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Simple Summary: The role and function of bacteriophages (phages) in the intestine, its health and
microbial homeostasis has been underestimated so far. This interdisciplinary review highlights the
effect of dietary compounds on phages and puts this into perspective with putative contributions of
phages to gastrointestinal diseases, specifically inflammation, infection, and cancer. The review dis-
cusses novel fields of opportunities in this context. These include, but are not limited to, perspectives
how a better understanding of modulating the activity of specific phages by particular nutritional
components may contribute to reorganizing the microbial network, thus supporting in the combat,
or even prevention, of inflammation or even cancer in the gut.

Abstract: Natural compounds such as essential oils and tea have been used successfully in natur-
opathy and folk medicine for hundreds of years. Current research is unveiling the molecular role
of their antibacterial, anti-inflammatory, and anticancer properties. Nevertheless, the effect of these
compounds on bacteriophages is still poorly understood. The application of bacteriophages against
bacteria has gained a particular interest in recent years due to, e.g., the constant rise of antimicrobial
resistance to antibiotics, or an increasing awareness of different types of microbiota and their potential
contribution to gastrointestinal diseases, including inflammatory and malignant conditions. Thus,
a better knowledge of how dietary products can affect bacteriophages and, in turn, the whole gut
microbiome can help maintain healthy homeostasis, reducing the risk of developing diseases such
as diverse types of gastroenteritis, inflammatory bowel disease, or even cancer. The present review
summarizes the effect of dietary compounds on the physiology of bacteriophages. In a majority of
works, the substance class of polyphenols showed a particular activity against bacteriophages, and
the primary mechanism of action involved structural damage of the capsid, inhibiting bacteriophage
activity and infectivity. Some further dietary compounds such as caffeine, salt or oregano have
been shown to induce or suppress prophages, whereas others, such as the natural sweeter stevia,
promoted species-specific phage responses. A better understanding of how dietary compounds
could selectively, and specifically, modulate the activity of individual phages opens the possibility to
reorganize the microbial network as an additional strategy to support in the combat, or in prevention,
of gastrointestinal diseases, including inflammation and cancer.

Keywords: Phage; bacteriophages; diet; infection; colorectal; cancer; nutrition

1. Introduction

The impact of the gut bacteriome on the human physiology is currently being in-
vestigated and seems to have a significant influence on the development and treatment
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of various diseases. Collectively, the over one thousand bacterial species residing in the
human gut encode 3.3 million genes, expanding the human genome 150 times over [1].
Several studies have demonstrated that microorganisms present in the human gut (the
gut microbiome) modulate human physiology at different levels. Intestinal bacteria not
only metabolize polysaccharides that would be otherwise indigestible [2], but also regulate
peristalsis [3], help to keep a proper intestinal morphology as it has been shown in a
gnotobiotic pig model [4], maintain the integrity of the intestinal barrier [5–7], attenuate
inflammation [8,9], reduce the virulence of pathogenic species [10], and even influence the
action of anticancer drugs [11]. Although it has been proposed to consider the intestinal
microorganisms as symbionts rather than simple commensal species [12], our understand-
ing of the dynamics underlying the interactions between host and gut microbiome is still
limited [13,14].

Bacteriophages (or phages for short) represent a significant modulator of the gut
microbiome [15]. By definition, phages infect bacteria, but more and more data highlight
the interrelation between eukaryotic cells and bacterial viruses. Phages can interact directly
with the human body since they can translocate inside eukaryotic cells [16] and activate
the immune system, exacerbating ongoing colitis symptoms and boosting the antibacterial
response [17]. It has recently been proposed to consider phages as human pathogens [18].

In the last few years, phages have become a crucial topic in the medical and microbi-
ological fields because these viruses can be used as a treatment of bacterial infections in
the context of the rising problem of antibiotic resistance [19–21]. As our understanding
of phage biology increases, the applications of phage therapy also expand. Phages have
been applied to treat bacterial infections ever since their discovery, and phage therapy
is becoming more and more popular in fields ranging from dentistry to medical micro-
biology [22–25]. For example, phages are currently being evaluated to fight infections
in poultry that are still an economic and health issue [24]. Recent studies suggest that
phages can also be applied in antiviral and anticancer therapies. For instance, it has been
proposed that phage T4 might be used as a co-treatment for COVID-19 because this phage
reduces the immune response, which is an important contributor to the fatality associated
with this disease [26]. Furthermore, it has been shown that phages bind to cancerous cells
and reduce the size of the tumor mass in different mouse models [17,27,28], opening the
possibility of phage-mediated oncolytic virotherapy.

Diet can influence the gut microbiome, and it is actively used as an intervention to
reduce the risk of developing diseases [29]. Particular components have been shown to
be of benefit in the treatment of even severe disease conditions up to cancer. For example,
in own previous studies, it was demonstrated that the plant-derivatives curcumin and
artesunate inhibit tumor cell invasion and metastasis, at least in part via regulating the
expression of proteolytic enzymes, the molecular cascades involving transcriptional factors
and microRNAs, respectively [30–33]. However, there is a lack of studies describing how
dietary compounds impact microorganisms in general and phages in particular. Seminal
studies in the 1950 s demonstrated the antiviral activity of tannins, which are contained in
popular beverages such as tea and coffee, and of acerin, the active component of maple
fruit [34,35]. Especially, tea showed broad antimicrobial activity, including inactivation of
phages [36]. It is also known that essential oils have antibacterial and antiviral properties
as well as anti-inflammatory and regenerative activities [37]. Nevertheless, gaining exper-
imental knowledge on the influence of dietary compounds on phages as modulators of
microbiota has not yet been in focus of attention in the research community.

Most of the studies related to the effect of dietary compounds on phages have been
focusing on human viruses associated with gastroenteritis. Phages have been used as
surrogates for viruses that cannot be easily cultivated, such as norovirus, rather than for
studying bacterial virus biology as such. Also, most of the bacteriophage studies so far
have been limited to phages infecting Escherichia coli (coliphages). Nonetheless, E. coli
plays an essential role in human health since certain strains of this species, known as
Shiga toxin-producing E. coli (STEC), are widespread food-borne pathogens. The most
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prevalent STECs are O157, O26, O45, O103, O111, O121, and O145. These seven serotypes
induce diseases ranging from acute diarrhea to hemorrhagic colitis and fatal hemolytic
syndrome [38–40].

The main STEC derived virulence factor is shiga-like toxin (Stx), which is encoded
by the prophages 933 J (Stx1) and 933 W (Stx2) [41,42]. Upon activation, these prophages
express Stx, and they can horizontally spread this gene by transduction [43,44]. Genotoxins,
such as cytolethal distending toxins and colibactin, are considered cancer risk factors and
can be found in pathogenic E. coli strains [45]. Interestingly, many natural compounds have
been shown to be bactericidal against pathogens [46], and to suppress the biological activity
of toxins, including the cholera and ricin toxins [46–49]. Peas showed to bind with high
efficiency Stx, acting as toxic-scavengers, whereas beans can reduce the intake of Stx [50].

We speculate that a better understanding of how phages are activated or inhibited in
the human gut might be pivotal in modulating the intestinal microbiome, e.g., to coun-
teract bacterial infections, inflammatory conditions, and even carcinogenesis and cancer
progression. Such indirect antibacterial activity is a particularly relevant feature in light of
the urgent need to identify alternatives and additional strategies to antibiotics to defeat
(therapy-resistant) bacterial infections. The present review will summarize the current
knowledge on the effect of dietary compounds on phages, their activity, and infectivity.

2. Interactions between Phages and Bacteria in the Gut Microbiome

Phages were first described by the French-Canadian Félix d’Hérelle, of Institute
Pasteur in 1917, who also defined the term ‘bacteriophage’ (“eater of bacteria”). As a
first, pioneering phage-based therapy, he applied bacteriophages to treat Shigella infections
in soldiers, establishing what became known as phage therapy [51–53]. Phages can be
subdivided into two groups: virulent (lytic) and temperate (lysogenic) (Figure 1) [54]. Lytic
viruses start the replication process soon after the infection of the bacterial host. Once
the progeny virions have assembled in a sufficient number (the burst size), the cell bursts
open, releasing the new phages in the surrounding environment. Lysogenic phages have
an additional phase: they can integrate as prophages in the bacterial chromosome and
undergo a latency period where only a viral transcription suppressor is produced actively.
In particular contexts, such as bacterial starvation or DNA damage, the suppression control
is relieved, and the prophage enters the lytic phase. Conversely, in the presence of a high
number of infected bacteria, phages exit the lytic phase and initiate lysogeny [55]. Both
virulent and temperate phages modulate the bacterial population through lysis.

Phages can also modulate the bacterial population, indirectly. It is well known that
bacteria must undergo a fierce competition within each ecological niche, and, therefore,
some species have developed virulence factors to improve their chances of survival [56].
Moreover, the microbial competition is complex and difficult to predict. For instance,
Lactobacillus delbrueckii and L. rhamnosus inhibit E. coli O157, but L. plantarum suppresses
the commensal strains of E. coli but not O157, and L. paracasei does not constrain E. coli at
all [57]. In addition, the suppression of one species might cause the unexpected expansion
of a species not apparently associated with the suppressed one. For instance, E. coli fosters
the growth of B. fragilis but represses B. vulgatus. Knocking down E. coli by phage T4 is,
therefore, followed by a contraction of the prevalence of B. fragilis and an increased growth
of B. vulgatus, but also of Proteus mirabilis and Akkermansia muciniphila [58]. It is also known
that commensal species can neutralize toxins, reducing the fitness of the pathogens. For
instance, surface proteins of L. plantarum can neutralize Stx, reducing the cytotoxicity (and,
thus, the fitness) of E. coli O157 [59]. Therefore, the alteration of even one species due to
phagial predation can have drastic consequences for the microbiome.

Mounting evidence suggests that phages have access to eukaryotic (and human)
cells [60]. Even though tissues are expected to be sterile, it has been known for decades
that an ingestion of phage preparations during phage therapy is followed by a recovery of
phages in human urine and blood within a few minutes from the administration [61,62].
This recovery implies that the viruses had somehow crossed the gastrointestinal bar-
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rier. Recent virome studies have identified genes belonging to phages in both blood and
brain [63,64]. The circulation of phages in the peripheral blood has been named ‘phagemia’,
but there is a lack of hard evidence for its actual existence in physiological conditions [65].
Furthermore, phages can be actively transported from one side to another of intestinal cells
(transcytosis) via the Golgi network [16].
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3. Effect of Dietary Compounds on Phages

Several dietary compounds can alter the physiology of phages, as summarized in
Figure 2. Although many studies showed a connection between nutrition and intestinal
microbiome, there are only a few studies that deal with the effects of nutrition on the
activity of phages. Seminal work in the 1960 s indicated that amino acids and vitamins
had a different impact on the induction of prophage λ in E. coli [66]. For instance, the
amino acid cysteine was an inducer, but its oxidized derivative cystine was not. About
four decades later, it was shown that essential oils extracted from chamomile, lemongrass,
cinnamon, and geranium could greatly reduce the infectivity of E. coli T7 and S. aureus SA,
whereas others (such as angelica, cardamom, lime, and rosemary) affected only the former
phage [67]. A recent study reported how different compounds could selectively activate
some viruses but not others in bacterial growth and prophage-induction assays [68]. This
study demonstrated how stevia, a natural sweetener obtained from the Brazilian shrub
Stevia rebaudiana [69], could strongly induce prophages present in Bacteroides thetaiotamicron
and Staphylococcus aureus but not in Enterococcus faecalis, whereas uva ursi (derived from
the shrub plant Arctostaphylos uva-ursi), aspartame (a peptide), and propolis (a flavonoid)
resulted in the opposite. These data indicate that dietary compounds can modulate the gut
virome and, consequently, alter the gut bacteriome.
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Figure 2. Summary of actions on phages on dietary compounds. There are three main mechanisms of action of dietary
compounds upon phages. A dietary compound can modify the capsid, blocking the infectivity of the targeted phage (capsid
alteration). Alternatively, dietary compounds can lead to the degradation of nucleic acids (genome damage). In this case, a
phage can infect the host, but there will be neither lysis nor viral progeny. However, DNA damage to the host cell’s genome
triggers the induction of prophages (dotted arrows). A final mechanism of action (repression of replication) involves an
interference with the replication of the viral genome. Even in this case, there is infection, but no viral progeny is produced.

Experiments measuring the effect of dietary compounds on phage activity have been
based on few classes of compounds, mainly polyphenols. These are molecules that contain
one or more phenolic aromatic rings (benzenes with hydroxide moieties). Polyphenols
can be subdivided into phenolic acid derivatives and flavonoids [70]. The former can, in
turn, be subdivided into derivatives of either hydroxybenzoic acid (for instance, gallic
acid) or cinnamic acid (for example, caffeic acid) [71]. Tea, the second most frequently
consumed beverage after water, is a primary source for gallic acid [72]. Coffee, whose
consumption is increasing worldwide [73], contains chlorogenic acid (a combination of
caffeic acid and quinic acid) [71]. Tannic acid, which contains several hydroxybenzoic acid
moieties, is particularly abundant in berries; soy is rich in isoflavonoids, such as genistein
and daidzein [74]. The exact mechanism of action of these phenol-compounds is not
entirely understood. Still, it is known that they can be beneficial for human physiology and
have been used in folk medicine since millennia [75]. They are currently being investigated
for their anticancer activity [76–78].

The chemical structure of the compounds discussed herein is shown in Figures 3–5.
A summary of the activities identified is given in Table 1. The most common outcome
of exposure to a given nutrient is a loss of infectivity; this is measured by comparing the
plaque-forming units (PFU) of a control and an exposed suspension (measured in mL) of
phages. If the control and the exposed suspensions showed, for instance, 1010 and 109

PFU/mL, then the reduction is said to be one log10. Herein, we will report the results using
this notation.
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Table 1. Effect of the dietary compounds reported in the present review, stratified by chemical class and viral target. The
principle of action is also reported, as far as known so far.

Nutrient Class Virus Effect Mechanism References

Caffeic acid
(or carbonyls)

Phenolic acids
(or hydrocarbons) λ Prophage induction Stress response to DNA

damage [79]

Av-5, MS2 Infectivity reduction Inhibition of replication [80]
Gallic acid, chlorogenic

acid Phenolic acids Av-5, MS2 Infectivity reduction Inhibition of replication [80]

Gallic acid Phenolic acids PL-1 Infectivity reduction Interference to infection [81]
MS2 No effect Unreported [82]

Carvacrol, thymol Phenolic acids 933 W Prophage suppression Unreported [83]

Tea extracts Phenolic acids or
flavonoids Felix 01 and P22 Infectivity reduction Unreported [84]

Pomegranate juice
(punicalagin)

Phenolic acids or
flavonoids MS2 Infectivity reduction Interference to infection

(Capsid denaturation?) [85]

Catechins Flavonoids T4 Infectivity reduction Unreported [86]
EGCG Flavonoids 933 J Prophage suppression Repression of recA [87]
GCG Flavonoids 933 W Prophage induction Stress response to ROS [88]

Genistein, daidzein Flavonoids ϕX174 Genome protection Scavenging [89]
Proanthocyanidin Flavonoids MS2,ϕX174 Infectivity reduction Capsid denaturation [90,91]

PJE Flavonoids MS2 Infectivity reduction Capsid denaturation [92]

GSE Flavonoids MS2 Infectivity reduction Interference to infection
(Capsid denaturation?) [93]

933 W Prophage suppression Unreported [94]
Cranberry juice Flavonoids T2, T4 Infectivity reduction Capsid denaturation [95]

Propolis Flavonoids Unreported Prophage induction or
suppression Unreported [68]

Red propolis
(formononetin) Flavonoids MS2, Av-08 Infectivity reduction Interference to infection

(Capsid denaturation?) [96]

Cinnamaldehyde
(cinnamon) Essential oil (aldehydes) 933 W Prophage suppression Repression of recA [94,97]

Oregano Essential oil Unreported Prophage suppression Unreported [68]
Chamomile,

lemongrass, cinnamon Essential oils T7, SA Infectivity reduction Unreported [67]

Chitosan Polysaccharide MS2,ϕX174 Infectivity reduction Capsid denaturation [98]
1–97 A Infectivity reduction Capsid denaturation [99]

c2 Infectivity reduction Capsid denaturation [100]
933 W Infectivity reduction Unreported [101]

Ascorbic acid Vitamin δA,ϕX174, T7, P22,
D29, PM2, MS2 Infectivity reduction Genome damage [88,102–106]

Psoralen Furocoumarins MS2 Infectivity reduction Unreported [107]

Caffeine Alkaloids ϕX174 Prophage induction Stress response to DNA
damage [108]

Sodium chloride Salt 933 W Prophage induction Unreported [109]

3.1. Phenolic Acids

Roasted coffee, but not freshly brewed coffee, has been shown to induce the prophage
λ in E. coli [79]. However, the λ progeny suffered from aberrant replication, and most of
the resulting virions were not infective [110]. Therefore, one hypothesis to explain this is
that the compounds produced during the roasting process of coffee beans, such as aliphatic
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carbonyls or volatile substances [73], can cause DNA damage that, in turn, initiates a stress
response and the consequent induction of λ prophages. The DNA damage also would
explain why the viral progeny, whose genome is a linear double-stranded DNA (dsDNA)
molecule, displays a reduced level of infectivity.

Potatoes are commonly used as food worldwide, particularly in the Western diet [111,112].
Potato peel extracts (PPE) contain a mixture of polyphenols (e.g., gallic acid, chlorogenic
acid, caffeic acid, and ferulic acid) and flavonoids (such as quercetin and rutin). Exposure of
the E. coli O157 phages MS2 and Av-05 to 5 mg/mL of PPE for three hours in vitro resulted
in a 2.8 and 3.9 log10 reduction, respectively [113]. Hence, Av-05 was more susceptible than
MS2 to PPE exposure. The inhibitory mechanism was probably due to interference with the
replication stage. Also, tomatoes contain different polyphenols, mainly in leaves and stems.
Although the exact composition of these polyphenols varies, gallic acid and chlorogenic
acid belong to the most prevalent. Exposure to 5 mg/mL of tomato leaf extract (TLE) for 12
h reduced the infectivity of both MS2 and Av-05; the magnitude of the reduction depended
on the tomato subspecies: the Pitenza cultivar reduced the infectivity of MS2 and Av-05 by
3.8 and 5 log10, respectively, compared to 0.57 and 1.6 log10 obtained with the Floradade
cultivar [80]. Even in this case, the inhibitory mechanism was supposed to be linked to
viral replication.

Caffeic acid could also inhibit the cytotoxicity of Stx in a Vero-d2EGFP cell-based assay,
in a process independent from the alteration of the induction of 933J and 933W [114]. Gallic
and caffeic acids at low concentration (around 10–6 mg/mL) and tannins (0.5 mg/mL)
reduced the infectivity of PL-1 (infecting L. casei) by 80–90% [81]. Others reported that both
tannic (0.01–0.1 mg/mL) and gallic (0.1–0.4 mg/mL) acids had negligible action upon the
infectivity of MS2, with a reduction that reached a maximum of 0.06 log10 [82].

Zataria multiflora is an aromatic plant native from Iran and Afghanistan that is rich
in the monoterpenoids carvacrol (or cymophenol) and thymol [115]. A 0.03% v/v of
Z. multiflora extracts were bacteriostatic for E. coli O157, but sub-inhibitory concentrations
reduced the induction of 933 W, measured by quantifying the expression of Stx2 [83].
Several other compounds, including several derivatives of gallic acid, showed antiviral
activity in vitro measured with the MTT method and estimated by the inhibition of viral
cytopathic effects [116].

3.2. Flavonoids

Flavonoids also belong to the class of polyphenols. In natural sources, they are usually
mixed with other phenolic acids; thus, it is difficult to separate the former’s activity from
that of the latter. Nevertheless, the active compound of cranberry juice is believed to be
proanthocyanidin, a flavonoid [90]. In contrast, the active compounds of pomegranate juice
extracts (PJE) were identified in punicalagin, a phenolic acid with antioxidant properties
that could also inhibit the influenza virus [117,118]. Flavonoids are classified as antioxidants
because they can react with, and remove from the cellular environment, the highly reactive
superoxide anions (O2

−) in a process known as scavenging [119]. Flavonoids include two
products, catechin and genistein, with peculiar characteristics. Catechin is the basic block
of tannins, found in fruit, tea, and wine; genistein is present in many medicinal plants.

Tea extracts were able to inactivate the Salmonella phages Felix 01 and P22, without
affecting the growth of the bacterial host [84]. Exposure to 35 mg/mL of catechin for
24 h reduced the infectivity of the coliphage T4 by over two log10 in vitro, whereas the
host did not show any reduction in population [86]. In addition, derivatives of catechins
extracted from green tea could inhibit prophage induction. Epigallocatechin-3-gallate
(EGCG) decreased the expression of Stx1 but increased that of Stx2 in E. coli O157 [87].
Since the expression of these two toxins is associated with the induction of 933 W in a
germ-free mouse model [120], it needs to be assumed that, in this situation, EGCG is able
to act as a virus inhibitor. The mechanism of action of EGCG involves the repression of the
bacterial gene recA [87], an effector of the stress response that is central in the induction
of 933 J, whereas the induction of 933 W relies on additional pathways not related to the
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expression of recA. This difference explains why only Stx1 was reduced upon exposure
to EGCG. This nutrient is believed to cause membrane damage that affects the growth of
E. coli O157 and triggers stress response [87]. Other studies suggested that Stx1 was still
produced upon stimulation with EGCG and gallocatechin gallate (GCG), but the toxin’s
extracellular release from E. coli O157 cultured at 37 ◦C for 24 h was hampered, probably
due to both the galloyl and the hydroxyl moieties of these compounds [121].

Tannic acid is known to have antioxidant properties, since it can bind and remove sin-
glet oxygen (1O2) from the cellular environment [122]. A 0.3% w/v solution of persimmon,
a tannin, could induce a 3.13 log10 reduction in the infectivity of MS2. Electron microscopy
confirmed that such exposure caused capsid denaturation [123].

Genistein and daidzein extracted from soybeans could protect the genome of phage
ϕX174 from degradation induced by nitric oxide (NO) or peroxynitrite (ONOO–). Genistein
was more effective than daidzein since a 25 µM solution of these dietary compounds
protected about 75% and 45% of the viral ϕX174 DNA molecule confirmed by agarose gel
electrophoresis, respectively [89]. This protection might be due to the scavenging properties
of the flavonoids [124]. Genistein was also used to protect modified phages containing
thymidine kinase derived from Herpes simplex virus during the delivery of this cytotoxin
enzyme to tumor cells, thus increasing the targeted elimination of cancer cells [125].

Cranberries are fruits imported from North America and traditionally used by na-
tive Americans to treat bacterial infections. Investigations showed that cranberry juice
could drastically reduce the growth of E. coli O157 in vitro [126]. Exposure for one hour to
cranberry juice reduced the infectivity of the coliphages MS2 and ϕX174 by 1.67 and 1.22
log10, respectively, compared to the 0.05 and 0.29 log10 obtained by orange juice, 0.97 and
1.01 log10 obtained by grape juice, and 1.00 and 2.63 log10 obtained by purified proantho-
cyanidin [90,91]. Experiments with the coliphages T2 and T4 confirmed a complete and
immediate loss of infectivity for these viruses when exposed to cranberry juice purchased
from food shops [90,95]. Proanthocyanidin is also contained in blueberries; accordingly, ex-
posure of MS2 to blueberry juice for 21 days induced a 6.32 log10 reduction in its infectivity
when compared to incubation in phosphate buffered saline (PBS) [127].

In some studies, pomegranate and grape seed juices, which are rich in both flavonoids
and phenolic acids, showed an antiviral activity. PJE at a 4 mg/mL concentration displayed
a 0.12–0.32 log10 reduction upon MS2 infectivity in vitro [85,92]. This was in the same order
of magnitude of other experiments carried out with pomegranate juice applied for 21 days,
which showed a 0.14 log10 reduction in MS2 infectivity. Moreover, pomegranate juice
diluted in PBS increased the inactivation to 1.84 log10 [127]. MS2 incubated in 1 mg/mL
of grape seed extract (GSE) for two hours showed a 1.66 log10 reduction evaluated by
plaque assay [93]. GSE also inhibited the growth of non-O157 E. coli serotypes, and GSE at
a concentration of 4 mg/mL reduced the production of Stx2 [83,94,128]. By comparison,
pomegranate, grape, and orange juices showed lower, albeit still significant, reduction
in phage infectivity in vitro [85,127]. In addition, grape seeds, which contain epicatechin,
gallocatechin, GCG, and EGCG, could inactivate the cytotoxicity of Stx [114].

Su and colleagues suggested that cranberry juice in general, and proanthocyanidin in
particular, inhibits the attachment phase of infecting phages in vitro, possibly via alterating
the capsid [91]. This suggestion has been confirmed by electron microscopy analysis, which
revealed that T4 treated with cranberry juice did not attach to their host [95]. Moreover, the
feline calicivirus 9 showed structural modification of the capsid upon exposure to cranberry
juice [91]. Likewise, apple juice, which is rich in procyanidins, increased the resistance of
Vero cells against Stx [129].

Propolis (“bee glue”, a mixture of the saliva of honey bees with beeswax and plant
exudates) contains flavonoids [130]. As mentioned above, it has been shown to specifically
induce prophages in E. faecalis but not B. thetaiotamicron and S. aureus [68]. Brazil is the
major producer of propolis and this natural substance can be classified according to its color.
Green propolis induced a 3.0 log10 reduction in the infectivity of MS2 and 3.5 log10 in Av-08;
red propolis was even more effective in reducing PFU, with a 4.2 and 4.0 log10 reduction
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for MS2 and Av-08 [96]. The main active molecule of red propolis is formononetin and the
suggested mechanism of inhibition was alteration of the structure of the capsid [131].

3.3. Saccharides

Chitosan is a family of polysaccharides present in the exoskeleton of crustaceans
and insects as well as in the cell wall of fungi. The members of this family are classified
according to their molecular weight [132]. A 0.7% w/v solution of chitosan applied for three
hours could decrease the infectivity of MS2 by up to 2.80 log10 (when using a molecule
with a molecular mass of 53 kDa) and 5.16 log10 (when using 222 kDa). By increasing
the concentration to 1%, only the 222 kDa form could completely inhibit MS2 [98,133,134].
Higher concentrations of both forms (1.5% w/v) were needed to achieve the inactivation of
ϕX174, albeit the magnitude was much smaller than that of MS2 (0.94 log10). Chitosan was
also active against Bacillus thuringiensis phage 1–97 A [99] and Lactococcus lactis phage c2
in vitro [100]. Furthermore, in vivo experiments with mice showed that chitosan was able
to reduce Stx expression and the diffusion of induced 933 W progeny into the tissues, and
to improve the lifespan of mice infected with enterohemorrhagic E. coli [101]. The mecha-
nism of action was hypothesized to be a structural modification of the capsid [134–136].
Moreover, mutagenic effects of a sucrose-rich diet were reported by Dragsted et al. when
investigating the colon of Big Blue rats, a specific strain of Fischer rats that carries 40 copies
of the lambda phage on chromosome 4. In this study, a sucrose-rich diet resulted in an
increase of mutational frequency in the DNA of these colons [137]. Lysozyme, which is
widely distributed among prokaryotes and eukaryotes, is expressed by the R gene of phage
lambda. Accordingly, the latter is called bacteriophage lambda lysozyme (LaL), and it has
been shown to have bacteriolytic capabilities [138]. In contrast to other lysozymes, however,
LaL differs regarding the cleavage of the glycosidic bond between N-acetylmuramic acid
and N-acetylglucosamine of bacterial peptidoglycan. Duewel and colleagues showed that
high concentrations of β(1→4) N-acetyl-D-glucosamine oligomers inhibit LaL but are not
cleaved by the enzyme [138]. A similar observation of degrading peptidoglycans into
fragments has also been reported for lysates of phage Vi II [139].

3.4. Essential Oils and Vitamins

Several essential oils show antibacterial and antioxidant activity, together with an-
tiviral function [140]. For instance, oregano, thyme, cinnamon, and allspice (a berry from
Pimenta dioica used commonly in the food industry) extracts, amongst others, can reduce
the growth of E. coli O157 [141,142]. A 4% v/v solution of cinnamon oil, whose main com-
ponent is cinnamaldehyde, inhibited the growth of E. coli O157 in vitro, but sub-inhibitory
doses reduced the expression of Stx2 and the release of viral progeny [72,94]. As in the case
of EGCG, the interference over phage induction was accompanied by down-regulation of
the effector of the stress pathway recA, but also of the quorum sensing (QS) (qseB, qseC, and
luxS) and oxydative stress (oxyR, soxR, and rpoS) pathways, as well as the polynucleotide
phosphorylase PAP I [94], which is also an inducer of 933 W [143]. These results suggest
that cinnamon oil could interfere with 933 W induction as several overlapping levels.
Furthermore, cinnamon oil disrupted E. coli O156 and Pseudomonas aeruginosa biofilms by
interfering with the formation of the fimbriae, which are required to make inter-bacterial
connections [72,94]. Oregano had a general suppressive action upon prophages, but the
effect was stronger in S. aureus than in E. faecalis or B. thetaiotamicron [68]. Eugenol, which
is rich in allspice and clove, reduced the induction of both Stx1 and Stx2, and inhibit the
growth of E. coli O157 in vitro [144].

After a lag phase of few minutes, ascorbic acid (also known as vitamin C), reduced
the infectivity of several phages: δA and ϕX174 (with a genome of ssDNA); T7, P22, D29,
and PM2 (dsDNA); and MS2 (ssRNA) in vitro [88,102–106]. Supplementation of ascorbic
acid with oxidants such as oxygen and hydrogen peroxide enhanced this effect, whereas
antioxidants (for instance thiol compounds), nitrogen gas bubbling, or chelating agents
suppressed it [102]. It was postulated that the autoxidation of ascorbic acid produced
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hydrogen peroxide that damaged the genome of the phages, even though Murata and
colleagues found that hydrogen peroxide produced by autoxidation of ascorbic acid did
not exert effects on activity of phage δA, in contrast to free radical intermediates [145].
Thus, the scavenging activity provided by thiols and chelating agents was hypothesized
to reduce the damage on the viral genome, and the initial delay in the activity of ascorbic
acid was interpreted as the time required to internalize this hydrogen peroxide inside
the capsid [102]. Subsequent in vitro studies confirmed this hypothesis and showed that
ascorbic acid caused the accumulation of nicks in both DNA and RNA genomes, with
double-stranded genomes being less affected than single-stranded ones [88,103]. In these
studies, the overlap of the nicks determined the formation of double strands breaks, which
in fact sometimes appeared after the nicks as a result of the stochastic overlapping of
the single-stranded lesions. Furthermore, these damages could be restored by the host’s
cellular DNA repair system [88].

The oxidized form of vitamin C, dehydroascorbic acid, showed only very limited
effects on phage activity and the amount of strand cleavages in ssDNA from phage δA
was proportional to ascorbic acid concentration and incubation time. It was significantly
increased by Cu2+ or hydrogen peroxide [102,146]. These DNA-damaging properties of the
strong reducing combination of ascorbic acid with metal ions (especially Cu2+) [103] can
have an impact on the phage population in the intestinal microbiome, but could also have
implications in other fields such as the application of high-dose ascorbate in tumor patients.
Towards this end, tumor entities like non-small-cell lung cancer and glioblastoma seem to
be vulnerable towards the disruption of their intracellular iron metabolism and oxidative
damage caused by the formation of hydrogen peroxide and hydroxyl radicals [147].

3.5. Other Compounds

There are very few studies investigating the impact on phages of molecules other than
those listed so far. Pioneering work in the late 1950 s demonstrated how hydroquinone and
pyrogallol (both derivatives of phenol but not polyphenols) reduced the infectivity of T
coliphages [148]. Psoralens belong to the family of furocoumarins, photoactive polyphenols
that can induce DNA damage. They are particularly abundant in the peel of limes [149].
Accordingly, a six-hour exposure with lime juice in vitro reduced the infectivity of MS2 by
1.3 log10 even in the absence of photoactivation [107].

Coffee contains not only caffeic acid but also caffeine, an alkaloid; coffee is a beverage
on its own and the base for a plethora of soft-drinks [150]. High consumption of coffee and
its derivatives has been suggested to confer an increased risk of colorectal cancer, due to
its antimicrobial activity that disrupts the intestinal homeostasis [151]. Caffeine is able to
induce E. coli phage ϕX174 in mitomycin treated E. coli cells [108]. Since caffeine is known
to distort DNA and cause mutations [152], its activity is supposedly similar to caffeic acid
in terms of inducing a stress signal that starts the lytic process.

Finally, even common salt used for meat preservation has been reported to exert effects
on phage biology. Towards this end, a 2% w/v concentration of sodium chloride increased
the expression of Stx2, as measured by immunoblotting, and the activation of the 933 W, as
measured by plaque assay, in E. coli O157 [109].

3.6. In Vivo Studies

In contrast to a steadily increasing body of in vitro data that evaluates the interplay
of diet or certain nutrients with bacteriophages as discussed in the chapters above, there
are still only a few in vivo studies available. However, the possibility to modulate the
microbiome by phage application is currently starting to attract more and more attention,
especially in the field of inflammatory and malignant diseases. For instance, Zheng and
colleagues covalently linked irinotecan-loaded dextran nanoparticles to azide-modified
phages that were able to inhibit the growth of Fusobacterium nucleatum [153]. After i.v. or
oral administration, these phage-guided irinotecan-loaded nanoparticles increased the
chemotherapeutic efficacy in mice with colorectal tumors. In another study, a single in-
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jection of a lytic bacteriophage cocktail was effective as a rescue treatment for murine
severe septic peritonitis, resulting in a significant improvement of the disease state without
harming the microbiome [154]. Wild-type phage T4 and the according substrain HAP1,
which is characterized by enhanced affinity to melanoma cells, were able to reduce lung
metastasis of murine B16 melanoma cells by 47% and 80%, respectively [28]. Moreover, the
modulation of the intestinal microbiome and metabolome was investigated using cognate
lytic phages in gnotobiotic mice that were colonized with defined human gut commensal
bacteria. This approach directly impacted susceptible bacteria, but phage predation also
regulated additional bacteria via interbacterial interactions, yielding strong cascading net
effects on the gut metabolome [58]. In a gnotobiotic pig model, it was shown that bacteria
species are able to affect intestinal morphology as well as the expression of proinflamma-
tory cytokines such as IL-1β and IL-6. Therefore, it can be hypothesized that a modulation
of, e.g., neonatal bacterial colonization would have strong implications for a healthy de-
velopment of the intestine [4]. On the other hand, intestinal inflammation and ulcerative
colitis can be aggravated by high levels of certain bacteriophages that induce interferon-γ
release [17]. Different phage cocktails (ShigActive™ [155] and ListShield [156]) have been
shown to reduce shigella colonization of the murine gut and to decrease Listeria monocyto-
genes in the gastrointestinal tract, respectively. ShigActive™ was found to have comparable
therapeutic effects to ampicillin but without the harmful effects on the gut microbiota ex-
erted by the antibiotic [155]. ListShield was applied via oral gavage before mice were orally
infected with Listeria monocytogenes. Consequently, Listeria monocytogenes concentrations
were found to be reduced in the liver, spleen, and intestines when compared to controls.
Even though, this phage therapy was as effective as the treatment with an antibiotic, it did
not result in weight loss of the animals in contrast to infected controls and antibiotic-treated
mice [156]. In another study, mice with antibiotic-induced perturbed microbiomes were
treated with autochthonous virome transfer and viable phages were effective in reshaping
the murine gut microbiota in a way that closely resembled the pre-antibiotic situation [157].
In vivo targeting of specific bacterial pathogens with recombinant or wildtype phages was
also investigated for Clostridium difficile infections [158], Vancomycin-resistant Enterococcus
faecalis infections [159], Crohn’s disease [160] and even for the attenuation of alcoholic liver
disease [161]. The human Bacteriophage for Gastrointestinal Health (PHAGE) study and
PHAGE-2 study demonstrated that an application of therapeutic doses of bacteriophages
was both safe and tolerable [162–164]. The double-blinded, placebo-controlled crossover
PHAGE trial with adults consuming bacteriophages for 28 days (32/43 participants fin-
ished the study) also demonstrated that bacteriophages are able to selectively decrease
the amount of target organisms, without disrupting the gut microbiome globally [162].
In the randomized, parallel-arm, double-blinded, placebo-controlled PHAGE-2 study (68
participants, four weeks), it could be shown that adding supplemental bacteriophages
(PreforPro) to the probiotic Bifidobacterium animalis subsp. lactis enhanced positive effects
on gastrointestinal health [164]. Taken together, there is increasing evidence, in initial
in vivo studies, for the high potential of treating different diseases with bacteriophages and
for the ability to reshape the gut microbiome via tailored phage cocktails. Still, however,
more in vivo studies are needed that investigate the complex interplay between diet and
bacteriophages, especially in the context of the prevention and treatment of inflammatory
diseases and cancer.

4. Conclusions

In conclusion, the present review shows that many dietary compounds and food
ingredients display significant bioactivity with documented effects on phages. The dietary
compounds discussed in this review can be consumed directly by diet (as in tea or coffee)
or indirectly as food supplements. Still, most of the data reviewed and discussed herein
pertain to E. coli as the, so far, best studied phage target in humans. Although being a
common gut commensal, certain serotypes of this species pose a threat to public health
regarding severe infectious and (in part systemic) inflammatory conditions as discussed
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in the Introduction. A few reports up to now even hypothesized particular E. coli strains
such as those producing the genotoxin colibactin as potential tumor promoters [165],
although their data were restricted to experimental models so far. In own genome data, we
have preliminary evidence of sequences of particular E. coli strains in human colorectal
carcinomas and even metastases (unpublished data based on genomes published in [166]).

The main activity of the dietary compounds discussed in the present review includes
inhibitory effects on phages due to the alteration of the capsid, with subsequent reduction
of infectivity. In other cases, the viral genome is being damaged, again inhibiting the
infectivity of phages. However, some dietary compounds are able to induce (as with
common salt or gallocatechin gallate) or repress (as with carvacrol) prophages. More
importantly, a few dietary compounds display species-specific activities. For instance,
stevia apparently acts as an inducer for S. aureus prophages, but not of those present in E.
faecalis, whereas propolis displays the opposite actions.

Overall, most of the dietary compounds reviewed here, with documented actions
towards phages, showed a beneficial effect for the host by interfering with the activity of
the pathogens at several levels. Thus, a number of concluding scenaria can be summarized
for the putative benefit of nutrients (including the modulation of phages) to human patients
and their microbiota (Figure 6A): Several nutritional compounds can directly affect the
growth of microbial pathogens, but not that of commensals. Also, dietary compounds are
able to inactivate particular toxins produced by pathogens, thus reducing fitness of the
latter. More importantly, dietary compounds can inactivate virulent phages, modifying the
overall equilibrium of the intestinal microbiome. As a result, phages targeting a commensal
species that is a competitor to a pathogen can be removed from the niche. The commensal
species will then expand and compete with the pathogen, again reducing the latter’s
fitness. Finally, dietary compounds might induce prophages present in the pathogen,
determining the hosts’ lysis and a wave of active virulent phages, which in turn reduce
the pathogen’s population. Combining all of these inhibitory outcomes will reduce the
pathogenicity of invading species and for example, help resolve infections or (chronic)
inflammatory conditions.

To better understand how dietary compounds could selectively modulate bacterial
infections, we carried out a simulation model (Figure 6b). This model shows that a
pathogenic bacterium can wipe out a commensal species, but the selective induction of
a prophage can then control the growth of the pathogen, reducing the virulence of the
infecting species. The model suggests that it could be possible, in principle, to reorganize
the microbial network to fight infections and further disease. Experimental data is required
to assess the specificity of particular dietary compounds’ action to, effectively and safely,
direct such attempts of specific reorganization.

Similar considerations as for phage-directed attempts to counteract infections and
inflammatory conditions could be speculated for the field of carcinogenesis and cancer.
Interfering with particular commensals within the intestinal microbiome by phages of dif-
ferent activities and properties, with the result of changing the intestinal microenvironment
towards a more pro- or anti-carcinogenic condition, could be an exciting novel field of
colorectal and other intestinal cancer research, and of treatment development. In parallel,
more specific research on particular dietary compounds, chemical components, and associ-
ated modulation of phages that exert controllable, specific effects on the microbiome could
open exciting new possibilities to interfere with intra-intestinal conditions in ways to foster
anti-carcinogenic, more cancer-preventive environments.
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indirectly, based on the interaction between phages and bacteria, and by bacterial competition. (a) A dietary compound
(nutrient) can interfere with the activity of a pathogenic bacterium at different levels by: inactivating a bacterial toxin
(interposed inhibition); inducing a prophage already present in the invading bacterium, which then lyses the pathogen
(indirect inhibition); acting bactericidal on invading species (direct inhibition); inactivating a lytic phage of an antagonist
commensal species that, freed from the phagial burden, can compete with the pathogen (mediated inhibition). (b) Simulation
of the interaction between bacteria and phages. The model considers the presence of a commensal bacterium (resident)
and its phage. These reach an equilibrium where the number of cells or phages remains constant. A pathogenic bacterium
(invader) will have virulence factors that favor its replication. As a result, it overgrows the commensal species. The
activation of phages, namely through dietary-mediated induction of prophages, reduces the replication rate of the invader
and re-establish, as a result, the commensal population. For the simulation, the parameters used were as follows. Carrying
capacity: 2.2 × 107. Maximum growth rate, 0.47 (commensal), and 0.72 (invader). Phage adsorption rate: 10–9, Phage lyse
rate: 1.0. Phage burst size: 50. Particle loss rate: 0.05. Initial population of commensal bacteria: 50 000 cells. Amount
of invader bacteria inoculated: 500 cells. Amount of phages: 1000 particles each. The model was implemented in Julia
language using the DifferentialEquations package.
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