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ABSTRACT: Heterogenization of RuL3 complexes on a support with proper
anchor points provides a route toward design of green catalysts. In this paper,
Ru(II) polypyridyl complexes are investigated with the aim to unravel the
influence on the photocatalytic properties of varying nitrogen content in the
ligands and of embedding the complex in a triazine-based covalent organic
framework. To provide fundamental insight into the electronic mechanisms
underlying this behavior, a computational study is performed. Both the
ground and excited state properties of isolated and anchored ruthenium
complexes are theoretically investigated by means of density functional theory
and time-dependent density functional theory. Varying the ligands among
2,2′-bipyridine, 2,2′-bipyrimidine, and 2,2′-bipyrazine allows us to tune to a certain extent the optical gaps and the metal to
ligand charge transfer excitations. Heterogenization of the complex within a CTF support has a significant effect on the nature
and energy of the electronic transitions. The allowed transitions are significantly red-shifted toward the near IR region and
involve transitions from states localized on the CTF toward ligands attached to the ruthenium. The study shows how variations
in ligands and anchoring on proper supports allows us to increase the range of wavelengths that may be exploited for
photocatalysis.

1. INTRODUCTION

Catalysis is of paramount relevance to many chemical reactions
that could not occur within a reasonable time otherwise, thus
disrupting either their industrial use1 or biological function-
ality.2 In the case of photocatalysis, the activation is effected by
visible photons. This enables the synthesis of chemical
products exploiting an easily available source of energy in
mild reaction conditions, as often even the light emitted by a
household bulb can be enough. Furthermore, control of the
light exposure allows photocatalysis to be fine-tuned and even
stopped at will, creating the ability to obtain a high degree of
chemoselectivity.3,4 However, in the attempt to design new
green catalytic routes, there is a high interest in developing
recyclable and reusable heterogeneous photocatalytic sys-
tems.5−8 One way to achieve this goal is the anchoring of
homogeneous complexes with photocatalytic properties on a
heterogeneous stable support. This procedure is applicable in
case the photocatalytic properties of the pristine complex are
retained or improved in the heterogenized system. To this end,
a deep knowledge is required of both electronic and excited

state properties of the pristine homogeneous and anchored
complex within the support. Such investigation is presented in
this paper for Ru(II)L3 complexes, which are commonly
applied visible light photocatalysts consisting of a Ru2+ ion that
is octahedrally chelated by three bidentate polypyridyl ligands
as shown in Figure 1, parts a and b. Herein the electronic
properties of such isolated and anchored ruthenium poly-
pyridyl complexes onto a stable heterogeneous support are
investigated.
Complexes of the type Ru(2,2′-bipyrdine)32+ are among the

most interesting photoredox catalyzers. They show no catalytic
properties in their ground state, but when exposed to light,
their excited electronic states are able to oxidize or reduce
substrate molecules through single-electron transfer (SET)
processes.10 They have proven their usefulness allowing very
different reactions such as carbon dioxide reduction,11,12 solar

Received: May 31, 2019
Revised: July 19, 2019
Published: July 19, 2019

Article

pubs.acs.org/JPCACite This: J. Phys. Chem. A 2019, 123, 6854−6867

© 2019 American Chemical Society 6854 DOI: 10.1021/acs.jpca.9b05216
J. Phys. Chem. A 2019, 123, 6854−6867

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JPCA
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.9b05216
http://dx.doi.org/10.1021/acs.jpca.9b05216
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


cells development,13,14 water splitting,15−17 as well as Diels−
Alder cycloadditions,18,19 and can be used as a photo-
sensitizer,20 thus spanning both inorganic and organic
reactions and acting as either reducing or oxidizing
agents.3,21−25

The two possible relaxation mechanisms of the excited states
of the Ru(II) cation are schematically shown in Scheme 1,
which sketches the orbital occupancy of the frontier electron
states of the ruthenium complex. The t2g and eg states originate
from the octahedrally surrounded Ru(II) cation, while orbitals
from the ligands are situated in between. In the ground state,
depicted on the left, only the t2g states are filled and ruthenium
is in the Ru(II) state. By absorption of a photon in the visible
region a singlet → singlet metal-to-ligand charge transfer
(MLCT) excitation occurs, leaving an electron hole in the
metal states. As such, the oxidation number of ruthenium
increases by one. The singlet excited state can quickly convert
to a lower-energy triplet excited state via nonradiative means.
This mechanism is called intersystem crossing (ISC). In a
recent theoretical study the decay from the singlet to triplet
states was shown to occur with a time constant of 26 ± 3 fs,
which was in very good agreement with experimental data. To
this end a newly implemented combination of linear response
time-dependent density functional theory (TD-DFT) with

surface-hopping including arbitrary couplings (SHARC) was
employed for the first time to model the relaxation dynamics of
Ru(bipyridine)3

2+ after light irradiation with explicit non-
adiabatic and spin−orbit couplings.26 The resulting excited
state, shown in the red box in Scheme 1, is long-lived, as the
decay to the singlet ground state is spin-forbidden.
The photoexcited state can then relax either by reduction of

an organic substrate, maintaining an oxidized Ru(III) cation
(upper arrow in Scheme 1), or by reduction of the complex via
transfer of an electron from the substrate to the now vacant t2g
orbital of the Ru(III) cation, which then reverts to Ru(II)
(lower arrow in Scheme 1).
The triplet excited state of Ru(2,2′-bipyridine)32+ may thus

be engaged in an electron transfer process, but it may also be
involved in a process called triplet−triplet energy transfer
(TTET), in which the decay from the excited Ru(2,2′-
bipyridine)3

2+ from its triplet to ground state involves the
excitation of another molecule from its ground singlet state to
its lowest triplet state. This mechanism requires the excitation
of both the catalyst and substrate to a spin-triplet state and has
been the subject of both theoretical27 and application-oriented
investigations.28 The Ru(2,2′-bipyridine)32+ has been exploited
in a number of C−C making and breaking transformations,
such as trans/cis stilbene isomerization,29 anthracene dimeri-

Figure 1. (a): Schematic representation of the isolated Ru(bipy)3
2+ complex. (b): Polypyridyl ligands: cis-2,2′-bipyridine (bipy), 2,2′-bipyrimidine

(bipm), and cis-2,2′-bipyrazine (bipz) considered in this study. (c) Part of the CTF synthesized in ref 9 and used as computational model here, in
black. The anchored RuL2

2+ fragment inside one pore is shown in red.
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zation,30 cycloadditions,31 and trifluoromethylations of styrene
substrates32 via the TTET mechanism.
Herein we investigate the photocatalytic properties of

Ru(II)L3 type complexes, where the ligands may either be
cis-2,2′-bipyridine (bipy), 2,2′-bipyrimidine (bipm), or cis-2,2′-
bipyrazine (bipz) as schematically shown in Figure 1b.
Complexes with a varying number of nitrogen containing
aromatic rings have been synthesized both in the litera-
ture33−35 and in this work. In the first instance, we investigate
to what extent the nitrogen content affects the photocatalytic
properties. Second, the impact of heterogenizing the Ru(II)L3
complexes on covalent triazine frameworks (CTFs) (see Figure
1c), which are a subclass of the broader family of covalent
organic frameworks (COFs), are assessed.36 Unfunctionalized
COFs have been explored within catalysis to some
extent,6,37−39 but additional functionalization of the materials
with metal complexes may open additional perspectives for
their usage within catalysis by merging some of the most
important features of both the organic, i.e., stability, and the
inorganic, i.e., catalytic properties, worlds.
CTFs are potentially interesting supports since they are

chemically and thermally stable.40−46 Furthermore, they are
much lighter than most other porous supports and contain no
toxic or environmentally unfriendly elements. These porous
2D materials are made by ionothermal trimerization of
aromatic nitriles and when fabricated with bidentate nitrogen
containing ligandssimilar to the chelating ligands in the
ruthenium homogeneous complexthey may serve as ideal
anchoring materials for the latter complexes.47 The first reports
on COFs containing (bi)pyridine have appeared recently,
showing great promise for applications in catalysis and gas
sorption.9,48−54 In a similar way, this has already been applied
for metal organic frameworks (MOFs),55 where photocatalytic
complexes were successfully anchored to both linkers56,57 and

nodes.58 However, MOFs are in general less stable, making it
interesting to explore other heterogeneous supports.59−61

To optimize the photocatalytic system, a thorough under-
standing of the ground- and excited-state properties of the
tethered RuL3

2+ complexes is mandatory.62 Ground state
properties of the heterogeneous system have been studied in
detail in our previous work,63 whereas in this work, we focus
on the calculation of excited states. The investigation of the
distribution of most singlet states can be performed
experimentally by UV−vis absorption spectroscopy. Contrarily,
triplet states are more difficult to characterize without a
computational investigation due to electronic selection rules
preventing singlet → triplet excitations to achieve a significant
oscillator strength, i.e., probability of occurrence. In order to
understand how the CTF support impacts the photocatalytic
properties of the ruthenium complexes, a stepwise computa-
tional analysis is adopted. The ground- and excited-state
electronic properties of both the isolated ruthenium complexes
and the anchored systems are investigated by means of density
functional theory (DFT) and time-dependent density func-
tional theory (TD-DFT).
To this end, we embed RuL2

2+ (represented in red in Figure
1c) into an extensive CTF structure model (represented in
black in Figure 1c).9 This CTF organic scaffold contains
bipyridine groups belonging to the CTF exposed inside the
pores, which are suitable to act as linkers for the ruthenium
complex, thus giving rise to a RuL2

2+@CTF compound. The
results are analyzed to obtain insight into the electronic charge
rearrangement and optical gap tuning induced by the ligands.
For the isolated ruthenium complexes, we are able to compare
and validate the calculated optical properties with exper-
imentally measured UV−vis absorption data. However,
specifically investigating the excitations of COFs by means of
UV−vis absorption spectroscopy is cumbersome as these

Scheme 1. Photoactivation of an Octahedral Ruthenium Complex from the Ground State (Left Black Box) to an Excited State
(Red Box) under the Influence of Visible Light, Exciting an Electron toward a State Localized on the Ligands, followed by
ISCa

aThe excited state relaxes by reduction (upper arrow) or oxidation (lower arrow) of the substrate. Schematic adapted from ref 3. Copyright 2013
American Chemical Society.
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compounds often absorb light in a wide wavelength region, in
part due their high flexibility. In addition, photoemission
spectroscopy may yield results difficult to interpret without
some theoretical understanding. In this light the current
computational approach gives new insights into the excited
state properties of the RuL2

2+@CTF system, which in turn
affect its photocatalytic properties. While TD-DFT calculations
have been performed on COFs before,64 to our knowledge this
is one of the first applications on a COF model to which a
photoactive complex has been anchored.

2. COMPUTATIONAL DETAILS
All calculations were performed with the Gaussian 16
software.65 Ground state information was extracted at the
DFT level. Excited states were investigated adopting the TD-
DFT scheme,66 within the linear-response approach due to
Casida.67

2.1. Assessment of the Level of Theory for the
Ground States. Four different exchange-correlation func-
tionals coming from different rungs on Jacob’s ladder68 were
tested on isolated RuL3

2+ complexes to compare their relaxed
structures: the generalized gradient approximation PBE,69

hybrid B3LYP,70,71 long-range corrected CAM-B3LYP,72 and
metahybrid M06.73 All computed internal normal modes of the
relaxed structures show positive frequencies, ensuring that the
optimized geometries represent minima of the ground state
potential energy surface.
The average differences in bond lengths calculated with the

various functionals and basis sets are below the 0.05 Å
threshold. The optimized structures for Ru(bipy)3

2+ are
included in section S4 of the Supporting Information. All
levels of theory employed here predict a positive partial
Hirshfeld charge on the Ru(II) cations, with differences
between the same complexes of about 0.02 |e|, with e the
electron charge (see Table S1 of the Supporting Information).
2.2. Assessment of the Level of Theory for the

Excited States. The vertical excitation spectra from the
ground state geometry of Ru(bipy)3

2+, obtained by TD-
DFT,67,74 are shown in Figure 2. Theoretical calculations were
carried out both in the gas phase, i.e., without solvent, and with
water and acetonitrile solvents modeled with the polarizable
continuum method (PCM) to take into account the effect of
the environment on the excitation energies.75 The simulated
UV−vis absorption spectra at the TD-DFT level of theory are
compared with the experimental optical profiles for Ru-
(bipy)3

2+ complexes in water76 and acetonitrile solvents. The
latter experimental data were generated within the framework
of this work (vide infra for details on the experimental part). A
side note is warranted on how to compare the theoretical and
experimental data. The TD-DFT energy of the first allowed
transition is an approximation of the optical gap, which is
defined by a neutral excitation and as the difference between
the energies of the lowest dipole-allowed excited state and the
ground state.77 As it accounts for the electron−hole
recombination energy or exciton binding energy, the optical
gap is systematically lower than the fundamental gap,78 defined
by a charged excitation and as the difference between the first
ionization potential and the first electron affinity.77 From UV−
vis absorption measurements, optical gaps can be extrapolated
as the energy of the first divergence of the spectrum from its
baseline.
The spectrum calculated with the M06 functional yields the

best agreement with experimental data with respect to those

computed with PBE, B3LYP, and CAM-B3LYP (see Figure S1
of the Supporting Information) in terms of both shapes and
positions of the bands, and no further rescaling of energies nor
of wavelengthsas often employed for similar comparisons
when pseudopotentials are used to simulate core electrons in
metal atomswere necessary.79 As expected,80,81 TD PBE
spectra obtained by using a semilocal functional without
Hartree−Fock exchange necessitated significant blueshifts to
match the experimental data. Contrarily, TD CAM-B3LYP
spectra required a significant redshift, in agreement with earlier
studies on compounds ranging from metal−organic frame-
works (MOFs)82 to noble metal nanoclusters.80 TD B3LYP
spectra are rather similar to TD M06 spectra in frequencies,
but the agreement regarding the shape of the absorption bands
is better when using the M06 functional. As the M06/
LanL2DZ level of theory correctly reproduces the optical
features of the studied complexes, we have consistently used
this level of theory unless otherwise stated. Errors between the
various tested functionals are always smaller than 20 nm (see
Figure S1 of the Supporting Information). We used the
LanL2DZ83 basis as it has been shown that the choice of basis
set has a minimal influence on excitation energies, oscillator
strengths, and assignments for transition metal complexes.84

Tests with the Def2TZVPP basis set reveal a difference for the
energy of the strongest transition of only 11 nm. Overall, M06
performs particularly well in systematic reviews of both organic
and inorganic molecules,85,86 yielding accurate transition
energies.
Our conclusions are in agreement with ref87 in which several

functionals were tested for a few ruthenium complexes,
including Ru(bipy)3

2+. Besides the excitation energies, for
which hybrid functionals and their range-separated and meta
counterparts are the most accurate, Atkins et al. focused on the
energy gaps between excited states, which tend to be best
described by the pure generalized gradient approximation
exchange-correlation functionals.87 Since we are in this work
interested in excitation energies, this confirms our choice for
the M06 functional.

Figure 2. Experimental UV−vis absorption (top, Word et al.76 and
this paper) and TD M06 spectra (bottom) of Ru(bipy)3

2+. Vertical
excitations for the in vacuo TD M06 spectrum are reported as orange
spikes. Computed spectra have been smoothed using Gaussian
functions of half-width at half-height of 0.333 eV (default value of
Gaussview). The computed spectra have not been rescaled nor
shifted.
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The overall shape of the spectrum is due to the many
transitions from the singlet ground state to singlet excited
states (S0 → Sn ; n = 1, ...), which are spin-allowed. The effect
of the solvent seems very modest, both from an experimental
and a computational point of view. In addition, the effect of
PCM with respect to the calculation in vacuo (dashed red line
in Figure 2) is negligible for the first strong absorption band
centered at about ∼450 nm (∼2.75 eV) and is rather small for
the second peak located between 300 and 200 nm, i.e., in the
UV region, with discrepancies smaller than 10 nm.
2.3. Optimization of the Ru(II)@CTF Models. To

investigate the influence of embedding the ruthenium
complexes within a CTF support, a Ru(II)@CTF model was
constructed as schematically shown in Figure 1c. A CTF
composed of triazine nodes interlinked with bipy linkers was
considered. The bipy residues embedded into the CTF can
naturally act as ligands for the ruthenium complexes, together
with two other ligands that remain exposed inside the pore of
the CTF.
The investigated model consists of two full CTF pores to

minimize “edge effects” due to the sudden truncation of our
cluster model (see Figure 1c). The cluster was terminated by
completing the coordination of carbon atoms with hydrogen
atoms. During the geometry optimization, the structures were
allowed to relax freely and they converged to approximately
planar structures, with small differences due to the different
types of ligands.
Because the models including the COFs are very large (10

triazine and 34 pyridine rings, see Figure 1c), geometry
optimizations of the models including the COFs were carried

out with a step-by-step approach. First, the COFs were
optimized using a small basis set (e.g., LanL1DZ). Second, the
system was reoptimized with the addition of the Ru(II) cation
and the two other ligands at the same level of theory. Finally,
the total system was reoptimized at the M06/LanL2DZ level of
theory within Gaussian 16 standard convergence criteria.

3. EXPERIMENTAL DETAILS

The UV−Vis absorption spectrum was collected using a
Shimadzu UV1800 UV−vis spectrometer. The sample was
prepared by dissolving 1 mg of Ru(bipy)3(PF6)2 (Sigma-
Aldrich) in 1.5 mL acetonitrile (Sigma-Aldrich, used without
further purification). The solution was filtered through a 0.45
μm Whatman syringe filter and placed in a 1 cm × 1 cm
cuvette. Further dilution of the sample was performed to
obtain the desired absorbance range.

4. RESULTS AND DISCUSSION

4.1. Ground State Properties of Isolated Complexes.
The three ligands investigated here all maintain a largely planar
geometry when coordinating with a Ru(II) cation; the dihedral
angles linking the two aromatic subunits are less than 1.5°.
However, they contain a different number of nitrogen atoms (2
in bipy and 4 in bipm and bipz as shown in Figure 1b).
Frontier orbitals of the ruthenium complexes may be sensitive
to the nitrogen content of the ligands and their different
aromaticity. In Figure 3, the HOMO and LUMO of
Ru(bipm)3

2+ are displayed, showing a general trend for this
class of complexes. The HOMO, which is a nonbonding (n)

Figure 3. Isosurfaces of the HOMO−3, HOMO, and LUMO of the Ru(bipm)3
2+ compound (complex g in Figure 4). Calculation carried out at the

M06/LanL2DZ level of theory.

Figure 4. Ten RuL3
2+ complexes investigated here. (a) L = bipy × 3; (b) L = bipy × 2, bipz × 1; (c) L = bipy × 2, bipm × 1; (d) L = bipy × 1, bipz

× 1, bipm × 1; (e) L = bipy × 1, bipm × 2; (f) L = bipy × 1, bipz × 2; (g) L = bipm × 3; (h) L = bipz × 2, bipm × 1; (i) L = bipz × 1, bipm × 2;
(j) L = bipz × 3.
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orbital, is mainly localized on the central Ru(II) cation, thus
largely coinciding with a t2g orbital, whereas the LUMO, which
is a π* orbital, is localized on the ligands. In addition, also the
HOMO−3 orbital is visualized as it is the first occupied orbital
below the HOMO, which is mainly localized on the ligands. In
contrast, the HOMO−1 and HOMO−2 orbitals are mainly of
the t2g type (see Figure S2 of the Supporting Information).
It is now interesting to investigate to what extent the

nitrogen content in the ligands affects their orbital energies.
Various complexes were considered as schematically shown in
Figure 4. For each of these complexes the energies of the
HOMO, LUMO, and HOMO−3 in terms of the number of
nitrogen atoms are plotted in Figure 5. The energies of both
frontier orbitals decrease by ∼1 eV by going from the
Ru(bipy)3

2+ complex, containing only 6 nitrogen atoms (black
circles), to complexes with only bipz and bipm ligands (red,
pink, yellow, and orange circles), which contain 12 nitrogen
atoms instead. The simultaneous decrease in energy for both
types of orbitals results in a rather flat profile by about 0.2 eV
for the HOMO−LUMO gaps. Nevertheless, a small minimum
at N = 8 atoms can be discerned, a recurring feature in many
energy gap profiles of these complexes as will be shown later.
While the HOMO−LUMO gap seems largely unaffected by

the ligands, the energy gap between orbitals mainly localized
on the ligands shows a different behavior. The contribution of
the nitrogen atoms is small in the HOMO−3 orbital, as can be
seen in the expansion in atomic contributions of the wave
function (Table S2 in Supporting Information). As a result, the
energy of the HOMO−3 is only slightly affected by the
increase in number of nitrogen atoms from 6 to 12 (Figure 5
bottom left panel). Then, as expected, the energy gap between
the LUMO and HOMO−3, which is indicative for ligand−

ligand transitions, decreases with the number of nitrogen
atoms in the complexes, as shown in the bottom right panel of
Figure 4. These conclusions are in agreement with our
previous work on the ground state properties of RuL3

2+.62

Thus, the energy difference between the HOMO−3 and
LUMO can be considered as a sort of effective “ligand gap”,
i.e., an energy gap between states mainly localized on the
organic rings. Even if this gap shows significant internal
variations for a fixed number of nitrogen atoms in the complex,
it seems to be more clearly dependent on the nitrogen content
than the HOMO−LUMO gap, as it spans a full 1 eV range
(see Figure 5, right panels).
Further clarification for the previous findings can be found

by inspecting the electronic density of states (eDoS) for
Ru(bipy)3

2+ (see Figure 6). It confirms that the major
contributions of ruthenium around the band gap are found
on the HOMO, HOMO−1, and HOMO−2.
Such an analysis was also performed for the different

complexes having a varying degree of nitrogen content. The
eDoSs are superimposed in the left pane of Figure 7, showing
that the nitrogen content actually affects all the eigenvalues of
the systems. With an increasing number of nitrogen atoms in
the ligands we observe decreasing energies; i.e., the distribution
is shifted to the left side of the plot, as indicated by the colored
arrow. The contributions of the eDoS originating from
ruthenium, while mainly localized on the HOMOs and on
virtual states which are about 5 eV higher in energy than the
LUMOs (see Figure 6), are still affected by the number of
nitrogen atoms in the complexes, as shown in the right pane of
Figure 7.
The organic ligands investigated here are all heteroaromatic

compounds and the degree of aromaticity might play a role to

Figure 5. Energies of LUMOs (top left panel), HOMOs and HOMOs-3 (bottom left panel). Energy differences between HOMOs and LUMOs
(top right panel) and HOMOs-3 and LUMOs (bottom right panel). The ten RuL3

2+ complexes are (a) L = bipy × 3; (b) L = bipy × 2, bipz × 1;
(c) L = bipy × 2, bipm × 1; (d) L = bipy × 1, bipz × 1, bipm × 1; (e) L = bipy × 1, bipm × 2; (f) L = bipy × 1, bipz × 2; (g) L = bipm × 3; (h) L
= bipz × 2, bipm × 1; (i) L = bipz × 1, bipm × 2; and (j) L = bipz × 3. Calculation carried out at the M06/LanL2DZ level of theory.
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elucidate the observed trends for the energy levels in terms of
the nitrogen content. Aromaticity is usually considered as a
particular stabilization of the occupied states localized on
aromatic rings with respect to the virtual states. This property
can be quantified using a number of different scales and
indexes. Herein we used the aromaticity index of Bird,88,89

which is based on the resonance stabilization energy. The latter
property is smaller for pyrimidine (40.6 kcal/mol) and
pyrazine (40.9 kcal/mol) than for pyridine (43.3 kcal/
mol).88 This fact can be qualitatively understood in terms of
electron content because adding more nitrogen atoms, with
additional electron pairs that do not participate in delocalized
π orbitals, decreases the overall stabilization. We notice that
the energy difference between the HOMO−3 and LUMO has
some correlation with Bird’s aromatic stabilization energy, as
shown in Figure S3 of the Supporting Information. However,
we have not found any clear correlation between the HOMO−
LUMO gap and the aromaticity index of Bird.88,89 This is
reasonable since this gap is strongly affected by ruthenium,

which is not taken into account by this aromaticity descriptor.
We also investigated the correlation with some other
aromaticity indices. More information can be found in section
S2.1 and Figure S4 of the Supporting Information.
In order to effectively catalyze redox reactions, ruthenium

has to possess a net charge. The partial charges obtained with
both the Hirshfeld and Mulliken partition schemes of the ten
complexes are reported in Table S3 of the Supporting
Information. As can be seen, the Ru(II) cation is consistently
positive, but a correlation with the number of nitrogen atoms
or aromatic descriptors is not evident, because the differences
are rather small, being of the order of 0.02 |e|. As expected, the
Hirshfeld charges are in absolute values smaller than the
Mulliken charges.90

In conclusion from the ground state properties of the
isolated Ru(L)3

2+, it is observed that the HOMO−LUMO
gapapproximately describing the MLCTremains nearly
unaffected by the number of nitrogen atoms, whereas the
HOMO−3-LUMO gapapproximately describing the li-
gand−ligand gapis reduced for a higher number of nitrogen
atoms.

4.2. Excited States Properties of Isolated Complexes.
The photoredox and charge-transfer properties are strongly
affected by the optical properties of the complexes, in
particular by their absorption and emission of UV−vis
radiation. First, we discuss the singlet and triplet excitations
in the visible-light range which are mainly of the MLCT type,
as stated before. Afterward, we focus on the triplet metal-
centered states. The triplet excitations are spin-forbidden but
play an important role in TTET. The energy of the first spin-
allowed transition, i.e., the energy of the first singlet state (S1),
approximates the optical gap, as discussed previously. From
our TD-DFT calculations we determine how it changes with
the nitrogen content of the complexes. The results are shown
in the upper panel of Figure 8.
The complex showing the lowest S1 energy contains eight

nitrogen atoms and is composed of two bipy ligands and one
bipz (blue dot, complex b), whereas the complex with the
highest energy is Ru(bipz)3

2+ (red dot, complex j), with a
difference of about 0.4 eV. A similar distribution of values,

Figure 6. eDoS of Ru(bipy)3
2+ complex, with contributions due to the

Ru(II) cation and the N atoms colored in red and blue, respectively.
Calculation carried out at the M06/LanL2DZ level of theory. The
zero is set at the calculated ionization energy.

Figure 7. Total eDoS (left) and contribution localized on ruthenium (right) of the ten complexes investigated here, sorted by color according to
the number of N atoms in the ligands (N = 6, 8, 10, and 12). The eDoS are superimposed. Calculations have been carried out at the M06/
LanL2DZ level of theory.
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albeit with different magnitudes, can be observed for the most
intense transitions of the visible spectra, occurring between 3
and 2.7 eV, at ∼430 nm as can be seen in Figure S5 of the
Supporting Information. All excitation energies and their
corresponding oscillator strengths are given in Table S4 of the
Supporting Information.
Although the experimental absorption spectrum is mainly

due to vertical excitations, adhering to the Franck−Condon
principle, we also examined to which extent the geometries of
the excited MLCT S1 and S2 states change when we optimize
them. These states correspond to adiabatic, i.e., nonvertical,
excitations and may be observed in fluorescence measure-
ments. We find that their relaxed excited-state geometries are
very similar to those of their respective ground states (see
Figure S6 (left pane) Supporting Information). Moreover, the
overall effect of geometry optimization on the excitation
energies is a shift toward lower values, which is rather constant,
i.e., between 0.43 and 0.66 eV for the ten RuL3

2+ complexes
(Table S4 and S5 of the Supporting Information). For
Ru(bipy)3

2+ the S1 energy for the relaxed geometry becomes
2.00 eV (compared with 2.45 eV when the geometry of the
excited state is not optimized), corresponding to a wavelength
of 618.7 nm. This is in good agreement with a fluorescence
emission occurring at 615 nm.91,92

Nested between the S0 → Sn transitions, there are spin-
forbidden MLCT transitions to triplet states (Tn), whose
contributions to the absorption spectra are negligible.
However, these Tn states play a role in TTET and can still
be encountered during nonradiative processes and decays

which require a relaxation of the geometry. They therefore
have to be taken into account to describe the electronic
structures of complexes with emerging catalytic properties.93,94

The adiabatic transition energies of the first triplet states
closely follow the trend of the S1 ones (Figure 8, bottom
panel), albeit with a smaller overall variation (∼0.3 eV instead
of 0.4 eV) and at lower energies. However, they still pinpoint
Ru(bipy)2(bipz)

2+ as the complex with the smallest transition
energy (N = 8). As expected, the distributions of T1 and S1
excitation energies versus the number of nitrogen atoms also
follow a pattern very similar to that of the HOMO−LUMO
gaps (see Figure 5).
Transitions toward T1, T2, and T3 states are all of the MLCT

type. In the case of the Ru(bipy)3
2+, Ru(bipz)3

2+, and
Ru(bipm)3

2+ complexes, i.e., those with three equal ligands,
the corresponding vertical transitions are basically degenerate
as the energy difference is below the 0.02 eV threshold. This
degeneracy is removed when a ligand is substituted with one of
a different type, as shown in Figure S7 of the Supporting
Information for the case of Ru(bipy)3

2+. By a subsequent
exchange of ligands, the T1−T2−T3 energy separation
increases from less than 0.02 eV to more than 0.2 eV. In
addition, the triplet transitions whose degeneracy is broken by
passing from RuL3

2+ to a Ru(L)2L′2+ complex (with L and L′
two different ligands), do not involve charge transfer to both L′
and L, but to only one ligand, either L′ or L.63
At energies higher than the triplet MLCT states, triplet

states centered on ruthenium can be found, which are called
metal-centered states (3MC).95 These states are found at ∼3.3
eV in the vertical excitations, which qualitatively agrees with
what has been observed for the ground state eDoS (see Figure
7), showing contributions due to Ru(II) cations at energies
higher than 3 eV above the LUMO.
While singlet and triplet MLCT states have a relaxed

geometry close to that of the ground state, relaxed 3MC states
show more significant distortions: there is a loss of coplanarity
between the two rings of the ligands, with dihedral angles
between the two aromatic subunits of more than 7° (see Figure
S6 (right pane) of the Supporting Information). This suggests
that intersections with nearby excited states may occur,
potentially leading to ISC phenomena.
Even if these triplet states are centered on the metal, they

involve an increase in the positive Hirshfeld partial charge on
the Ru(II) ion with respect to the ground state, as shown in
Figure S8 of the Supporting Information. This can be
explained as 3MC states are thought to be predissociation
states,91,96−98 thus leaving a higher excess positive charge on
the Ru(II) cation. While this latter increment is small in
absolute value, in cases with a high content of nitrogen atoms,
it represents an increase of about 40% in the overall positive
charge on the cation, potentially changing the energetics of
intermediate and transition states during catalytic processes
going via the TTET mechanism.

4.3. Ground State Properties of Complexes Embed-
ded into a COF. In second instance we investigate how the
electronic properties of the ruthenium complexes are affected
by embedding them into a CTF support. The CTF is
composed of triazine nodes interlinked with bipy linkers and
the bipy residues embedded into the CTF can naturally act as
ligands for the ruthenium complexes. The fact that the ligand
embedded into the CTF is bipy has also the effect of reducing
the number of possible ligand combinations in the RuL2

2+@

Figure 8. Vertical TD-M06 energies of the S1 states (upper panel)
and of the optimized T1 states (lower panel). The ten RuL3

2+

complexes are (a) L = bipy × 3; (b) L = bipy × 2, bipz × 1; (c) L
= bipy × 2, bipm × 1; (d) L = bipy × 1, bipz × 1, bipm × 1; (e) L =
bipy × 1, bipm × 2; (f) L = bipy × 1, bipz × 2; (g) L = bipm × 3; (h)
L = bipz × 2, bipm × 1; (i) L = bipz × 1, bipm × 2; and (j) L = bipz
× 3 according to the nomclature introduced in Figure 4. Calculation
carried out at the M06/LanL2DZ level of theory.
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CTF complex with respect to the isolated complexes from 10
to 6, i.e., complexes a−f in Figure 4.
We observe some significant electronic changes with respect

to the isolated ruthenium complexes discussed before. In
particular, occupied framework states are found between the
states localized on the metal and on the ligands, as
schematically shown in Scheme 2. This conclusion is in
agreement with previous ground state calculations of RuL2

2+@
CTF.63 According to the molecular orbital composition, the
occupied t2g and virtual eg d orbitals of the Ru(II) cation
remain separated in energy by ∼6 eV for the Ru(bipy)2

2+@
CTF, which is close to the energy separation observed in the
eDOS of the isolated complex (see Figure 6). However, in the
Ru@CTF system, there are occupied framework states
between the occupied orbitals of ruthenium and the virtual
orbitals on the ligands, lowering the HOMO−LUMO gaps
substantially by about 2.5−2.8 eV compared to the isolated
complexes.
Furthermore, we also investigate the influence of the

nitrogen content on the electronic states of the system. The
nitrogen content has a clear influence on the electronic states
of the system, as schematically shown in the right pane of

Scheme 2. An increased nitrogen content from 6 to 10 atoms
reduces the energy of t2g and eg orbitals by about 1 eV with
respect to Ru(bipy)2

2+@CTF, the shift for Ru(bipm)2
2+@CTF

is somewhat smaller, i.e. 0.6 eV. Instead the energy of the
framework orbitals (∼8.3 eV) is rather unaffected. The virtual
orbitals of the ligands are decreasing with about 0.5 eV, thus
bringing the energy gap between HOMO and LUMO to values
of the order of 0.6−0.8 eV for nitrogen rich compounds such
as Ru(bipz)2

2+@CTF, Ru(bipm)2
2+@CTF, and Ru-

(bipzbipm)2+@CTF. The exact numerical values for the
HOMO−LUMO gaps of the CTF-embedded complexes are
reported in Table S6 of the Supporting Information.

4.4. Excited States Properties of Complexes Embed-
ded into a COF. In CTF-embedded complexes, we notice
that the orbital character of the first allowed TD M06
excitation, i.e., the first excitation with nonvanishing oscillator
strength, is no longer mainly of the MLCT type as was the case
for isolated complexes. Instead, we observe a charge transfer
from states localized on the organic framework toward states
localized on the complex, as shown in Figure 9. The target
orbital is mainly localized on the bipyridine ligand of the CTF
and only marginally on the ligands exposed inside the pore.

Scheme 2. Schematic Representation of Orbital Energies for the Ground State of Ru(bipy)2
2+@CTF (Left Pane) and

Ru(L)2
2+@CTF with 10 Nitrogen Atoms (Right Pane), Indicating the Proposed Change of Orbital Energies Due to an Increase

of Nitrogen Content from 6 to 10 Atoms in the Ligandsa

aThe energy levels in the right pane correspond to Ru(bipz)2
2+@CTF and Ru(bipzbipm)2+@CTF. Calculations are at the M06 level of theory.

Figure 9. Orbitals involved in the first allowed transition in Ru(bipy)2
2+@CTF complex. Calculation carried out at the M06/LanL2DZ level of

theory.
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These orbitals are the LUMOs in case of Ru(bipy)2
2+@CTF. It

may be possible that if the pore ligands should have a higher
nitrogen content, the target orbital would be situated on them
instead, as ground state calculations on similar periodic
systems suggest.63

The first allowed transition in RuL2
2+@CTF is thus of the

crystal to crystal charge transfer (CCCT) or crystal to ligand
charge transfer (CLCT) type. In the work of De Vos et al.,
where periodic ground state electronic structures were
performed on the ruthenium complexes in CTF frameworks,
it was indeed suggested that excitations of the highest occupied
crystal orbital to the linkers or ligands attached to the
ruthenium ion might be interesting, but it could not be
deduced whether those states would be realistic as they are
spatially relatively far separated. Here we find based on excited
state calculations that these transitions are indeed realistic as
they have a nonvanishing oscillator strength. A list of all
excitation energies and their corresponding oscillator strengths
is given in Table S7 in the Supporting Information.
Changing the nitrogen content of the ligands connected to

ruthenium and pointing into the pores of the material, induces
a significant drop in the vertical excitation energy of the most
intense transition, with values as low as 1.6 eV for an increasing
number of nitrogen atoms in the ligands around ruthenium
(see Figure 10). So, while in isolated complexes the excitation

energy of the strongest transition is in the UV/blue visible
region, the gap falls into the orange-near-infrared (NIR) region
when the complex is included into the CTF (see Figure 11).
Furthermore, it has to be emphasized that this effect is specific
to this metal complex@CTF adduct, as the optical gap of the

CTF model alone (i.e., without any anchored ruthenium
complex) is ∼3.32 eV, which is close to the near-UV range of
energies instead.
While in isolated complexes the change of the excitation

energy of the strongest transition with the number of nitrogen
atoms of the ligands was small and nonmonotonous, a clear
decrease of the excitation energy with the nitrogen content is
observed in the embedded complexes (see Figure 10). This is
due to the fact that the HOMO is no longer localized on the
ruthenium but on the CTF, whereas the target virtual orbital is
mainly localized on the ligands of the ruthenium complex.
These results show that the hybrid RuL2

2+@CTF system
offers an extra degree of versatility in tuning the electronic
response of the photocatalyst. By tuning the nitrogen content
of the anchoring linkers pointing into the pore of the RuL2

2+@
CTF system, the optical gap can be reduced by about 0.5 eV
and the direction of the charge transfer can be designed. A
schematic representation of the excitation energies correspond-
ing to the strongest transition in both isolated, embedded
ruthenium complex and isolated CTF is shown in Figure 11
together with an indication on how these excitations would be
influenced by the nitrogen content.
As it is known that TD-DFT might fail to correctly

reproduce charge-transfer excitations,99 it is important to
corroborate the above interpretation with ground state
considerations. We notice here that the predicted TD M06
optical gaps shown in Figure 10 are in qualitative agreement
with those of the occupied framework orbitals/virtual ligand
orbitals described in Scheme 2 calculated with ground state
M06 calculations. Furthermore, the trend with the nitrogen
content is similar. Moreover, to further assess the reliability of
the previous M06 ground state considerations, we have
employed the range-separated CAM-B3LYP exchange correla-
tion functional (which is often considered better suited to
describe charge-transfer phenomena100) to compute Kohn−
Sham gaps in the isolated and CTF-embedded complexes. In
this case, the gap between the occupied framework orbitals and
virtual ligand orbitals calculated at the CAM-B3LYP level of
theory is about 1.9−1.7 eV smaller than the HOMO−LUMO
gap in isolated complexes, which is in qualitative agreement
with the aforementioned M06 results. With CAM-B3LYP,
however, all the absolute energies are significantly blueshifted.
This seems reasonable, as range-separated hybrid functionals
are outperformed by global hybrid functionals for n → π*
transitions.64 To further investigate the nature of this
transition, we have used the Mulliken averaged configuration
(MAC) index of Ciofini and co-workers that is able to spot
ghost states which appear by significantly underestimating the
energy.101 This diagnostic index, which discerns unrealistic
charge transfer produced by the limitations of the level of
theory, is a generalization of the Mulliken estimation of

Figure 10. Change of the strongest excitation energy with the number
of N atoms in the ligands around the Ru(II) cation in RuL2

2+@CTF.
The six RuL2

2+@CTF complexes are (a) L = bipy × 2; (b) L = bipy ×
1, bipz × 1; (c) L = bipy × 1, bipm × 1; (d) L = bipz × 1, bipm × 1;
(e) L = bipm × 2; (f) L = bipz × 2. Calculation carried out at the
M06/LanL2DZ level of theory.

Figure 11. Schematic representation of the strongest singlet excitation energies of the isolated and embedded complexes. The lowest excitation
energy for the isolated complex is found for Ru(bipy)2bipz at ∼2.7 eV. For the embedded complexes the excitation energy decreases for an
increasing number of nitrogen atoms. The energy of the first transition with nonzero oscillator strength of the empty CTF is also indicated.
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transition energy for charge transfer excitations. With it we
were able to confirm the charge transfer character of the
transition; it is not a ghost state as the transition energy is
larger than the MAC index. From this, we are ensured that our
TD-DFT results are reliable.

5. CONCLUSIONS

In this work, we have investigated how polypyridyl ligands,
characterized by a varying nitrogen content and aromaticity,
can affect the photocatalytic properties of ruthenium-based
complexes of the type RuL3

2+ in both the ground and the
excited states. As those complexes can be exploited either as
oxidant or reductant agents in photochemical reactions, this
overall insight into their energetics allows a choice for the most
appropriate compound for the specific task at hand. Studying
triplet states with computational approaches is necessary to
optimize catalytic conditions for reactions going through
triplet−triplet energy transfer (TTET), since investigating
nonsinglet states by means of UV−vis absorption is often
unpractical.
In second instance, we studied how the heterogenization of

the ruthenium complexes on a CTF support consisting of
bipyridine ligands affects the electronic ground and excited
state properties of the RuL2

2+@CFT system.
For the isolated RuL3

2+, an increase in the number of
nitrogen atoms in the ligands redshifts the overall energetics of
the compound, albeit without significantly altering the
HOMO−LUMO gap. The energy gaps between linker−linker
states, on the other hand, are significantly affected by both
aromaticity and nitrogen content of the ligands. Singlet metal-
to-ligand charge transfer (MLCT) excitations are found
between 2.2 and 2.6 eV for complexes within varying nitrogen
content. They are only slightly affected by changing the
ligands. Triplet metal-to-ligand charge transfer (MLCT)
excitations are situated in the 1.5−1.8 eV range and can to a
certain extent be tuned for a range of applications that require
specific activation energies. One particular complex, Ru-
(bipy)2(bipz)

2+, shows a redshift of both singlet and 3MLCT
triplet excited states, making it an interesting candidate for
processes induced by visible light. Changes induced in higher-
energy triplet metal-centered (MC) states moreover deplete
the electronic density around the Ru(II) cation, increasing its
positive charge and, thus, its oxidant power.
For the complex embedded into a bipyridine-composed

CTF, we observe a significant redshift of the allowed
excitations to energies bordering the near IR region of the
spectrum. This allows harvesting these lower energies to
promote charge-transfer excitations. For example, near-infrared
photocatalysis102,103 could greatly benefit from the nanoporous
environment and thus make better use of the near-infrared
solar irradiation (making up 44% of solar irradiation spectrum)
to reduce the ruthenium active site. Furthermore, the first
allowed transition occurs from orbitals localized on the
framework toward orbitals mainly localized on the ruthenium
complex.
Overall, this investigation indicates how optoelectronic

properties of ruthenium complexes can be changed and,
possibly, tuned by the ligands and heterogenization within a
CTF environment. Furthermore, this means that, potentially, a
larger spectrum of radiation can be harvested to activate the
complex. In the future, this kind of investigation could also be
extended to other nitrogen containing aromatic ligands and

transition metals, e.g., iridium, to further develop these
promising platforms for heterogeneous photocatalysis.
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