switch-point” is around 1: this is large enough to enable the system to clearly resolve

the two stable fixed points (as we will see from the stochastic simulations later on), but is low

enough to lead to mean mRNA numbers that are very reasonable (of order 10−2 to 101 tran-

scripts per gene per cell in E. coli [28]). The protein and xanthosine concentrations followed

from this, but with some variation in the parameters they could still be tuned to a certain

extent.

We point out that we have not observed any oscillations in the system. Intuitively, they

might be expected when the XapA rate is significantly larger than the XapB rate, but it turns

out that oscillations cannot be obtained. Why they do not occur can be understood when look-

ing at the regions that are bounded by all three nullclines: on these boundaries, the streamlines

point into the bounded regions, so deterministically, they serve as trapping regions from

which the system cannot escape. Once inside, the only possible trajectory is non-oscillatory

flow towards the stable fixed point.

For a different set of parameters, the orders of magnitude in the plots and even the qualita-

tive behavior can change. In the following, we will discuss some interesting features of the sys-

tem that can be observed through the phase portraits.

The extracellular xanthosine concentration. The parameter that is the experimentally

most easily tunable and biologically the most relevant is the extracellular xanthosine concen-

tration. When it is increased in experiments, the cells go from (1.) all being in the low expres-

sion state to (2.) the population being in a mixed state with some cells in a low expression state

and others in a high expression state (all-or-none phenomenon) and then to (3.) all being in

the high expression state (see section “experimental motivation”). If our model is correct, it

should exhibit the same qualitative behavior. Indeed we find exactly this: as can be seen in Fig

6, increasing [c]a makes the high stable fixed point appear and then, for even higher [c]a, the

lower one disappears. Thus, for low [c]a the only stable point of the system is at low expression,

and for high [c]a there is only high expression. In between, there are two deterministically

Fig 6. Phase portraits for different extracellular xanthosine concentrations. All parameters but [c]a are as presented

in Table 1. The extracellular xanthosine concentration in these plots is [c]a = 7 in (A) and [c]a = 40 in (B) (recall that

½c�
a
≔ c

Ka
with Ka = 5 � 10−5M, so [c]a is dimensionless). Tuning [c]a moves the orange line (xanthosine nullcline), but

the blue curve (mRNA nullcline) is unchanged (see also S1 Text). It can clearly be seen that in (A) there is only the

lower fixed point (fixed point number 1), whereas in (B) there is only the upper one (fixed point number 3). In

between lies the bistable case that was shown in Fig 5.

https://doi.org/10.1371/journal.pone.0226453.g006
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stable expression levels. Another means of visualizing this is with an bifurcation diagram,

which we discuss in detail later.

Furthermore, we found that in the absence of xanthosine, i.e., setting [c]a = 0(not shown

here), there are roughly 2-3 copies of XapA and XapB, which agrees very well with measure-

ments, where around 2 copies per cell were found [27]. In addition, the parameter KχA (disso-

ciation constant of xanthosine from active XapR) can be tuned such that the extracellular

xanthosine concentration [c]a in the switching-regime is similar to that in the experiment. It

was found that the cell only adapts at very high xanthosine concentrations of almost a millimo-

lar [21] which is not completely unexpected when recalling that for lac, cells also limit them-

selves to glucose as long as possible. Interestingly, because there is no parameter other than

KχA that tunes the critical value of [c]a, this tells us that KχA is large as argued in the estimation

of KχA in S1 Text. Thus, we predict that the interaction between xanthosine and XapR should

be weak.

The roles of XapA and XapB. While it is clear that the bistability in the model system is

due to the feedback loop from XapA and XapB, it is not intuitively clear if both XapA and

XapB are necessary. The model implies that the bistability is due to XapB only. XapA is neither

sufficient nor necessary and, within the estimated parameter regime, does not even have a

significant influence on the system. This can be seen from the plots in Fig 7. Degradation of

xanthosine by XapA lowers the xanthosine and protein concentration at the upper fixed point

by a small amount and could, in principle, thereby make the high-expression solution vanish.

For our choice of all other parameters, bistability only vanishes for kα> 104 which is far from

what has been measured. However, a higher effective rate could, in principle, be achieved by

different translation rates of XapA and XapB (see simplifications of the model in S1 Text).

Hence, we cannot exclude the possibility that XapA becomes so strong that it makes bistability

impossible, but this is an extreme case. XapB, on the other hand, is essential; without it the sys-

tem only has the one fixed point at low expression.

For a cell, the minimal effect of XapA on bistability is a useful feature: by coupling XapA

and XapB on an operon, XapA is switched on and off together with XapB but it does not

Fig 7. Phase portraits without XapA or XapB. All parameters are as presented in Table 1. In (A), the XapA term was

removed from the kinetic equations. In (B), the equations lack the two terms from XapB. These plots clearly show that

XapA has almost no influence on the qualitative behavior of the system (i.e. bistability and the order of magnitudes),

but XapB is the essential feature for bistability.

https://doi.org/10.1371/journal.pone.0226453.g007
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significantly disturb this adaptation mechanism, while its kinetic parameters and expression

levels can be chosen somewhat freely as necessary for metabolism. By having a membrane

transporter gene on an operon whose expression is activated by the transporter substrate, the

expression of a whole set of enzymes can be turned on and off depending on the presence of

the substrate. It seems likely that this mechanism of short-term adaptation of a single cell to its

environment may be used by cells for many metabolic processes.

As a side note, Seeger et. al. [19] observed that ΔxapB mutants could survive, but grew

extremely slowly, with xanthosine as the only carbon source. This suggests that low-affinity

import of xanthosine by NupC and NupG is sufficient to sustain slow growth, but insufficient

to serve as a stand-in for XapB. Fig 7 supports this supposition: in our model, with xapB
removed, the switch never activates and the cells are forced to survive with an extremely mea-

ger quantity of XapA to metabolize the abundant xanthosine.

The role of cooperativity. The model has two (putatively) cooperatively interacting binding

sites for XapR on the xapAB promoter and two cooperative binding sites on XapR for xanthosine.

It is interesting to consider whether the cooperativity is a necessary feature for bistability. This

question is motivated by the importance of cooperativity in “typical” genetic switches [2, 29].

If, as a purely theoretical consideration, we remove either the second xanthosine binding

site on XapR or the second XapR binding site on the promoter, leaving cooperativity in only

one component of the system, we find that the system still has a bistable parameter regime.

However, this bistable parameter range is smaller than in the original model, which makes the

system less stable: small stochastic fluctuations in the parameter values can collapse the system

to monostability, possibly leaving it in the wrong state and without its ability to adapt. But only

when the second binding site is removed in both places, leaving no cooperativity in the system,

do we find that it is insufficiently non-linear to produce bistability. An example of the three

scenarios (only cooperative XapR, only cooperative promoter, no cooperativity) can be seen in

Fig 8. It follows that there need to be either two xanthosine binding sites on XapR or two XapR

binding sites on the promoter (or both) in order to obtain a switch-like behavior.

Fig 8. Phase portraits for less or no cooperativity. Most parameters are as presented in Table 1, changes are

mentioned below. Fixed points are marked in red. In (A), there is only one xanthosine binding site on XapR and

everything unchanged for the XapR-promoter binding. Two parameters are changed: ρ = 0.07 and [c]a = 6. This is

necessary to compensate for the weaker induction such that the system is bistable. In (B), there is only one XapR

binding site on the promoter and everything is unchanged for the xanthosine-XapR binding. Two parameters are

changed: ρ = 0.13 and [c]a = 3. In (C), there is only one xanthosine binding site on XapR and also only one XapR

binding site on the the promoter. Two parameters are changed: ρ = 0.1 and [XapR]R = 5. Whereas bistability is retained

in (A) and (B), it cannot be obtained anymore in (C).

https://doi.org/10.1371/journal.pone.0226453.g008
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One can also ask how much cooperative interaction is needed between the two binding

sites. For the promoter, the amount of cooperativity is given by ΔEcoop in our model, and we

find that setting ΔEcoop = 0 has almost no influence on the phase diagrams. For XapR, we can-

not test how much interaction is needed: the two binding sites interact indirectly, because the

active state is much likelier if two xanthosine molecules are bound, and thus there is no contin-

uous tuning parameter for the cooperative interaction like ΔEcoop in the case of the promoter.

Note that we are not writing Hill equations and measuring cooperativity in terms of the

Hill coefficient. If Hill equations were to be used for the modeling, the Hill coefficient could

have values between 1 and 2, which would yield bistability for large enough values, but not for

lower ones. This could be investigated more rigorously similar to the analysis of a simple

genetic switch in [29]. However, we refrain from looking for a minimal Hill coefficient in our

system, because we do not find this very insightful. Hill equations only describe some specific

limit cases of cooperative systems, but for example do not account for interaction energies and

assume the partially bound states (e.g. only one XapR bound to the promoter) to never be pop-

ulated. We suggest that cooperativity should be explored more in-depth and a more rigorous

analysis of the role of cooperativity in simple genetic switches should be done before returning

to more complex systems like this one.

Stochastic simulations

Stochastic simulations of the full 3-dimensional system of mRNA, protein, and xanthosine

were run for comparison with the deterministic results. In S1 Text, we present the underlying

chemical master equation of the system. Because of the two different fixed points at low and

high expression, the protein copy numbers in the problem vary from less than five to several

thousand. Even worse, xanthosine copy numbers may range as high as 107 at the high expres-

sion fixed point. For such large copy numbers, the number of reaction firings that must be

simulated with Gillespie’s classical algorithm [30] leads to an impractical computational cost.

This would make Gillespie’s τ-leap algorithm [31] ideal for the high expression state. On the

other hand, τ-leaping cannot be used for the small protein copy numbers in the low expression

state, or the mRNA copy number which remains of order ten or less in both states. For these

reasons, we chose to work with the algorithm described in [32], a hybrid form between Gilles-

pie’s classical and his τ-leap algorithm. We gratefully worked with the Python implementation

of this algorithm in StochPy, version 2.3 [33].

Note that we neglect stochastic fluctuations in any of our parameters, in particular in the

XapR copy number. The latter is on the order of 10, but because of the long life span and rare

expression of proteins like XapR, we expect the influence of the simplification on our results to

be rather small. Nevertheless, the overall stochastic fluctuations are expected to be larger in the

real system than in our simulations.

Bimodality and the extracellular xanthosine concentration. The stochastic approach

results in the same bimodal distributions that were already seen in the deterministic investiga-

tion and experimental studies. Fig 9 shows the distribution of protein expression found in the

simulations for different values of the extracellular xanthosine concentration. The parameters

that were used are the same as in the previous section (listed in Table 1). However, we also find

good agreement of the simulations and the deterministic results for other sets of parameters.

To obtain the distributions, we ran the simulation 5000 times for a simulated time of 106 s

each and started at an mRNA, protein and intracellular xanthosine count of 0.

The results agree very well with the deterministic fixed points and experiments: the mean

numbers of mRNA, protein, and xanthosine in the stochastic results are as predicted from the

phase portraits. It does, however, become clear that the phase portraits do not tell whether the
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Fig 9. Distributions from stochastic simulations and the corresponding deterministic phase portraits. Apart from

[c]a, the parameters are the same as in Table 1. The phase portraits were obtained from the deterministic system

similarly to those presented in the previous sections. For the distributions, the simulations were run 5000 times for 106

s each (simulated time) and started at a mRNA, protein and intracellular xanthosine count of 0. We show the two cases

of unimodality (low expression in (A) and high expression in (C)) as well as the case of bimodality in (B). The values of

[c]a are 12 in (A), 18.5 in (B), and 25 in (C) (recall that ½c�
a
≔ c

Ka
with Ka = 5 � 10−5 M, so [c]a is dimensionless). The

output from the stochastic simulations is in good agreement with the concentrations at the fixed points in the

deterministic phase portraits.

https://doi.org/10.1371/journal.pone.0226453.g009
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cells will actually populate both the high and the low expression state, because they do not

show the effective barrier height between the two states. In Fig 9(A), a deterministically bis-

table scenario is shown where the cells never switched to the high expression state during the

run time of our simulations. This result implies that bistability, characterized by two separate

stable steady-states, largely persists even in the presence of stochastic fluctuations, suggesting

that the deterministic picture is remarkably effective. In other words, the fact that bimodality

only occurs with some fine tuning of parameters means that the circuit is a strong switch and

the deterministic picture is sufficient except in a small region of parameter space. Whether or

not the system is actually in that region of parameter space remains a question for future

experiments.

To elaborate on the preceeding statements, we found that the two lower fixed points

(marked as 1 and 2 in Fig 5) need to be very close like in Fig 9(B) to give bimodality. For lower

[c]a, meaning larger difference between the concentrations at the first and second fixed point,

almost no switching was observed. Of course, switching is also a matter of the waiting time

and stochastic effects: if one waits for long enough, it should eventually occur. However,

switching times of more than several hours are not at the center of this investigation and

would mean that switching is extremely unlikely. There are two aspects that become relevant

in this context that we neglect in our analysis but briefly mention here: transcription and trans-

lation bursts lead to higher stochasticity and cell division leads to some discontinuity in the

process. The effect of bursts is addressed in S1 Text.

Note that while the deterministic analysis assumes the variables to be continuous, the simu-

lations work with discrete numbers of mRNA, protein, and xanthosine. This per se is no prob-

lem, because the deterministic analysis describes the mean values and the simulation fluctuates

around this mean. However, if the mRNA number of the third (high) fixed point is so low that

stochastic fluctuations are larger than the difference in concentrations between the first and

the second fixed point, the system may not be able to resolve the two points anymore. The tol-

erance to this is surprisingly large, though: In Fig 9, the distance between the first and the third

fixed point is around 3 mRNA molecules. While this is around the size of the fluctuations in

Fig 9, the latter become as large as 10 mRNA molecules when bursts are included in the simu-

lation (see S1 Text) and yet, the system is able to resolve the fixed points very well.

Time evolution and adaptation times. Fig 10A shows the time evolution of the protein

concentration for one typical run of the simulation. Again, the simulation was started with a

mRNA, protein and intracellular xanthosine count of 0 and was run for a simulated time of 5 �

105 s. In this specific example, the fixed point was reached after roughly 1.5 � 105 s (adaptation

time). This time varies: Fig 10B shows the distribution of adaptation times from 1000 runs of

the simulation. In both figures, the trajectory obtained from integrating the deterministic sys-

tem is shown for comparison. It clearly agrees well with the simulation on average.

Comparing this to experimentally expected timescales is difficult, because the adaptation

time strongly depends on the extracellular xanthosine concentration. Experiments were always

stopped after a few hours, and in this time, the cell population might not reach its steady-state

expression distribution. Hence, the distribution could be bimodal when the experiment is

stopped but become unimodal after further waiting. That way, extracellular xanthosine con-

centrations that are too high for deterministic bistability could lead to experimental bimodality

if the experiment is stopped too early. In this case, the observed timescales would be shorter,

which makes the comparison to our simulations even harder. Thus, we cannot say if it is prob-

lematic that the 105 s is larger than what was found in the experiment.

Nevertheless, we do warn the reader that the timescales in the simulations and even more

so in the deterministic system should be taken with reservation. Fluctuations in the parameters

are not considered here, and neither are cell divisions or the burstiness of transcription and
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translation. This means that stochasticity may be larger in the real system which should have

an influence on the timescales and may shorten the time until the fixed point is reached. How-

ever, including transcriptional bursts in the stochastic simulation changes little in the output:

the qualitative behavior remains the same but fluctuations around the mean as well as in the

adaptation time become larger and bimodality already occurs at lower [c]a (see S1 Text). Still,

the fact that there are no big changes shows that the system is stable to stochastic perturbations

and our particular assumptions should not be too significant.

Of course, the system moves to its mean steady-state much faster when the extracellular

xanthosine concentration is further away from the bimodal regime (in analogy to a “critical

point”). Note that it could well be that in reality, the extracellular xanthosine concentration is

high enough to be in the regime where there only is the upper fixed point and thus no bistabil-

ity or even bimodality. As the system reaches its mean steady-state faster in that regime, the

bacteria could adapt more quickly.

Bifurcation diagram and hysteresis. In Figs 9 and 10, the simulations were started at

initial intracellular concentrations of 0 to investigate what happens if xanthosine is suddenly

added to the cell’s environment. We can now ask the opposite question: what happens when

xanthosine is removed from the extracellular environment? To answer this, the simulation was

started with initially fully induced cells, i.e. at the mRNA, protein and intracellular xanthosine

counts of the high fixed point in the corresponding phase portrait.

The distributions we obtained can be found in S1 Text. Here, we instead present the results

in the form of a bifurcation diagram in Fig 11. In blue, the positions of the deterministic fixed

points for the corresponding extracellular xanthosine concentration are shown. As explained

before, there is only one fixed point for low and high values of [c]a, but in between, there are

three. In yellow and orange, the results from the stochastic simulation are shown, where the

mean of each distribution was taken. For the orange points, the simulation was started at [m]a

= [p]a = [x]a = 0, leading to the distributions in Fig 9. In contrast, the yellow points result from

Fig 10. Stochastic and deterministic time evolution of protein (XapA/XapB) and adaptation time. (A) Shown in blue is

the result from one typical run of the stochastic simulation, and in orange the trajectory obtained from solving the

deterministic ODE’s. In light blue, two more extreme runs of the simulation are shown for comparison. The simulation was

run for 5 � 105 s each and started at an mRNA, protein and intracellular xanthosine count of 0. The parameters that were used

are the same as in Table 1, the only exception being the extracellular xanthosine concentration, which was chosen to be [c]a =

25 (recall ½c�
a
≔ c

Ka
, Ka = 5 � 10−5 M) just as in Fig 9(C). (B) In blue we plot the waiting time distribution for 1000 runs of the

simulation (same conditions as (A)) to reach the steady-state mean. We define this time as the elapsed time when the protein

copy number first reaches 90% of its value at the upper fixed point. To better visualize the bulk of the distribution, we

excluded from the plot*10 runs with adaptation times larger than 6 � 105 s. The green dashed line indicates the mean of the

blue distribution. The orange line shows the corresponding deterministic time.

https://doi.org/10.1371/journal.pone.0226453.g010
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starting the simulation at the [m]a, [p]a, and [x]a values of the high fixed point. Note that by

taking the mean of each distribution, we hide the feature of bimodality. For that reason, we

additionally show the approximate position of the two peaks in the bimodal distribution. We

do this by estimating the position of the minimum between the two peaks of the distribution,

splitting it into two parts there, and calculating the mean of each of the parts. Also note that it

suffices to show the bifurcation diagram in one dimension (here protein concentration)

because this uniquely determines the fixed points (recall from Fig 5, the fixed points are unique

points in the 3D system).

The figure clearly shows the hysteresis in the system: there exist extracellular xanthosine

concentrations where initially uninduced cells remain uninduced and initially induced cells

remain induced. Only when the second and the third fixed point are very close can initially

induced cells “switch off” to the uninduced state. This behavior is symmetric to the “switching

on” in the previous paragraphs. The arrows in Fig 11 indicate the hysteresis loop.

In other words, cells only change their metabolism to xanthosine if enough of the latter is

around, but after they have switched, this metabolic state is stable even if the xanthosine con-

centration decreases to a certain extent. This stability explains what was observed by Novick

and Weiner [5] for the lac operon: when induced cells were transferred into lower concentra-

tions of lactose, they remained induced, even though uninduced cells could not become

induced at these concentrations.

In addition to the hysteresis, Fig 11 also illustrates the astonishingly good agreement of the

stochastic simulation and the deterministic results, despite having copy numbers below 10 in

some cases. Although one should be cautious about this because of higher stochasticity in the

real biological system (addressed above), the result does show that the switch-like feature in

the circuit is strong and stable.

Fig 11. Bifurcation diagram showing the hysteresis loop in the stochastic system. The blue line shows the positions of the

deterministic fixed points, while the dashed line indicates the instability of the middle one. The orange and yellow points

show the mean of the stochastic simulations when started at zero and at the high fixed point, respectively. The positions of

the two peaks in the bimodal distributions are indicated by smaller points, connected by dotted lines. To make this clearer,

the bimodal distributions themselves are shown on the right. The arrows illustrate the hysteresis loop in the stochastic

simulations.

https://doi.org/10.1371/journal.pone.0226453.g011
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Conclusion

Here, we propose a simple model for genetic circuits containing a membrane transporter

whose gene expression is, directly or indirectly, activated by its substrate. We have shown

that such a system can be bistable and thus work as a genetic switch which reacts to the

extracellular concentration of the relevant metabolite. This switch has very useful biological

features. First, coupling of the transporter with, for example, an enzyme which metabolizes

the transporter substrate creates a genetic switch that enables short-term adaptation of the

cell’s metabolism to its environment. Second, the switch is stabilized by hysteresis effects

when the extracellular substrate concentration decreases, which explains previous experi-

mental findings. Furthermore, our simulations show that the switch-like behavior is very

robust.

However, we have found that no bistability can emerge from the genetic circuit unless

at least one component has two binding sites for its activator. Additional binding sites or

cooperativity seem to increase the stability of the switch. In addition, simply knowing the

experimental switching concentration of xanthosine permits us, for example, to infer the

approximate value of the dissociation constant between the transcription factor XapR and

the inducer xanthosine. The value we infer is roughly one to two orders of magnitude larger

than what has been measured for LacI and IPTG [23], meaning the interaction of XapR and

xanthosine is rather weak.

Phase diagrams, showing for which parameters the system is bistable and for which there

is only the lower or the upper stable fixed point, could be calculated from arguments made

in [29]. However, the simulations showed that in the deterministically bistable regime,

which fixed point(s) the system occupies is dependent on initial conditions, which is why we

have refrained from showing such phase diagrams. Furthermore, the timescales in the prob-

lem could be investigated more thoroughly, for example the dependence of the switching

time on [c]a, but such an analysis should probably account for cell divisions and fluctuations

in the parameters, which is not straightforward. Lastly, it could be interesting to investigate

the magnitude of the fluctuations around the fixed point away from and near the bifurca-

tions in [c]a.

Despite the small copy numbers at the lower fixed point, the stochastic simulations are in

excellent agreement with deterministic predictions. All model parameters could be reasonably

estimated despite the paucity of experimental knowledge about the model system. The concen-

trations of mRNA, protein, and xanthosine at the fixed points as well as all qualitative features

are as expected from similar systems and the few experiments on the xap circuit. These points

suggest that the model captures the relevant components of the system correctly and is able to

describe its dynamics. The modeling results let us, to some extent, understand how the biologi-

cal system can achieve its function. By keeping the model as minimal as possible, but still

modeling every part explicitly with an appropriate complexity, we can investigate the interest-

ing features while still being able to understand the influence of all parameters and their inter-

play intuitively.

With the framework given in this text, it should be straightforward to model other pro-

moters, regulatory pathways or enzymes and thereby adapt the model to other genes and

metabolites. Examples include lac, ara, and xyl, but we suspect that many if not most meta-

bolic processes involve the adaptation mechanism that we have investigated here, and that

much can be understood about them through our model. This apparent success demon-

strates once more that even for broadly unknown systems, rigorous physical modeling can

potentially offer an efficient way to gain a very thorough understanding of the behavior of

the system.

PLOS ONE Theoretical investigation of a genetic switch for metabolic adaptation

PLOS ONE | https://doi.org/10.1371/journal.pone.0226453 May 7, 2020 20 / 23

https://doi.org/10.1371/journal.pone.0226453


Materials and methods

Bacterial strains

Strains used in this work derive from E. coli K12 MG1655 with the lac operon removed and

were constructed similarly to those used in [23, 34]. The ΔxapABR knockout was generated

using the approach of Datsenko and Wanner [35]. For the fluorescent reporter constructs the

xapAB promoter region, with one or both XapR binding sites, were extracted from E. coli K12

MG1655 by PCR. These were cloned into the YFP-expressing reporter plasmid pZS25 [36],

containing kanamycin resistance, and integrated at the galK locus using λ Red recombineering

[37]. A xapR-mCherry fusion was constructed in a pZS31 plasmid and was integrated into the

ybcN locus, also using λ Red recombineering. Expression of the xapR-mCherry fusion was reg-

ulated by TetR expressed extrachromosomally from a pZS3-PN25 plasmid. Expression of the

xapR-mCherry fusion was induced by the addition of 10 ng/mL anhydro-tetracycline. A simi-

lar expression system was used in [38] More details can be found in S1 Text.

Flow cytometry measurements

Experimental measurements in Fig 2 were obtained via flow cytometry and were performed in

a similar manner as described in [23]. Briefly, wild-type, ΔxapABR, and ΔxapAB were grown

to saturation in rich LB Miller (BD Medical) medium and were diluted 1:1000 into M9 mini-

mal medium supplemented with 0.5% (w/v) glucose and the appropriate concentration of

xanthosine. Cultures were allowed to grow at 37˚C for six to eight hours to an OD600 nm of�

0.3. At this point, the cultures were diluted 1:10 into M9 + 0.5% glucose and were immediately

analyzed via a MacsQuant VYB Flow Cytometery (MiltenyiBiotec). Measurement files were

exported to CSV file formats and analyzed as previously described in [23].

Supporting information

S1 Text. The aforementioned further information. Discussion of simplifications in the

model, parameter estimation, elaborations on the results, and the chemical master equation of

this circuit. Experimental materials and methods.

(PDF)
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