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Abstract: Salmonella can be categorized into many serotypes, which are specific to known

hosts or broadhosts. It makes no difference which one of the serotypes would penetrate the

gastrointestinal tract because they all face similar obstacles such as mucus and microbiome.

However, following their penetration, some species remain in the gastrointestinal tract; yet,

others spread to another organ like gallbladder. Salmonella is required to alter the immune

response to sustain its intracellular life. Changing the host response requires particular effector

proteins and vehicles to translocate them. To this end, a categorized gene called Salmonella

pathogenicity island (SPI) was developed; genes like Salmonella pathogenicity island encode

aggressive or modulating proteins. Initially, Salmonella needs to be attached and stabilized via

adhesin factor, without which no further steps can be taken. In this review, an attempt has been

made to elaborate on each factor attached to the host cell or to modulating and aggressive

proteins that evade immune systems. This review includes four sections: (A) attachment factors

or T3SS- independent entrance, (B) effector proteins or T3SS-dependent entrance, (c) regula-

tion of invasive genes, and (D) regulation of immune responses.
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Introduction
Nearly all pathogens that attack the gastrointestinal tract spring from food. Pathogenic

bacteria such as Salmonella spp., Campylobacter spp., Yersinia entrolitica, Shigella

spp., and Enterotoxigenic Escherichia coli can invade the gastrointestinal lumen and

cause diarrhea and other damage.1,2 One of the most important bacteria that penetrates

the lumen out of different materials, such as dairy, vegetable, egg, etc., is Salmonella

spp.3 Salmonella may cause death all around the world.4 Some species such as5 S.

Typhi specifically show inclination towards humans and cause a higher rate of mor-

tality; however, other species such as6 S. enteritidis cause self-limiting diarrhea; of

note, the latter can be just as deadly as the former. Further, statistics have shown

a quarter of mortality rates associated with the former type. However, all species should

overcome a number of barriers, such as stomach andmucus, and evade an immune cell.

Pathogenic Salmonella has a particular factor that differs from the non-pathogenic ones

such as Type-3 Secretion System (T3SS) and Salmonella pathogenicity island (SPI).7,8

Interestingly, Salmonella has a two-cluster distinct T3SS, which is encoded by SPI-1

and SPI-2. Almost all effectors of SPI-1 and SPI-2 mediate cell invasion and intracel-

lular survival, respectively.9,10 Having passed through stomach via food, Salmonella

penetrates the intestine and causes enteritis. To this end, Salmonella needs to be

attached to the host cell and cross the intestinal membrane via M cell or dendritic
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cell (DC).11 Following the attachment, (Part A) T3SS-

independent entrance approach can be adopted by SiiE,

RcK, PagN, and ShdA, or (Part B) T3SS-dependent entrance

can be adopted by SipA, SipC, SopB, and SopE. The viru-

lence factor is activated to modulate host cell life for the

benefit of the striker. Regulation between activation of adhe-

sion and virulence factor needs to be adjusted and activated

(Part C) at a right moment. To ensure maximum coordina-

tion, this pathogenic gene is clustered into one genomic

island. Finally, the immune response (Part D) is activated,

and necessary actions are taken to put an end to this

adventure.

Attachment Factors
(T3SS-Independent Entrance)
Adhesin Proteins
SiiE

For Salmonella infection or invasion to occur, the first patho-

gen should reside in the site of infection. SiiE is a non-

fimbrial adhesin of Salmonella that can be attached to the

epithelial cell.12 This effector is transferred through T1SS

and encoded by SPI-4. T1SS system is formed by three

subunits: SiiF as an inner membrane and ATPase, SiiD as

a transmembrane unit, and SiiC as an outer membrane

protein.13 SPI-4 and T1SS, as well as its substrate SiiE, are

required only to invade the polarized cell.14 HilA regulates

the transcription of SPI-4 by a master regulator, SirA.15 The

signal sequence of SiiE is located at terminal C and has a long

linear structure to cross the LPS structure.16

Biofilm Association Protein (BapA)

Biofilm-associated protein (Bap) has a major role in the

production of biofilm composed of cellulose and curli

fimbriae. Bap secretes through T1SS and resides on the

bacterial surface.17 Both components are under the regula-

tion of CsgD regulator. CsgD activates csgBAC operon to

produce curli pili.18 Active production of Bap is also

regulated by CsgD regulator.17 As a curli fimbriae operon,

CsgA can be up-regulated in many ways in gallstone.19

Resistance to Complement Killing (Rck)

The outer membrane protein, Rck, has a major role in

invading the host cell. Rck generates a zipper-like struc-

ture by stimulating Cdc42, and Rac1 may produce actin

formation.20 Furthermore, Rck can mediate complement

resistance by inhibiting polymerization of C9 on the bac-

terial surface.21 Rck is attached to the Epidermal Growth

Factor Receptor (EGFR) directly, and the attachment site

differs from EGF, leading to the auto phosphorylation of

the EGFR cytosolic tail.22 This phosphorylation leads to

a signaling cascade and the activation of Src, which is

a signaling molecule that finally causes bacterial

internalization.23 Rck binds to the extracellular matrix

(ECM). For more information, see Table 1.

PhoP Activated Gene N (PagN)

PagN is another outer membrane protein that interacts with

the eukaryotic epithelial cell via haemagglutination prop-

erty. This protein plays a role in adhesion to and invasion

of the host cell. Heparan sulfate on the host cell acts as

a receptor for this ligand.24,25 This gene is induced under

cation-limited circumstances and in a PhoP-dependent

manner.26 This condition may occur inside a macrophage.27

In the presence of cation, PhoQ inhibits the activation and

expression of PhoP subset gene.27

Salmonella Typhi Invasion (STIV)

The next outer membrane protein involved in pathogenesis

and invasion is STIV. Through the extracellular loop, STIV

remains attached to the Met, the tyrosine kinase of the intest-

inal host cell.28 After attachment, the activation of Rac1 and

Src via Met phosphorylation leads to actin polymerization

and bacterial engulfment. This protein is required for sys-

temic spread and intestinal colonization in S. Typhi.29 This

protein can independently act in invasion and pathogenesis,

which may encourage synergism with T3SS (Figure 1).29

Another Adhesin Factors

MisL is a protein of membrane insertion and secretion and

is expressed in an outer membrane protein, which is

encoded by SPI3, and binds to fibronectin. This attachment

helps Salmonella invade epithelial cell and intestinal

persistence.30 ShdA is also translocated via an auto-

transporter system to the outer membrane and binds to

fibronectin.31 The tip of flagella has a major role in the

attachment of bacteria to the eukaryotic cell. Furthermore,

flagella can actively cause bacteria to move towards

a favorable attachment place.32,33 OmpD can interestingly

be attached to the epithelial cell, and OmpD− mutant has

mitigated affinity with the host epithelial cell.34

Virulence Factor of Salmonella
Salmonella Pathogenesis Island (SPI)
SPI encoder of T3SS directly translocates effector protein

inside the host cell. SPI can be found in chromosome or in

plasmid and its G+C differs from that in the surrounding

regions. SPI is often associated with a mobile genetic
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element such as phage, insertion sequence (IS), and

transposon.35 SPI-1 encodes SipA and SipB and, in

a similar fashion, SPI-2 encodes SseF, Srf, and SseG;

SPI-3 encodes MisL; SPI-4 encodes SiiE; SPI-5 encodes

SopB; SPI-6 encodes Tae4.36 One of the important pro-

teins is called SopB (Salmonella outer protein B) that has

a major role in the secretion system and the recurrence of

neutrophil.37 Further to that, SopB interacts with chloride

channel, affects ion balance in the host cell, and manages

Salmonella-containing vacuole to inhibit lysosome

vacuole fusion.38 After translocation, SopB activates Rho

GTPase in the host cell. Furthermore, SopB has a lipid

phosphatase activity and hydrolyzes phosphatidylinositol

biphosphate that causes failure in Na+/H+ activity

exchange and diarrhea.39 Phosphatase activity can reduce

phosphatidylinositol biphosphate PI (3, 4) and induce Akt

(Protein kinase B that regulates cell survival) to ensure the

best bacterial growth inside the cell and inhibit

apoptosis.40–42 The reduction of the phosphatidylinositol

biphosphate leads to a decrease in negative charge on the

surface of Salmonella-containing vacuole (SCV), resulting

in the prevention of lysosomal enzyme fusion.43 After the

invasion and lipid activity of SopB, RhoH, RhoD, RhoB,

and RhoJ recurred within the location of Salmonella

invasion. RhoB and RhoH activate Akt, and Rhoj has

a role in the invasion of Salmonella; finally, RhoD has

a role in membrane trafficking and actin reorganization.44

SopB can also subvert signaling in the host cell and cause

actin rearrangement in membrane cell.44,45 On the other

hand, SopB increases the possibility of the return of Rab5

to the SCV and, thus, causes the aggregation of phospha-

tidylinositide-3- phosphate on SCV.46 Tae4 encoded by

SPI-6 can help Salmonella overcome colonization resis-

tance. By inducing bacterial lysis, Tae4 (an antimicrobial

amidase) can confer a benefit to the Salmonella in the gut

lumen establishment.47 Another effector in Sop family is

SopC that mediates invasion, neutrophil recruitment, and

fluid secretion. This effector is found in S. dublin and

some strains of S. typhimurium.48

Vi Antigen (Capsule)
One of the important factors present in specific Salmonella

such as S. Typhi is a polysaccharide capsule, called Vi antigen.

Because of polysaccharide cover, the O polysaccharide may

explain the resistance of bacteria to a specific antibody against

O polysaccharide. Vi inhibits the deposition of C3b in the

bacterial cell.49 Another noteworthy point to consider is that

natural IgM secreted by B-cell cannot be attached to the

Table 1 Specifications of Salmonella Effector Proteins and Their Mechanisms

Effector

Proteins

Location Activity Mechanisms

SipA SPI-1 Activate caspase-1 Maturation of SCV

SopB SPI-5 Activate Rho –GTPase, affecting ion balance Maturation of SCV-

mediate invasion

SopE SPI-5 (Prophage) Nucleotide exchange factor Maturation of SCV-

mediate invasion

SopA SPI-1 Involved invasion Maturation of SCV

SopD Outside of SPI-1, cooperative with SopB,

(translocate with SPI-1 T3SS)

Inhibit Rab-7 activity Maturation of SCV-

mediate invasion

SpvB Plasmid (in subspecies I), chromosome in II, IIIa and

VII

Induce apoptosis, Similar to vibrio accessory

cholera entrotoxin

Mediate invasion

SpiC SPI-2 Inhibit endosomal trafficking Mediate invasion

SseF SPI-2 Localize the SCV to the Golgi region Mediate invasion

SseG SPI-2 Interact with SseF Mediate invasion

SseJ SPI-2 Interact with OSBP1 Mediate invasion

SseL SPI-2 Mediate macrophage killing Mediate invasion

SspH2 SPI-12 Immune evasion Intracellular survival
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bacterial surface, which is an important step for phagocytosis

and ROS as a mediator of neutrophil killing.50 Vi antigen is

encoded by SPI-7, which also encodes the T3SS effector SopE

and pilus type IVb.51–53 Vi is encoded in viaB locus and TviA

is a positive regulator for this locus. TviA can downregulate

SPI-1 and flagellar genes to stop the invasion and motility

process. TviA can repress flagellar regulator flhDC, the master

regulator (which finally activated promotors),54 and alter the

expression of T3SS and Vi in response to osmolarity. In fact,

HilA controls the expression of T3SS, and TivA can repress

the expression of HilA.55 On the other hand, SPI-1 and flagella

are expressed to facilitate the Salmonella invasion,56 because

Vi mask of the cell surface can reduce inflammatory cytokine-

like IL-8 by attaching it to the prohibitin molecule on the

surface of the intestinal cell.57 Toll-like receptors (TLR) can

recognize specific molecules on the pathogens. After identify-

ing the pathogen via TLR, chemoattractants such as IL-8 are

secreted. Furthermore, Vi antigen (masking) can reduce IL-8

production in a TLR-dependent manner.58,59

Lipopolysaccharide (LPS)
One of the important factors on the surface of Salmonella is

LPS. This factor has an important role in intestinal coloniza-

tion, macrophage resistance, and modulation of the humoral

immune response.60,61 LPS consists of three parts: Lipid A as

an inner part, oligosaccharide as a middle part, and O antigen

as a variable-length outer part.62 TLR4-MD2-CD14 can recog-

nize the inner part of LPS, Lipid A; however, O antigen stands

against humoral immune response.63 Furthermore, LPS inhi-

bits the penetration of lipophilic antibiotic such asmacrolide.64

However, if O antigen is too long or is modified via molecules

that mimic the host cell, such a sialic acid modulates the

immune system.65 Factors that affect elongated O antigen

production include temperature and iron. Data have shown

that iron limitation in medium causes a change in the elonga-

tion of LPS. A decrease in temperature can change phosphate

and amine in an LPS structure that protects Salmonella from

bacteriophage.66,67 S. paratyphi A expressed O2 antigen with

a very long O-antigen chain that prevents both antibody bind-

ing and Neutrophil respiratory burst.68 The model of LPS is

presented in Salmonella, where O12 is the backbone in all

three types, O2 in S. Paratyphi A, andO9 orO4 in S. Typhi and

S. typhimurium. The rfbE gene connects cytidine diphosphate-

paratose to the cytidine diphosphate-tyvelose. In the case of S.

Paratyphi A, rfbE is a pseudogene and is the reason why

paratose remains (very long O2 antigen) on the bacterial

surface.69,70 Therefore, non-opsonic paratose in a very long

O2 helps S. ParatyphiA remain unrecognizable to human IgM.

Figure 1 Interaction between Salmonella attachment factors (T3SS-independent entrance) and host proteins.
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Salmonella-Containing Vacuole (SCV)
SPI-2 encodes different types of secretion system (Type 3)

that are important for maintaining the intracellular life of

Salmonella.71 The effector protein may mimic the struc-

ture of the main cellular proteins to interact with modula-

tor enzyme.72 To internalize the first vesicle, budding

should be formed and, then, transferred to the inside of

the cell; finally, its tethering and fusion take place. In brief,

the membrane proximal coat binds to the specific mem-

brane-associated GTPase; then, SNAREs and transmem-

brane cargo protein joined together in place of assembling

coat.73 Finally, following the transfer of vesicle, uncoating

occurs through the inactivation of GTPase and vesicle

merges with the acceptor compartment by means of

Rab5.74 Following the internalization of Salmonella into

the host cell, bacteria engulf the vacuole by an early

marker, which is to be later replaced by lysosomal-

associated protein.75 In other words, at the first hour,

EEA1 (early endosomal antigen 1) and Rab5 are present

on the SCV; however, after this time, they are replaced

with LAMP (lysosome-associated membrane proteins).76

Regulator Rab protein mediates transport and fusion of

vesicle between the receptor and donor component.77

Phosphatidylinositol-3-phosphate develops an interaction

between EEA1 and Rab5 on the SCV.78 Salmonella-

induced filaments (SIF) are membrane tubules in the

eukaryotic cell that can provide Salmonella with access

to nutrition.79 Rab5 by means of phosphatidylinositol-

3-phosphate facilitates the attachment of EEA1 to SCV,

which, in turn, produces fusion with endosome.80 After

an hour, an exchange of the marker occurs by replacing

Rab5 by Rab7 and lysosomal-associated membrane pro-

tein (LAMP) on the SCV surface.81 LAMP and Rab7 are

centralized to SIF and, in this stage, SIFs are free of

hydrolysis enzyme.82 In fact, Rab7 causes the recurrence

of the attachment of LAMP to the SCV and positioning in

a perinuclear region.81 Rab interacting lysosomal protein

(RILP), the effector of Rab7, can use a microtubule motor

to manage the perinuclear position of SCV.83 In this stage,

sorting nexin 1 (SNX1) removes the cation-independent

mannose-6- phosphate receptor from SCV and prevents

lysosomal hydrolases.84 The most important factors absent

in SCV include cathepsin D and mannose-6-phosphate

receptor.85 SNX1 induces tubulation in an early endosome

in a dose-dependent fashion.86 At the first hour of

Salmonella invasion, SNX1 spreads out in the ruffle mem-

brane that engulfs bacteria.84 After a few hours, v-ATPase

acidifies the SCV that results in the activation of SPI-2.87

SPI-2 and its effector mediate SIF. SIF is a double-

membrane network, and the inner tubular space contains

a portion of host cytosol; however, the outer tubular space

contains an SCV material whose structure may show the

elongation of vacuole-containing bacteria.88–90 Nutrients

can be exchanged between SIF lumen and endolysosomal

system, and pathogen from SCV can reach out to nutrient

through SIF.91 Furthermore, Salmonella subverts the secre-

tory vesicle to SCV to obtain nutrient.92 In the final stage,

SCV may combine with endolysosomal vesicle; yet, after

a short while, endolysosomal substance separates from

SCV.93 Vesicle-associated membrane protein 7 (VAMP7)

is a major factor in lysosomal fusion and has a role in SIF

formation and recurrence of late lysosomal to SIF.94 To

inhibit the degradation of vesicle via the lysosomal

enzyme, SopD2 as an effector protein from T3SS-2 should

disrupt Rab7 activity, leading to the inhibition of nucleo-

tide exchange and disruption of the interaction between

Rab7 and dynein.95 Altogether, this process facilitates the

attachment of lysosome without hydrolytic enzyme to

SCV and, thus, provides a safe place for Salmonella

replication.96 SopA mimics the ubiquitin ligase of host

and may induce intestinal inflammation.97 However,

SspH2 is encoded by phage aid to downregulate proin-

flammatory response to the bacteria inside the SCV.98 For

vacuole stability, Salmonella translocates effector Ssej to

the eukaryotic cell to interact with oxysterol binding pro-

tein 1 (OSBP1). OSPB1 is demonstrated to be involved in

translocating sterols from lysosomes to the nucleus and

exchanging sterol with phosphatidylinositol-4-phosphate,

thus leading to the membrane stability of SCV.99 SseF is

an effector that secretes SPI-2 and mediates SCV position

close to Golgi network. The persistence of SCV near the

Golgi required the recurrence of dynein on the SCV

surface.100 SseG interacts with SseF to localize SCV in

the Golgi region and convert the monolayer membrane to

the double-membrane SIF.88,101 SseL mediates macro-

phage killing and inhibits autophagy induced by the for-

mation of ubiquitinated aggregates.102 Salmonella

translocates effector A (SteA) standing on the Sif and

SCV and is involved in regulating SCV membrane

dynamics. This attachment occurs when SteA binds to

the phosphatidylinositol-4- phosphate in the eukaryotic

cell.103 SteD can block MHC of Class 2, deplete surface

MHCII, and inhibit T-cell activation.104 SteC regulates

intracellular replication and interacts with MAP kinase to

induce actin formation.105 SpiC inhibits endosomal

Dovepress Azimi et al

Infection and Drug Resistance 2020:13 submit your manuscript | www.dovepress.com

DovePress
15

http://www.dovepress.com
http://www.dovepress.com


trafficking and is involved in translocating effector pro-

teins such as SseB and SseC.106 Salmonella-induced fila-

ments A and B (SifA and SifB) represent other effector

proteins necessary for SIF formation. SifA interacts with

Rab7 to block the interaction between RILP and Rab7,

leading to the stability of SCV in a perinuclear position.107

SifA also can block the interaction between Rab9 and

SKIP (SifA and Kinesin interacting protein), which has

a major role in the recurrence of Lamp1 to the SCV and

membrane stability.108 SifA binds to the SKIP and Rab9

and forms a stable complex that affects the return of

mannose-6-phosphat receptor to the SCV surface.85

Salmonella invasion protein A (SipA) mediates localiza-

tion of SifA on SCV.109

Similar to SifA, SifB is translocated through SPI-2

T3SS and shares subcellular localization with SseJ on the

SCV.110 SifB is encoded outside of the SPI-2 and, similar

to SifA, it mediates SIF formation, recurrent exocytic

vesicle to the SCV, and prenuclear position of SCV.98

For the dormant intracellular life, SPI-2 effector is needed

and induced by the two-component system (OmpR-EnvZ).

However, among these effectors, compared to SifB, SseG

and SseJ are required for the dormant life.111 The presence

of two types of homologous proteins such as SifA and

SifB may show their overlapping functions in the cells or

synergism between these proteins.112

Another effector called PipB2 can promote SIF exten-

sion and cause the recurrence of Kinesin to the SCV

membrane.98,113 With the recurrence of Kinesin to the SIF,

PipB2 may play a role in extending nascent filament to the

outside of SCV.113 PipB2 helps Salmonella with intra-

macrophage survival.114 For more information, see Table 2.

Salmonella Toxins
Cytotoxin

Salmonella can induce pyroptosis via T3SS effector pro-

tein (needle protein) in a flagellin manner. This protein can

be detected by NLRC4 (Nod-Like Receptor) inflamma-

some; then, inflammasome activates caspase-1 that leads

to the secretion of IL-1β and programs cell death called

pyroptosis.115 Inflammasome is composed of multiple pro-

teins that resist the pathogen.116 To activate NLRC4, fla-

gellin or needle protein of T3SS should be recognized by

NLR family apoptosis inhibitory protein (NAIPs).117 On

the other hand, Salmonella can downregulate the flagellin

expression and evade NLRC4 activation.118 In the final

step, Salmonella secretes flagellin into the cytosol and

activates NLRC4 to induce pyroptosis and cell death,

leading to Salmonella release.119 Salmonella induces inter-

feron type I and, therefore, leads to inducing necroptosis

controlled by a receptor-interacting protein (RIP).120

Interestingly, not all of the macrophage dies result from

infection, and a particular phenotype that remains alive

acts as a reservoir for Salmonella.121 This phenotype is

called M2 and in spleen called hemophagocytes

macrophage.122 Spv locus and its effector SpvB are

required to induce apoptosis in macrophage. This locus

has a major role in inducing systemic disease.123 SpvB has

an ADP- ribosylation role in the activation of caspase and

inducing apoptosis and actin polymerization during the

intracellular life.124 SpvC is another effector that is

secreted through T3SS with a phosphothreonine lyase

activity and inhibits the activation of MAP kinase and

de-phosphorylate ER, leading to the downregulation of

proinflammatory cytokines.125,126 Another effector that

mediates apoptosis in epithelial cells is SrfT, which is

encoded in SPI-2.127 Moreover, SrfH mediates actin remo-

deling and is located in prophage. SrfD, SrfE, SdrI, SrfK,

SrfL, and SrfM also are encoded by Phage. Among these

effectors, SrfJ mediates apoptosis in host cells and, by

glycoside hydrolase activity, modifies SCV membrane

lipid to mediate the increase of salmonella virulence.128

Toxins

SopE is a nucleotide exchange factor that affects Rho GTPase

family such as Cdc42 and Rac1. This family is involved in

activation (GTP form) and inactivation (GDP form) of Rho

that is controlled by a guanine nucleotide exchange factor.129

Table 2 Salmonella Adhesins and Their Effects

Adhesins Species Location Effects

SiiE All SPI-4 Adhesin to the epithelial cell

MisL All SPI-3 Binding to the fibronectin

PagN All Chromosome Bind to the heparan sulphate

STIV S.typhi, S.Paratyphi Chromosome Bind to the MET in host cell

RcK S.typhimurium, S.entritidis Plasmid Complement resistance
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Only the activated form can affect the downstream of cascade

and make a signal that causes cell responses such as gene

transcription and actin rearrangement.130 SopE acts as

a guanine exchange factor in activating both Rac1 and

Cdc42, leading to actin rearrangement and infiltration of bac-

teria into the host cell.131 This event results from SopE and can

be detected via NOD1 and proinflammatory response.132

Another effector or toxin that interacts with cytoskeleton is

an SptP, acting as a GTPase-activating protein, and deactivates

Rac1 and Cdc42 to return cytoskeletal change to the relax

form; this factor goes in contrast to the SopE factor.133

Furthermore, SptP can suppress MAP kinase activation.

MAP kinase is involved in the activation of cellular responses

such as proinflammatory response.134 In fact, the tyrosine

phosphatase activity of SptP interacts with Raf-1 to inhibit

the activation of the extracellular-signal-regulated kinase

(ERK).135 SptP toxin is not effectively presented in

Salmonella Typhi and, because of the changes in some

amino acids, chaperon cannot be attached to the effector and

stabilize it.136,137 SipA can activate caspase-3 and actin

polymerization.138 Note that SipA cannot induce caspase-3

in polymorphonuclear.138 Caspase-3 can degrade SipA to

C-terminal and N-terminal: the C-terminal is responsible for

actin polymerization and the N-terminal contains an SNARE

motif.139 The latter is responsible for the attachment and

recurrence of host syntaxin 8 to SCV. SNARE is involved in

endocytosis and syntaxin in rapid endocytosis and vesicle

mobilization.140 Altogether, this effect results in the recurrence

of syntaxin8 to SCV and its fusion with early endosome to

inhibit vesicle maturation.139 (Figure 2)

Another effector called SipC directly binds to actin and

causes actin polymerization. In addition to translocated effec-

tor, SipC can interact with cell vesicle trafficking and reset the

vesicle onto the cell surface.141 Further, SipC interacts with

p53 effector related to PMP-22 (PERP) and, thus, facilitates

the formation of exocyst, which is transferred to the cell

membrane. The accumulation of exocyst leads to the recur-

rence of vesicle to the cell surface, and this accumulation in

membrane results in the rippling membrane that permits

Salmonella entrance.142,143 Spi-D is used to translocate effec-

tor proteins to the eukaryotic cell.144 In the infected host cell,

caspase-1 is activated to make pyroptosis; however, this effect

also leads to lysophosphatidylcholine release that forces

Salmonella to react in the form of secretion of SIPs.145 In

other words, Salmonella can detect lysophosphatidylcholine

and release SIPs effector. Lysophosphatidylcholine also stimu-

lates the invasive power of bacteria. Due to the presence of

lipid in plasma, Salmonella can be hyperinvasive through it.146

AvrA is another effector protein that is injected into the intra-

cellular antigen with acetyltransferase activity. Avra inhibits

the activation of c-Jun kinase (JNK) and NF-κB (nuclear

factor kappa-light-chain-enhancer of activated B cells) in the

epithelial cell to modulate apoptosis and protect pathogen

strategy.147 Cytolethal Distending Toxin (CDT) breaks the

DNA of the host cell and, in turn, provoke DNA repair

response.148 Interestingly, the cell surviving the DNA repair

response causes genomic instability and becomes exposed to

cancer progression.149 This event leads to the persistence of

host and reduces the inflammatory response and the long

durability of bacteria.150 Typhoid toxin consists of two

A subunits (enzymatic activity) and five B subunits; this

toxin is transferred from SCV to the extracellular milieu and

affects cell other than the infected cell.151 Part A consists of

PltA and CdtB; the former has an ADP- ribosylation transfer-

ase activity and the latter has a deoxyribonuclease activity,

which is damaging to the cell.152 Subunit A of Typhoid toxin is

homologous to the CDT and pertussis toxin.153

How to Activate Pathogenic Genes
SPI-1 mediates invasion and is controlled by HilA, InvF,154

and HilD. Environmental conditions such as pH and osmolar-

ity activate transcriptional regulatory proteins of HilC and

HilD so that they can bind to the upstream ofmaster regulatory

hilA.155 HilC and HilD counteract global repressor H-NS on

the hilA promotor.156 Following the activation of HilA, InvF is

subsequently activated.157 InvF activates the gene inside and

outside of SPI-1. HilC and HilD also induce the expression of

hilC and hilD genes that ultimately activate hilA.158 HilD first

induces hilA that is located in SPI-1 and, then, induces ssrAB

located in SPI-2. Following the internalization of bacteria to

the acidic vacuole, another effector from SPI-2 should be

secreted to modify the circumstance. First, EnvZ/OmpR

should be considered; the inner membrane protein regulatory

system senses acid and activates ssrA/ssrB and PhoQ/P

systems.159 To this end, first, EnvZ interacts with OmpR

and, then, OmpR activates ssrA transcription and produces

SsrA and SsrB. Interestingly, by suppressing cadC/BA operon,

OmpR blocks a neutralization reaction to acidity.87 CadA is

a lysine decarboxylase that produces cadaverine and, then, is

translocated to cadB to export out the bacterial cell and mod-

ulate acidification.160 However, OmpR blocking this event

leads to the maintenance of acidification of bacterial cyto-

plasm, which is essential to the secretion of SPI-2 effector

protein. In the presence of SsrA kinase, phosphorylated SsrB

induces SPI-2; however, in neutral PH, SsrA kinase is very

low and SsrB is unphosphorylated; yet, biofilm gene is
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expressed.159 In addition to the acid response, ssrB can induce

biofilm formation and switch between intracellular and extra-

cellular lifestyles.161 When the acidification of bacterial cyto-

plasm increases, supercoiling of DNA may decrease and

OmpR binding site is exposed.162 For more information, see

Figure 3. However, HilD distinctively regulates both SPI-1

and SPI-2. HilD can counteract the repressive effect of H-NS

in the regulatory region of ssrAB operon.163 In summary,

following the activation of SPI-1 and invasion against the

cell and entrance, SPI-2 activates and suppresses the expres-

sion of SPI-1 through SsrB. SsrB directly binds to the regula-

tory region of hilA and hilD and suppress it.164 Recently, it has

been observed that the intestinal butyrate derived from clos-

tridia can inhibit the expression of hilD, encoding the T3SS-1

gene regulator.165 Salmonella utilizes butyrate using β-

oxidation and, in turn, provides fitness advantages during

Figure 2 An overview of the entrance, Salmonella-containing vacuole formation, Sif formation, and replication inside the host vacuole.
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pathogen growth. Interestingly, gene of β-oxidation ydi

QRSTD is not presented in S. Typhi, leading to reduced

invasion against the intestinal lumen.166 This issue may

explain why S. Typhi does not induce inflammation in the

first phase, and this provides an opportunity to spread through

another organ without inflammation.

Regulation of Immune Response
One of the important immune cells that controls Salmonella

is DC and is responsible for cytokine secretion, presenting

antigen to a T cell, and activating natural killer cells (NK

cells).167 Following the phagocyte of bacteria, the DC pro-

cess presents bacterial antigen to the T cell. However, if

bacterial cell survives, it can migrate through DC to another

organ.168 Salmonella can prevent DC migration through SseI

protein that secretes via T3SS.169 This effector inhibits che-

motaxis of DC toward the T cell zone by following chemo-

kine (C-C motif) ligand 19 (CCL19).170 Salmonella SseI

interacts with the downstream of CC-chemokine receptor 7

(CCR7) that responds to CCL19.168 Chemotaxis towards

Figure 3 A comprehensive review of Salmonella mechanisms in the regulation of pathogenic genes.
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CCR7 is controlled byMAP kinase.171 SseI can interact with

filamins172 and cytoskeletal regulatory protein, IQ motif-

containing GTPase-activating protein (IQGAP1). Themigra-

tion of DC and macrophage requires the IQGAP1 factor, and

SseI exactly interacts with it to suppress the migration and

prevent T CD4+ response.173 Deletion or pseudogenization

of SseI causes systemic infection.169 Macrophage via TLR2

and 4 is able to recognize Salmonella; however, this signaling

also induces Salmonella replication. This event can be

explained by acidification in Salmonella-containing phago-

some that activates SPI-2.174 TLR controls DC maturation

and, thus, activates the adaptive immune response.175

Although other TLRs such as TLR2, TLR5, and TLR9 are

involved in detecting salmonella, TLR4 has a major role in

apoptosis.176 It should be noted that, in normal macrophage,

TLR4 also activates NF-κB and MAP kinase with an anti-

apoptosis effect.177 Mucus property influenced by the gel-

forming composition is called musin. Musin is composed of

glycosylated and non-glycosylated domains with a peptide

backbone.178 At the end of the oligosaccharide branch of

musin, sialic acid or sulfate can be found. Salmonella can

be attached to the mannose and sialic acid, and it goes

through the mucus via sialidase.179 This enzyme can cleave

the α-ketosidic bond in the terminal of sialic acid residue.180

Interestingly, IFNγ has a dual role in mucosal defense; first,

signaling of IFNγR in Goblet cell (mucosal secretion cell)

leads to the loss of mucus; on the other hand, IFNγR restricts

the growth of pathogen in macrophage.181 After passing the

mucus layer and entering the lamina propria, TLR is acti-

vated via flagelin and mediates phagocyte by DC and

macrophage.182 Another host sensor, NLRC4, can recognize

an intracellular antigen such as flagellin.118 This recognition

leads to the secretion of proinflammatory cytokines such as

IL-1β and IL-18. NLRP3 is activated through reactive oxy-

gen species (ROS), or membrane damage leading to acti-

vated caspase-1 and pyroptosis.183 The activation of

pyroptosis secures the release of Salmonella from macro-

phage and swallowing by Neutrophil and degradation by

ROS.119 However, Salmonella can degrade superoxide and

limit peroxynitrite formation by superoxide dismutase.184

Salmonella forces macrophage and epithelial cell to release

IL-18 and IL-23 secretion from the dendritic cell.185 Then,

IL-18 stimulates Th1 to release IFNγ and IL-23, thus stimu-

lating Neutrophil, TH 17, and Tγδ to produce IL-22 and IL-

17.186,187 The activation of TH 17 expresses CXC chemokine

such as CXCL and CXCL2 and results in the recurrence of

Neutrophil to the infection site.188 IL-22 can cause

Neutrophil and epithelial cell to secrete Lipocalin-2 and

calprotectin; these molecules inhibit Salmonella access to

iron and manganese.189 However, oxidative stress can stimu-

late Salmonella to upregulate the sitABCDmanganese trans-

port system (high-affinity transporter) that effectively helps

the bacteria overcome growth inhibition, which started with

calprotectin.190 Manganese acts as a cofactor in the super-

oxide dismutase enzyme. Furthermore, in the periplasmic

space, Dsb proteins can act as an oxidase reductase, and

this protein with four components of DsbA, DsbB, DsbD,

and DsbC also works as follows: DsbA is tasked with creat-

ing a disulfide bond; DsbB, DsbD are electron donors; DsbC

proofreads the disulfide bond formation.191

Conclusion
Following the attachment of Salmonella to the epithelial

cell, two routes can be selected: (a) one entrance to the

cell in a T3SS-dependent fashion, thus mediating effector

protein and forming SCV; (b) entrance in a T3SS-

independent fashion. The formation of SCV management

with T3SS-1 secretes invasive protein; however, afterwards,

there are two ways ahead: either maintaining in SCV or

exiting it. For the first one, Salmonella requires to be

transferred from SPI-1 (invasive) to SPI-2 (maintaining).

After maintenance in the SCV, the next step is replication

that requires a nutrient; for this reason, a long appendage is

extended into the cytoplasm called SIFs. Salmonella can

exit SCV, replicates in the cytoplasm, and targets autophagy

system; however, it can stop autophagy or kill the macro-

phage and is released afterwards. Following its release,

Salmonella is engulfed by Neutrophil and degraded with

ROS; like other bacteria, it can resist ROS (ref. staph). After

the activation of macrophage and DC that migrated to the

lymph node, the antigen, which was modified earlier inside

the macrophage and DC, was presented to the T-cell exist-

ing in the paracortex. Salmonella that induces enteritis

utilizes the butyrate via β-oxidation and provides energy

for the duplication, and this in turn made the inflammation

as derived from the duplication. On the contrary, S. Typhi

did not activate inflammation and, thus, is the reason for the

lack of immune attention, giving S. Typhi time to spread.
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