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Organochlorinated pesticides expedite
the enzymatic degradation of DNA
Chao Qin1, Bing Yang1, Wei Zhang 2, Wanting Ling1, Cun Liu3, Juan Liu1, Xu Li4 & Yanzheng Gao 1

Extracellular DNA in the environment may play important roles in genetic diversity and

biological evolution. However, the influence of environmental persistent organic con-

taminants such as organochlorinated pesticides (e.g., hexachlorocyclohexanes [HCHs]) on

the enzymatic degradation of extracellular DNA has not been elucidated. In this study,

we observed expedited enzymatic degradation of extracellular DNA in the presence of

α-HCH, β-HCH and γ-HCH. The HCH-expedited DNA degradation was not due to increased

deoxyribonuclease I (DNase I) activity. Our spectroscopic and computational results indicate

that HCHs bound to DNA bases (most likely guanine) via Van der Waals forces and halogen

bonds. This binding increased the helicity and accumulation of DNA base pairs, leading to a

more compact DNA structure that exposed more sites susceptible to DNase I and thus

expedited DNA degradation. This study provided insight into the genotoxicity and ecotoxicity

of pesticides and improved our understanding of DNA persistence in contaminated

environments.
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Genetic diversity is the basis for evolution and the differ-
entiation of species on Earth. Genetic mutation, recom-
bination, and transformation are the driving factors in

genetic diversity. Previous studies have primarily focused on
in vivo DNA due to its recognized importance in biological
evolution, diversity, and toxicity, whereas studies on environ-
mental and biological behaviors of extracellular DNA have been
scarce. Extracellular DNA released from prokaryotic and eukar-
yotic cells is the largest fraction of total environmental DNA1 and
has been detected in various environmental compartments such
as marine water (568–3163 ng mL−1)2 and freshwater (9–11 ng
mL−1)3,4. Extracellular DNA can be excreted, degraded, or taken
up as a nutrient source by microorganisms. It can also be sorbed
onto minerals, thus promoting its environmental persistence5 and
potentially preserving genetic information from the past. DNA
residues in the environment can interact with other con-
taminants, and thus change environmental behaviors of both
DNA and contaminants. The binding of plasmid DNA to poly-
cyclic aromatic hydrocarbons decreases its transformation effi-
cacy6. Thus, it is important to study the interactions of DNA with
other contaminants and associated effects of these interactions on
the fate of extracellular DNA in the environment.

The environmental abundance and biological significance
of extracellular DNA are primarily controlled by its degrada-
tion. DNA can be degraded via hydrolysis, oxidation, and
enzymatic reaction7–9, and the degradation products (nucleo-
tides and nucleosides) can be re-assimilated by microorgan-
isms. For example, Fe(II)∙bleomycin can cause the O2-
dependent DNA hydrolysis, starting with the fracture of the
deoxyribose 3’-4’-carbon bond, and finally the breakage of
DNA into oligonucleotides, bases, and compounds resembling
malondialdehyde10. DNA can also be oxidized by oxidants
such as reactive oxygen species. Ozone can damage DNA
directly and indirectly by degrading base and sugar moiety
with hydroxyl radicals11. Nonetheless, enzymatic reaction is
considered as the main degradation pathway of DNA in the
environment12,13. In fact, the DNA degradation is largely
controlled by the species, activities, and reaction modes of
DNA-degrading enzymes14. Among the DNA-degrading
enzymes, homing endonucleases are double-stranded DNase
that attack large recognition sites (12–40 bp) of DNA by
making a site-specific double-strand breakage at a target site
in an allele free of the corresponding mobile intron15. Microbial
restriction endonuclease I can cleave DNA into smaller
duplex DNA fragments of about 400-bp oligonucleotides16.
DNase I can cleave the phosphodiester backbone of the DNA
double helix in the presence of divalent cations (e.g., Mg2+

and Ca2+), and introduce single-stranded nicks through
hydrolysis of the P-O3’-bond, resulting in 5’-phosphorylated
fragments17.

It is well known that the enzymatic degradation of DNA is
dependent on environmental factors such as solution pH,
and the type and concentration of cations.18 The activity of
DNase I is the highest at approximately pH 7.0 in the presence
of Mg2+ and Ca2+.19,20 The proton acceptor–donor chain E-H-
water of DNase I is essential to the DNA degradation.21 Briefly,
the carboxylate anion of E 75 can accept a proton from H 131,
which in turn receives a proton donated by a water molecule.
The resultant reactive water hydroxyl can then initiate the
nucleophilic attack of the phosphorus atom, and thus cleave
the P-O-3’ bond. During this reaction, the Ca2+ ion can facil-
itate the nucleophilic attack by properly aligning the phos-
phodiester bond to DNase I. Moreover, at acidic solution pH,
the H 131 can be protonated and is then unable to accept a
proton from a water molecule, leading to the inactivation of
DNase I. Some organic molecules can also affect DNA

degradation22,23. For example, due to an unknown mechanism,
DNA bound to humic acid was less susceptible to DNase I
degradation than free DNA24. Neomycin B (an aminoglycoside
antibiotic) completely inhibits DNA degradation by DNase
I in vitro at a concentration of 2 mmol L−1 25, due to the
conformational transition from B-DNA to A-DNA induced by
the binding of neomycin to DNA26. Considering that a myriad
of synthetic organic compounds has been released into the
environment by human activities, it is of great interest to
study the effect of some representative compounds on the
enzymatic degradation of DNA. Pesticides deserve a particular
attention because of their extensive use, their environmental
persistence, and bioaccumulation. This study focused on hex-
achlorocyclohexanes (HCHs) that are broad-spectrum insecti-
cides. This group of pesticides was widely produced and used
from the early 1950s to the late 1980s, resulting in their ubi-
quitousness in the environment and their bioaccumulation
through the food chain. China and India, the two primary users
of HCH, stopped its agricultural use in 1983 and 1990,
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Fig. 1 Gel electrophoresis of DNA fragments. a α-HCH, b β-HCH, and c γ-
HCH (0–4.0mg L−1). a, b, c, d, e, f, g, h, and i represent
hexachlorocyclohexane (HCH) concentrations of 0, 0.5, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, and 4.0mg L−1, respectively. Ck, control treatment without DNase I
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respectively. However, HCH was still used in India until 1995
with a peak use of 25,000 tons during the 1990s27. Although
HCH has been banned, the legacy HCH present in the envir-
onment from the previous uses are very persistent and can
still have adverse effects on human and ecosystem health28.
Besides, in terms of structure, HCHs have no other elements
and functional groups except C and H elements, which high-
light the role of chlorine. Three HCH isomers (α-HCH, β-HCH,
and γ-HCH) with varying physicochemical properties and
biological activities were studied, likely due to the changing
chiral arrangement of chlorine atoms on the cyclohexane
ring29. Nonetheless, the influence of HCHs on DNA environ-
mental behavior has been rarely studied.30 Thus, HCHs are
ideal candidates for examining the effect of organochlorinated
contaminants on the enzymatic degradation of DNA.

Therefore, we aimed to elucidate the effects, and underlying
mechanism, of three HCH isomers on the enzymatic degradation
of DNA. DNA degradation by DNase I in the presence of
HCH was examined by gel electrophoresis, followed by a series
of spectroscopic and computational investigations to pinpoint
the underlying mechanisms. The change of DNase I activity
upon HCH exposure was examined spectroscopically, whereas
fluorescence quenching titration experiments were conducted to

determine the binding of HCH with DNA. The binding
mechanism and resultant conformational change of DNA struc-
ture were probed by molecular computation, Fourier transformed
infrared spectroscopy (FTIR), ultraviolet (UV)-Vis spectroscopy,
and circular dichroism (CD). Our results provided insight into
the enzymatic degradation of DNA as influenced by organo-
chlorinated contaminants, thus improving understanding of the
behaviors of DNA in contaminated environments.

Results
HCHs expedited enzymatic degradation of DNA. In the absence
of DNase I, most DNA fragments were larger (~2000 bp), and
there were no fragments smaller than 100 bp (Fig. 1). However,
in the presence of DNase I, DNA was degraded into smaller
fragments, the size of which decreased from 2000 bp to <100 bp
with increasing HCH concentrations (Figs. 1a–c). The HCH-
mediated increase in DNA degradation was corroborated by
the absorbance values (Fig. 2). The final absorbance of the
DNA solutions generally increased with the HCH concentration
(Fig. 2). The increase in the absorbance of the DNA solution was
due to greater exposure of nitrogenous nucleobases to light
incidence, most likely resulted from the disassembly of DNA
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Fig. 2 Increase of DNA absorbance caused by DNase I in the presence of hexachlorocyclohexanes (HCHs). a The DNA absorbance changes influenced by
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structure. To our knowledge, this is the first report that a pesticide
promotes enzymatic degradation of DNA. As discussed pre-
viously, DNase I cleaves the phosphodiester bond using the
reactive water hydroxyl formed by the proton acceptor–donor
E-H-water chain, and thus better alignment of the phosphodiester
bond to DNase I could enhance DNA degradation.21 The
increased DNase I-catalyzed degradation of DNA by HCHs was
likely because the binding of HCHs to DNA improves the
alignment of the phosphodiester bond to the nucleophiles (water
hydroxyls), enhancing nucleophilic attack of the phosphorus
atom, or because HCHs bound to DNase, I increased its activity.

Effects of HCH on DNase I activity. To clarify the mechanism
of HCH-expedited enzymatic degradation of DNA, we first
examined the influence of three HCHs on the DNase I activity
by the spectrophotometric experiments. The activity of DNase I
decreased from 1.43 to 0.80 U as the α-HCH concentration
increased from 0 to 2.5 mg L−1 and subsequently increased to
1.49 U (Supplementary Figure 1). β-HCH or γ-HCH did not
affect the enzymatic activity of DNase I. Higher Log Kow of α-
HCH (3.8) probably perturb the activities of DNase I than
β-HCH (3.78) and γ-HCH (3.72)29, which means more inso-
luble α-HCH is easier to bind to DNase I or DNA, thereby
affecting the activity of the DNase I. Thus, the three HCH
isomers did not enhance the activity of DNase I. Additionally,
as revealed by the FTIR spectra (Fig. 3), the structure and
functional groups of DNase I did not change in the presence of
HCHs, again indicating no change in the enzymatic activity.31

No shifts were observed in the bands near 1632 cm−1 for amide
I (C (N)=O), the bands near 1554 cm−1 and 1462 cm−1 for
amide II (C-N+N-H), and the bands near 1404 cm−1 and
1297 cm−1 for amide III (N-H bending and C-N stretching
vibrations) in the presence compared with the absence of HCHs
(Fig. 3c). Therefore, the increased DNA degradation could
not be attributed to expedited DNase I activity. Interestingly,
N-bromosuccinimide reportedly inhibits the activity of DNase
II32. However, few other studies have addressed the effect of
exogenous organic pollutants on DNase I activity. To our
knowledge, this is the first study on the influence of an organic
contaminant on DNase I activity.

Binding of HCHs to DNA. DNA is a vital biomacromolecule
that can bind to other molecules or ions33. The binding can
often change the structures and functions of DNA. It is likely
that the binding of HCHs to DNA may be responsible for
expedited DNA degradation. The binding of HCHs to DNA
was first confirmed by fluorescence quenching of ethidium-
bromide-labeled DNA (Fig. 4). The quenching constant (KSV)
calculated from the Stern–Volmer plot (Fig. 4a) is commonly
used to quantify the quenching effect. The average KSV values
for α-HCH, β-HCH, and γ-HCH were 2.4 × 106, 5.2 × 106, and
1.7 × 106 L mol−1, respectively. The quenching constant for the
γ-HCH is smaller than others and this result is consistent with
the calculated binding energy (Supplementary Table 1). The
bimolecular quenching rate constant (Kq) indicates the stability
of binding between DNA and HCHs. The Kq values for α-HCH,
β-HCH, and γ-HCH were estimated to be (0.2–6.0) × 1014,
(0.4–13.0) × 1014, and (0.1–4.3) × 1013 L mol−1 s−1, respec-
tively. Furthermore, a linear relationship between log [(F0 − F)/
F] and log [Q] (R2 > 0.99), suggesting a static quenching pro-
cess (Fig. 4b). The binding constant (KA) indicates the bin-
ding strength, and the number of binding sites (n) suggests
a dose–ratio relationship of the binding. The KA values were
1.5, 6.5, and 11.0 L mol−1, and the n values were 0.27, 1.01, and

1.55 for α-HCH, β-HCH, and γ-HCH, respectively. Thus,
the three HCH isomers can bind to DNA.

Moreover, HCH binding to DNA changed the DNA structure,
because the absorption bands of the DNA–HCH complexes
near 1700, 1650, 1530, 1485, 1416, 1369, and 962 cm−1 were
weaker than those of DNA (Fig. 3a). The weakened absorption
bands were assigned to guanine carbonyl vibration, C=C or C=N
in base stretch, an imidazole ring, DNA structural vibration,
and guanine, respectively (Supplementary Table 2). A red shift
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occurred on the FTIR bands at 1487, 1419, 1371, and 964 cm−1,
representing DNA structural and backbone vibrations, guanine,
and asymmetric PO2

− (Figs. 3a, b). Additionally, the thymine
band at 1650 cm−1 and the amide I of DNase I at 1647 cm−1 may
overlap at specific enzyme concentrations. However, the presence
of the strong positive feature at 1657 cm−1 (Fig. 3b) cannot be
attributed to the overlap of absorption bands of thymine or
protein amide I. It is more likely due to a stretching change in
C=C or C=N in the DNA bases. Therefore, the FTIR analyses
indicated that the DNA bases were the most probable sites for
binding of HCHs.

Many organic chemicals such as phenothiazinium dyes and
polycyclic aromatic hydrocarbons can be inserted into double-
stranded DNA9,34. Actually, we recently reported that a π–π
isosurface between the DNA bases and polycyclic aromatic
hydrocarbons may be responsible for their binding9. However,
the π–π interactions cannot explain the binding of HCHs to
DNA, due to the lack of conjugated groups in the HCH
structure. To explore other weak interaction forces that
potentially mediate the binding of HCHs to DNA, the
intermolecular forces between DNA bases and HCHs were
simulated. The electrostatic potentials of the four DNA bases
(adenine, thymine, guanine, and cytosine) and HCH isomers
are shown in Supporting Information (Supplementary Figure 2).
During the reduced density gradient analysis, the isosurface
color based on the values of sign(λ2)ρ (Supplementary Figure 3)
was used to explain the multiple weak attractions between the
DNA bases and HCHs. In the blue region (ρ > 0, and λ2 < 0), the
smaller value of ρ means the stronger attraction. In this region,
the most attractive force is hydrogen bonding or halogen
bonding. The green region (ρ ≈ 0, and λ2 ≈ 0) is very small,
suggesting a weak interaction consistent with the Van der
Waals force. Since the electron density of this region is very
small, the sign of λ2 becomes more unstable and can be
negative. In the red region (ρ > 0, and λ2 > 0), the greater value
of ρ means the stronger mutual exclusion is corresponding to
the strong steric effect region (also called the nonbonded
overlap) at the benzene rings. The bright green isosurface
between molecules indicates weak Van der Waals force between
the DNA base and α-HCH (Figs. 5a–d). The low-gradient
spikes at –0.005 to –0.015 a.u. show the Van der Waals
interaction patterns between the DNA bases and α-HCH. There
was also a greater negative value at –0.02 a.u. (equivalent to the
strength of H-bonds35), representing strong halogen bonding of
α-HCH to the DNA bases. Similar results were obtained for the
binding of DNA bases to β-HCH (Supplementary Figure 4) and
γ-HCH (Supplementary Figure 5). These data confirmed
insertion of HCHs into the DNA double strands and their
binding to the DNA bases via Van der Waals forces and

halogen bonds. The halogen bonding of HCH to the DNA bases
indicates that other organochlorinated compounds may share a
similar interaction with DNA and thus also enhance its
enzymatic degradation. The highest occupied molecular orbital
and lowest unoccupied molecular orbital between DNA bases
and HCHs analyzed by ChemBioOffice2010 (Figs. 5e–g). The
positive and negative phases of the electronic wave function are
represented by larger brown and green spheres, respectively.
Evidently, guanine has a higher electron cloud density than
those of the other DNA bases and is, therefore, more likely to
bind to HCHs.

DNA deformation. Next, we analyzed whether the insertion
of HCH into the DNA double strands could change the DNA
conformation. It is hypothesized that the change of
DNA conformation in the HCH presence may enhance the
DNA degradation by DNase I. Based on the UV-Vis spectra,
the changes of the characteristic absorption band of DNA at
260 nm36 were examined in the presence of HCHs at various
concentrations (Supplementary Figure 6). It was reported that
with increasing concentrations of metal cations the increase
of absorbance at 260 nm (i.e., hyperchromism) suggests the
damage or distortion of the DNA double helix, whereas
the decrease of absorbance (i.e., hypochromism) likely resul-
ted from the DNA contraction along the helix axis and the
conformational change of DNA.36 The decreased absorbance
at 260 nm with increasing HCH concentration suggests that
the binding of HCHs with DNA resulted in the changes in the
DNA conformation. These conformational changes of DNA
were further supported by the CD spectra analyses (Fig. 6a).
The CD spectrum of DNA consists of a negative Cotton
effect at 248 nm and a positive Cotton effect at 276 nm. As
previously reported37, the negative spectrum corresponds to
the helical structure of DNA, and the positive spectrum
represents the accumulation of base pairs that is characteristic
of DNA in the right-handed B-form. HCH binding caused an
increase in the intensity of both positive and negative bands
without a shift in the peak positions (Fig. 6a), indicating
increases in both helicity and base pair accumulation. More
importantly, these changes may result in a more compact
DNA structure and exposure of more DNA sites susceptible
to DNase I, thus promoting DNA degradation. In contrast, the
binding of neomycin or polycyclic aromatic hydrocarbons
to DNA caused a transition from B-DNA to A-DNA, leading
to inaccessibility of the minor groove (a smaller binding
area for DNase I) and consequently inhibition of DNA
degradation25. Additionally, comparing with α-HCH–DNA
and γ-HCH–DNA, the CD spectra change of β-HCH–DNA is
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larger. It is probably because all chlorine atoms in the β-HCH
molecule are in axial and equatorial positions in each HCH
molecule, giving this isomer larger chemical stability. Mole-
cular dynamics simulation from AMBER17 was performed for
the best poses selected from the docking studies (Fig. 6b).
After the initial equilibration, molecular dynamics production

run was carried out for 80 ns. The root-mean-square deviation
(RMSD) as a function of time for all the complexes was plotted
(Fig. 6c) to assess their systematic deviation. The range of
RMSDs (Fig. 6c) is 0.5 Å–6.0 Å. Considering subtle changes in
the helicoidal structure, the RMSDs indicate that the structure
is considerably converged. Convergence of RMSD values is
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indicative of the stability of a complex38. The α-HCH–DNA
complexes were more active than β-HCH–DNA and
γ-HCH–DNA during the simulation. This result indicates that
β-HCH and γ-HCH binding with DNA led to a more stable
converging than α-HCH.

Conclusions. In this study, we attempted to identify mechanisms
responsible for the expedited DNA degradation by DNase I in the
presence of HCH. The increased enzymatic activity of DNase I,
in the presence of HCHs, was excluded as a possible cause of
the expedited DNA degradation. HCHs first binds to the bases
(most likely guanine) of DNA via Van der Waals forces and
halogen bonds, which caused the increases in helicity and base
pair accumulation, as well as a more compacted structure of DNA
exposing more sites susceptible to DNase I. This investigation
provided insights into the enzymatic degradation of DNA in the
environment, as influenced by HCHs. It also presents a new
view on the genotoxicity and ecotoxicity of pesticides in the
environment. Our results suggest that the legacy pesticides such
as organochlorinated pesticides may decrease the amount of
residual DNA in our environment by enhancing the DNA
degradation. This study showed that combining experimental
observations with molecular computation on interactions of DNA
and contaminants could be a useful approach for understanding
the environmental behaviors and risks of both DNA and con-
taminants. Future studies could be directed to other kinds of
DNA causing major environmental concerns (e.g., antibiotic
resistance genes), and other types of persistent organic pollutants
(e.g., polycyclic aromatic hydrocarbons and polybrominated
biphenyls) to improve our understanding on environmental
behaviors of DNA in a contaminated environment.

Methods
Chemicals. Salmon sperm DNA with an average molar mass of 1.3 × 106 Da and
%G-C content of 41.2%, α-HCH, β-HCH, and γ-HCH were purchased from
Sigma Chemical Co. (St. Louis, MO, USA). DNase I and DNase I buffer (10 × )
were purchased from Takara Bio Company (Dalian, Liaoning, China). The
physicochemical properties of α-HCH, β-HCH, and γ-HCH are given in Sup-
plementary Table 4. All chemical reagents were of analytical grade and used
without further purification. DNA stock solution of 1 g L−1 was prepared by

dissolving 0.1 g DNA in 100 mL Tris-HCl buffer (10 mmol L−1, pH 7.0). Stock
solutions of α-HCH, β-HCH, or γ-HCH (1 g L−1) were prepared using methanol
as solvent. HCH working solutions were prepared by further diluting their stock
solution by methanol to 10 mg L−1. All solutions were stored at 4 °C in a
refrigerator before use.

DNA degradation by DNase I. We performed gel electrophoresis to evaluate DNA
degradation. First, 10 μL of the DNase I buffer (10 × ) was pipetted into a series of
PCR tubes. Next, a predetermined volume of the working solution of α-HCH, β-
HCH, or γ-HCH (10 mg L−1) was added to each tube to obtain a series of HCH
concentrations (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, or 4.0 mg L−1), respectively, fol-
lowed by adding 10 μL of the 1 g L−1 DNA stock solution. The tubes were filled
with the Tris-HCl buffer to a volume of 99 μL and then incubated on ice for
120 min. Then, the tubes were transferred to room temperature, and 1 μL of the
DNase I working solution was added to the tubes. The mixture in the tubes were
homogenized and then incubated for 20 min at 37 °C. Afterwards, 10 μL aliquots
were taken from each tube, mixed with 10 μL of the loading buffer containing
30 mM EDTA, 50% (v/v) glycerol, 0.25% (w/v) Xylene Cyanol FF, and 0.25% (w/v)
Bromophenol Blue (QsingKe Biological Technology, Nanjing, China), and then
loaded onto the agarose gel (3% w/v). The gel electrophoresis was run at 6 V cm−1

for 1 h. The DL2000 DNA ladder (80 ng μL−1) (Takara Bio Company, Dalian,
China) was used as a marker in the gel electrophoresis. A Bio-Rad Molecular
Imager FX (Hercules, Canada) equipped with the appropriate excitation and
emission standard filters were used to image the labeled DNA bands. The gel was
then stained with ethidium-bromide (final concentration, 0.5 μg mL−1) for 30 min
and visualized by the Bio-Rad Quantity One software (Hercules, Canada). The
experiment results were repeated three times.

Enzymatic degradation kinetics and DNase I activity. The enzyme activity of
DNase I was examined by spectrophotometric experiments. First, in each PCR
tube, 10 μL of the DNase buffer (10 × ) was mixed with 10 μL of the 1 g L−1 DNA
stock solution. Then 0, 5, 10, 15, 20, 25, 30, 35, or 40 μL of α-HCH, β-HCH, or
γ-HCH (10 mg L−1) were added to each tube to obtain the HCH concentration of
0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, or 4.0 mg L−1, respectively. These tubes were filled
with the Tris-HCl buffer to a volume of 99 μL and then incubated on ice for
120 min. Next, the 100 μL mixture in the tubes were transferred to 96-well enzyme-
linked immunosorbent assay (ELISA) plate and incubated for 20 min at 37 °C.
Then 1 μL of the DNase I working solution was added to the ELISA plate. The
absorbance of DNA at 260 nm was recorded at 37 °C by an enzyme-labeled meter
(SP-Max 2300A, Shanghai, China) over 15 min. Each absorbance data point was
the average of 10 measurements. The DNase activity was calculated by the change
of absorbance within the first minute via U ¼ ΔA

V ´ 0:001, where U is the enzymatic
activity, ΔA is the absorbable change of DNA in the first minute, and V is the
sample volume. The HCH solutions with the same concentration free of DNA and
DNase I were also used as background solution to avoid the interference from
each added HCH.
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Fluorescence quenching titration. Fluorescence quenching titration was per-
formed to assess the binding of HCHs to DNA (Supplementary Methods).

DNA conformation. The UV-visible spectra of the HCH and DNA mixtures were
investigated using a Varian Cary 5000 Spectrophotometer (Cary 5000, Varian,
Palo Alto, CA, USA). Briefly, 2 mL of a 100 mg L−1 DNA solution were added to
a cuvette, and the UV spectrum from 245 to 275 nm was obtained at 25 ± 0.1 °C.
Next, predetermined volumes of 1 g L−1 α-HCH, β-HCH, or γ-HCH stock solution
were sequentially added to the cuvette at concentrations of 0–2400 μg L−1, 0–1000
μg L−1, and 0–10000 μg L−1, respectively. The solutions were stirred for 10 s before
each HCH addition, followed by the acquisition of UV spectra. The pH value of the
samples was 7.0 ± 0.2.

The CD spectrum was also acquired to examine DNA conformations. To
prepare the DNA and HCH mixture at the most optimal DNA detection
concentration of 60 mg L−1, 0.3 mL of 1 g L−1 DNA was mixed with 0.5 mL of
10 mg L−1 in each HCH, followed by the addition of 4.2 mL Tris-HCl buffer. Then,
2 mL aliquot was taken from each sample, placed into a rectangular quartz cuvette
of 1 cm path length, and detected by a PC-driven JASCO J815 spectropolarimeter
(Jasco International Co., Japan) with a temperature controller and a thermal
programmer model PFD-425L/15. The CD spectra were recorded from 220 to
320 nm with a scan speed of 100 nmmin−1 at 20 °C.

Fourier transform infrared spectroscopy. Samples for FTIR analysis were pre-
pared as described in Supplementary Methods. The IR absorption bands for the
corresponding functional groups in DNA and DNase I are listed in Supplementary
Table 2 and Supplementary Table 3, respectively.

Molecular computation. Computational chemistry based on density functional
theory was used to predict possible binding mechanism between HCH and DNA.
Based on the FTIR analysis, we assumed that the most probable binding sites are
the nitrogenous bases of DNA, as also suggested by our earlier work9. To
decrease the computational load, we only constructed four nitrogenous bases
(adenine, thymine, guanine, and cytosine) and α-HCH, β-HCH, and γ-HCH
using GaussView 5.039. The interactions of modeled bases with each HCH
isomer was first optimized using the Gaussian 16 software at ωB97XD/6-311G**
level. The structure and frequency were further analyzed using GAUSS at
ωB97XD/6-311+G**. The Multiwfn program40 was used to analyze the results of
gradient isosurface and related plots of reduced density gradient versus the
electron density multiplied by the sign of the second Hessian eigenvalues. In fact,
there are many methods for analyzing weak interactions, e.g., atoms in molecules
topology analysis41, electrostatic potential analysis, and atomic charge analysis.
Recently, Johnson et al. proposed that the reduced density gradient analysis is a
beneficial method for analyzing weak interactions, which has gain popularity
since then35. The reduced density gradient analysis can be considered the
expansion of the atoms in molecules theory, and which can be applied to many
cases when the original atoms in molecules theory is not applicable, e.g., π–π
accumulation. To perform the simulation, we placed four bases in the same
domain with each HCH isomer by ChemBioOffice2010 (Cambridge Soft,
America). We analyzed the molecular orbital and attempted to identify the base
that is most likely to bind to HCH. We also performed molecular dynamics
using AMBER1742 with DNA.OL1543 force field and a customized force field for
the HCHs with Antechamber44. The simulation details are described in Sup-
plementary Methods.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The atomic coordinates and structure factors are deposited in the Protein Data Bank
(www.pdb.org) with ID codes 2B0K (B-DNA). All other data supporting this study are
available within the article and its Supplementary Information file, or from the authors
upon reasonable request.
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