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Estimated Secondary Structure Propensities within V1/

V2 Region of HIV gp120 Are an Important Global
Antibody Neutralization Sensitivity Determinant

Maxim Totrov*
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Abstract

Background: Neutralization sensitivity of HIV-1 virus to antibodies and anti-sera varies greatly between the isolates.
Significant role of V1/V2 domain as a global neutralization sensitivity regulator has been suggested. Recent X-ray structures
revealed presence of well-defined tertiary structure within this domain but also demonstrated partial disorder and
conformational heterogeneity.

Methodss: Correlations of neutralization sensitivity with the conformational propensities for beta-strand and alpha-helix
formation over the entire folded V1/V2 domain as well as within sliding 5-residue window were investigated. Analysis was
based on a set of neutralization data for 106 HIV isolates for which consistent neutralization sensitivity measurements
against multiple pools of human immune sera have been previously reported.

Results: Significant correlation between beta-sheet formation propensity of the folded segments of V1/V2 domain and
neutralization sensitivity was observed. Strongest correlation peaks localized to the beta-strands B and C. Correlation
persisted when subsets of HIV isolates belonging to clades B, C and circulating recombinant form BC where analyzed
individually or in combinations.

Conclusions: Observed correlations suggest that stability of the beta-sheet structure and/or degree of structural disorder in
the V1/V2 domain is an important determinant of the global neutralization sensitivity of HIV-1 virus. While specific
mechanism is to yet to be investigated, plausible hypothesis is that less ordered V1/V2s may have stronger masking effect
on various neutralizing epitopes, perhaps effectively occupying larger volume and thereby occluding antibody access.
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Background

Neutralization by antibodies, along with cellular immunity, is a
key defense mechanism against viral infection. Most clinical
isolates of HIV-1 virus are notoriously difficult to neutralize by
antibodies. This resistance i3 contributing to both, the inability of
human immune system to control HIV infection in the vast
majority of individuals and the fact that despite decades of
concerted efforts to create an effective prophylactic HIV vaccine,
only a rather limited success has been reported so far (vaccine trial
RV144 in Thailand) [1]. Apart from the common viral resistance
mechanisms of evasion via frequent mutations, HIV appears to
have evolved highly efficient ways of ‘hiding” vulnerable conserved
immunogenic structures. The only viral proteins exposed on the
HIV particles are the envelope glycoprotein (‘env’) gp120/gp41
trimeric spikes which mediate host cell attachment and fusion [2].
The spikes contain conserved interfaces and other structures that
are necessary for receptor (CD4) [3] and co-receptor (CCRS or
CXCR4) binding [4] and eventual fusion. However, the virus
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appears to disguise these vulnerable targets from the host’s
immune system under a heavy glycosylation layer [5], behind
highly variable elements [6], within narrow crevasses of the
structure that are poorly accessible to antibodies, and using other
mechanisms of epitope ‘masking’ [7] that are still poorly
understood.

Yet this resistance varies greatly between different virus isolates,
and a “Tier’ system has been proposed to classify HIV strains and
to provide a virus panel for objective evaluation of immune sera
and monoclonal antibodies in terms of their neutralization
potency. Importantly, strains that resist neutralization often do
so across multiple antibody types targeting different epitopes.

In principle, neutralization resistance variations should be
determined by env sequence and ultimately by the structure and
dynamics of the spike. It has been proposed that ‘intrinsic
reactivity’ of the env trimer, lLe. its propensity to undergo
conformational transition to lower-energy states from the initial
native state, provides an important contribution to global inhibition
sensitivity [8]. However, no general sequence-structure-function
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(i.e. resistance) relationships have been established so far, although
singular mutations that dramatically alter resistance have been
reported [5,9,10].

Intriguingly, it was demonstrated that V1/V2 region of gp120 is
an important determinant of the overall neutralization sensitivity
of the HIV-1: modifications and deletions often increase neutral-
ization sensitivity [6,11], and swapping the V1/V2 sequence of a
neutralization-sensitive virus for a V1/V2 from a resistant one
conferred neutralization-resistant phenotype, and conversely
[12,13]. Binding experiments and mathematical modeling allowed
dissection of V1/V2 masking effects on the V3 loop [14]. Some
controversy exist as to whether V1/V2 and V3 interactions are
Inter- or Intra- protomer: mathematical modeling approach
indicates interactions in trans (i.e. between neighboring subunits)
[14] while different mixed trimer expression experiments suggest
that V3 masking occurs within each protomer (in cis) rather than
between protomers [15]. Possibly both mechanisms coexist [16].

Until recently, little has been known about the structure of V1/
V2 domain and the two segments in it delineated by disulfide
bridges were viewed as Toops.” V1/V2 received limited attention
in vaccine development efforts because of its high variability and
apparent limited functional importance — V1/V2 deleted virus
often remains replication competent [17]. The region was
truncated out of all gpl20 ‘core’ structures solved by X-ray
crystallography to date. The interest in the region soared when
broadly neutralizing antibodies targeting V1/V2 were reported
[18] and soon thereafter crystal structure of V1/V2 domain was
solved in complex with broadly neutralizing monoclonal antibody
(BNAD) PG9 [19]. In this structure, V1/V2 domain was grafted on
an unrelated scaffold protein. The X-ray structure established that
V1/V2 domain is organized into a compact 4-strand anti-parallel
beta-sheet fold (Fig 1). The antibody was observed to interact
primarily with strand ‘C’ and glycans (Fig. 2a). Subsequently
solved structure of the closely related BNAb PG16 complex
exhibits a very similar binding mode but more extensive glycan
interactions [20]. Next, two complexes of antibodies (CH58 and
CH59) with linear epitope peptide fragments of V1/V2 were
solved [21]. Low resolution electron microscopy (EM) structure
provided first unambiguous data on the localization of V1/V2
domain within the trimeric gpl120 spike [22]. Certain EM
structures suggest that V1/V2 and V3 loops form a ‘trimer
association domain’ (TAD) near the apex of the gpl20 spike
(Figure 2d) [23]. Most recently, first medium-resolution trimeric
X-ray structure of the so-called SOSIP gp140 has been reported
[24], and the V1/V2 conformation in context of this trimer
corresponded well to that observed in PG9/PG16 complexes,

Antibody responses to V1/V2 in the sera correlated with
protection in the RV144 vaccine trial in Thailand [25], the only
HIV vaccine trial that demonstrated (limited) efficacy [1].
Antibodies induced by the vaccine targeted conserved mid-region
of the V2 loop [26]. Most recently, ‘sieve’ analysis demonstrated
that substitutions at two positions in V1/V2 correlate strongly with
susceptibility of the virus to vaccine protection in RV144 trial [27].
Immunodominant site on V2 was revealed by epitope mapping of
conformational V2-specific human antibodies [28], and epitopes
of 8 mouse antibodies were localized to the C-strand termini [29].
Additionally, polyclonal antibodies in a broadly neutralizing blood
serum from an AIDS patient (coded CAP256) were shown to
target central residues of the BC hairpin [30].

Remarkably, linear epitopes of the mAbs CH58 and CHS59,
which localize to the stretch of the V1/V2 sequence corresponding
to the C-strand in mAb PG9 complexes, are structurally distinct:
CH58 binds a largely alpha-helical conformation of the antigen,
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while in CH59 complex it is a coil with elements of 3-10 helical
and extended conformations (Figs. 2b and 2c).

Can structural variability of V1/V2 domain underlie its
influence on the neutralization sensitivity (NS) of the HIV strains?
In the absence of the structural data for a range of V1/V2
domains from different strains and in the native context, it may
still be possible to tease out certain structural correlates from
simple sequence-based biophysical descriptors. Since the possibil-
ity of secondary structure switch between beta-strand, coil and/or
alpha helix is indicated by the X-ray structures, propensities to
form alpha-helix and beta-strand are of particular interest. While
all 20 naturally occurring amino-acids are found within all types of
secondary structures, preferences towards one or another structure
that vary significantly between the amino-acids are well-estab-
lished [31,32], both via statistical analysis of protein structures [33]
as well as via energy calculations [34] and measurements [35].
Accordingly, a number of beta-strand (alpha-helix) propensity
scales have been proposed, attributing an energy cost/gain of
having a particular amino-acid type within a strand (or helix),
usually relative to alanine [36,37]. Total propensity calculated
over a stretch of polypeptide sequence can provide a measure of its
preference for a particular secondary structure state. Herein, an
mnvestigation into correlations of such propensities for V1/V2 loop
domain of gpl20 and certain segments within it with virus
sensitivity to antibody neutralization is presented.

Results and Discussion

Overall beta-sheet propensity of V1/V2 domain correlates

with neutralization sensitivity

Correlation of the neutralization sensitivity for 106 HIV isolates
on the tiered neutralization assessment panel [38] with structural
propensities of the V1/V2 domain was analyzed. Total beta-sheet
propensity (BSP) across 60 well-aligned amino-acid positions
(Fig. 3) within the V1/V2 domain and its stem correlated with the
log)p of neutralization ID50 (50% inhibitory dose) by HIVIG
(HIV immune globulins). Pierson correlation coefficient R was
0.34. While modest, correlation was highly statistically significant
with the p-value estimate of 0.0003. For comparison, when the
same calculation was performed for alpha-helical propensity,
R =—0.14 with p-value estimate of 0.15 was obtained.

Localization of BSP/neutralization sensitivity correlation
‘hotspots’ within V1/V2 domain

To investigate whether there were particular regions within V1/
V2 where the correlation was localized, total propensities within a
sliding window of 5 amino-acids around each position were
calculated and correlations with log;g ID50 evaluated. Short 5-
residue segments rather than individual residues were analyzed
because secondary structure formation is a cooperative process
and therefore total propensities within a window are expected to
be more structurally meaningful and less noisy. For 15 positions p-
values of the correlations reached statistical significance (p<<0.05).
Importantly all of them had the same (positive) sign of the
correlation, 1e. lower ID50s correlated with more negative
propensity (i.e. more stable beta-strand structures). When plotted
along the amino-acid sequence, two peaks of loglD50/beta
propensity correlation centered at positions T163 and Y177 were
observed (p-values of 0.007 and 0.01), as well as a weaker peak at
S197 (p=0.02)(Figure 4). Notably, the last segment extends
beyond the end of V2 proper into V1/V2 stem. For comparison,
same analysis was performed with alpha-helix propensities.
Weaker correlations with oscillating sign were observed and only
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Figure 1. Schematic secondary and tertiary structure organization of the V1/V2 domain in HIV gp120. Disulfide bridges are shown in
yellow. Beta-strands(shown as block arrows) are assigned according to the X-ray structure (PDB ID 3U4E). In this structure stem region is replaced by
an unrelated scaffold, but the stem is independently observed to form anti-parallel strands in multiple gp120 X-ray structures (e.g. PDB ID 2B4C).
Dashed line indicates polypeptide chain segment unresolved in the available X-rays although N-terminal part of it has well-conserved sequence,
including the integrin binding motif.

doi:10.1371/journal.pone.0094002.g001

Figure 2. Available X-ray structures of V1/V2 domain and its fragments. (a) Complex of the V1/V2 domain (blue ribbon, glycans shown in
ball-and-stick representation; parts interacting with the FAb are in magenta) grafted on a scaffold protein (not shown) and the BNAb PG9 (grey
ribbon). (b) and (c) V1/V2 fragments (magenta) in complex with mAb CH58 and CH59, respectively (grey ribbon). Structures were visualized from
Protein Data Bank entries 3U4E, 4HPO and 4HPY. (d) Visualization of EM electron density map (EMDataBank, www.emdatabank.org, accession
no. EMD-5447) of the trimeric env spike. Approximate localization of the V1/V2/V3 loops (forming presumed ‘TAD') is delineated in red.
doi:10.1371/journal.pone.0094002.g002
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Figure 3. Multiple alignment of 106 sequences of V1/V2 domains in HIV gp120. Sequence profile is shown above the alignment: stack of
amino-acid residue letter codes above each position indicates frequencies (taller letters — more frequent), with most frequent one at the bottom of
the stack. Secondary structure cartoon is shown below the alignment as assigned in the X-ray structure (PDB 3U4E). Also indicated at the bottom are
the three 5-residue segments (red intervals) that represent BSP/NS ‘hotspots’.

doi:10.1371/journal.pone.0094002.g003

4 segments (centered at L.130,C131,P183 and A200) reached p- plausible that propensities from both segments combine to

values somewhat below 0.05 cutoff (see Figure S1). determine the overall stability of the beta-hairpin structure formed
Remarkably, the two pronounced peaks of beta-strand propen- by the two strands, perhaps regulating the length of the stably
sity correlation corresponded well to the C-terminal parts of folded part versus less ordered connecting loops. Indeed, total BSP

adjacent beta-strands (B and C) observed in the available X-ray from the central 32-residue V1/V2 segment (E153-1184) showed
structures (Protein Data Bank IDs 3U4E and 3U2S). It is therefore Pierson correlation coefficient with neutralization log;o ID50 of
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Figure 4. Plots of Pierson correlation coefficients R and p-values for the BSP/NS correlation (top and middle, respectively). BSPs are
calculated for 5 amino-acid segments centered on each position within the three conserved stretches of V1/V2 and its stem. Gaps in the plot
correspond to the two hyper-variable regions that aligned poorly and were excluded from the analysis (see also Fig. 3). Also shown are the secondary
structure and three ‘hotspot’ segments (see legend of Fig. 3).

doi:10.1371/journal.pone.0094002.9g004
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0.35, similar to that of the total BSP of the entire conserved V1/
V2 domain above, and p-value of 0.00002 — actually better than
that for the entire domain. Third weaker peak was in the middle of
the strand D, extending into V1/V2 stem.

Stronger correlation could be achieved if contributions from the
top three independent 5 residue segments were combined (I161-
1165, F175-L179 and S195-S199), with R=0.47 (confidence
mterval 0.35-0.57) and p<<0.000001 (p-value for the correlation
here is not strictly meaningful since the choice of contributing
segments is done a posteriori). The correlation plot logo ID50/
AGBSP(IIGI-IlGi, F175-1.179, S195-S199) is shown on Fig 3. On the other
hand, no detectable signal is seen in N-terminal strand A. We can
hypothesize that this strand is more stable, possibly due to two
disulfide bridges, and does not experience significant structural
variability.

Persistence of the correlation within different clades of
HIV

Robustness of the correlation was investigated by partitioning
the data into subsets according to virus clades: the 106 viruses
panel contained 40 clade B, 24 clade C, 11 in CRF (circulating
recombinant form) BC and 11 in CRF AG. Other clades and
forms had only a few representatives each and were combined in a
fourth group of 20 viruses, mostly related to clade A. Significant
correlation was still present in the first two groups, with strongest
correlation in clade B, and somewhat weaker in clade C (Table 1).
It should be noted that to reach statistical significance (p-
value<0.05) at expected R~0.4 the dataset generally needs to
have >18 points [39]. Thus CRF BC also had comparable R
value but statistical significance could not be reached likely due to
the smaller size of the group. Correlation values were in the same
range for combinations of these three groups, indicating that
underlying relationship holds within and across the two clades and
their CRF. Thus observed correlation did not arise from possible
trivial co-variations with sequence and neutralization sensitivity
differences between clades. On the other hand, CRF AG and the
fourth group that combined other clades, exhibited only weak,
statistically non-significant correlation. It is possible that neutral-
ization sensitivity differences unrelated to the V1/V2 structural
effects obscure the correlation in this genetically diverse group.

Conclusions

Conformational heterogeneity of V1/V2 region was recently
demonstrated by the X-ray investigations of PG9/PG16, CH58

Table 1. BSP/neutralization sensitivity correlations within
clade subgroups of the HIV virus panel.

Number of
Clade viruses R (p-value)
All 106 0.47 (<0.000001)
B 40 0.48 (0.002)
C 24 0.4 (0.05)
CRF BC 11 0.4 (0.2)
B+C 64 0.5 (0.000005)
B + C + CRF BC 75 0.51 (<0.000001)
CRF AG 11 0.25 (0.4)
All other (mostly A and related) 20 0.2 (0.4)
doi:10.1371/journal.pone.0094002.t001
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and CH59 mAb complexes with their epitopes: the C-strand of
PGY complex that encompasses the key residues involved in
binding to all three mAbs exhibits beta-strand secondary structure
in the first case, mostly alpha-helical secondary structure in the
second case, and coiled conformation in the third. While this
ability to adopt different conformations was so far directly
demonstrated only in antibody binding, it may also have a
functional role, ie. the conformation may change during the
transitions associated with attachment and fusion, and prevalence
of different conformations may also vary from virus strain to virus
strain or from clade to clade. Herein it is demonstrated that a
simple sequence-based measure of the propensity to form beta-
structure within B/C hairpin region of the V1/V2 domain
significantly correlates with neutralization sensitivity of the virus.

Modulation of this propensity likely either triggers switch from
one conformation to another or affects equilibrium between
multiple conformations that the domain can adopt. Another
possibility is that beta-sheet propensity controls order/disorder
transition or equilibrium within V1/V2 domain. Functional
importance of intrinsic disorder in proteins [40] and more
specifically viral proteins [41,42] is increasingly gaining recogni-
tion. A range of mechanisms by which the conformational changes
in the V1/V2 domain affect neutralization sensitivity can be
proposed. Recent low-resolution structural studies of the gpl20
trimers indicate that V1/V2 domains localize near the axis of the
spike and therefore the three domains likely contact and interact
with each other. These interactions may influence overall
configuration of the trimer, making it more ‘open’ or ‘closed’
and modulating accessibility of multiple unrelated epitopes. On
the other hand, parts of loops within V1/V2 domain and their
glycan decorations may extend over other immunogenic regions of
gpl20 and shield them from antibody access. V3 region in
particular has been shown to be subject to ‘masking’ effects that
are largely V1/V2 mediated [14-16,43]. We can hypothesize that
less-ordered V1/V2 domain may be effectively bulkier and block
access to various other epitopes stronger than when it is tightly
folded. Finally, V1/V2 in itself is an important neutralizing Ab
target and some of the observed changes in neutralization
sensitivity to immune serum may simply reflect differences in
presentation of the intrinsic V1/V2 neutralizing epitopes.

Clearly, the described effect of V1/V2 beta-strand propensity is
not the only factor that determines the neutralization resistance of
HIV virus, as the wide spread of the correlation plot (Fig. 5)
indicates. It has been reported that a single position mutation
DI179N could convert highly neutralization resistant virus into a
sensitive one [9]. Presence or absence of glycans at certain
positions was also shown to play a role [5]. Mutations outside V1/
V2 have been demonstrated to affect global sensitivity as well [10].
Nevertheless, all previously reported mutation data was of singular
nature without a clear common trend. Generality of the observed
effect of secondary structure propensity points towards a common
conformational mechanism of neutralization sensitivity modula-
tion applicable to many HIV virus strains. To establish how local
secondary structure preferences affect global neutralization sensi-
tivity further structural investigations of V1/V2 region in relation
to different strains of HIV will be needed. The finding may have
implications for HIV vaccine design, which increasingly incorpo-
rates structural considerations.

Methods

Sequences and alignment
Gpl20 sequences of 106 HIV isolates on the tiered neutrali-
zation assessment panel [38] were extracted from the GeneBank.
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Figure 5. Correlation plot of HIVIG ID50 versus the total BSP calculated across the three ‘correlation hotspot’ segments (15

positions, amino-acids 161:165,175:179 and 195:199).
doi:10.1371/journal.pone.0094002.g005

The panel contains 109 viruses, however the three “Tier 1A’
viruses (MW965.26, SF162.LS and MN/H9) were excluded as
clear outliers with neutralization titers orders of magnitude outside
the general range. Sequences were aligned and the V1/V2 region
sub-alignment extracted in ICM [44,45] (Fig. 3). Two segments of
V1/V2 domain, amino-acids (AA) T132-G152 and D185-S190
(numbering and AA residues here and throughout the paper follow
the env sequence of HIV1 strain HXB2) are extremely variable
both in composition and length. They were excluded from the
analysis. Also excluded were two short inserts present only in one
sequence cach (4 AAs between positions 169/170 in H078.14 and
1 AA between positions 165/166 in 9021.14.B2.4571). Because X-
ray structures of V1/V2 domain show that C- and N- terminal
secondary structure elements (beta strands A and D) extend
through the C126-C196 disulfide bridge that formally separates
V1/V2 domain itself and the so-called ‘stem’ (independently
observed forming beta-strand in other gpl20 X-ray structures),
sequence segments belonging to the stem were also included in the
analysis (up to the next disulfide C119-C205). As seen in the
results, only minor signal was observed outside the V1/V2 domain
proper.

Neutralization data

As a measure of neutralization sensitivity (NS) of the virus,
neutralization data from ref [38] was used and represented log10
ID50 titers of HIVIG (HIV immune globulin) in pg/ml, thus
higher titer numbers corresponded to lower sensitivity. HIVIG is a
purified HIV+ Ig reagent that is obtained from the NIH AIDS
Research and Reference Reagent Program. HIVIG is prepared
from pooled plasma of asymptomatic, HIV antibody positive

PLOS ONE | www.plosone.org

donors. Titer values varied from 28 to >2500 pg/ml (the titers
exceeding 2500 were not measured precisely, only the censored
value is available). Three excluded ‘Tier 1A’ strains (see above)
had titers of <0.02, 6 and 7 pg/ml. Log of the HIVIG
concentration rather than the concentration itself was used to
calculate correlations with structural propensities. because loga-
rithm of concentration should linearly relate to the binding free
energy. Structural propensities reflect free energy involved in
secondary structure formation, thus physically homogeneous
parameters of the system were being correlated.

Structural propensities

Smith, Withka & Reagan [36] scale of beta-sheet propensities
was used. The scale is based on protein stability changes upon
Ala/Xxx substitutions, experimentally measured via melting
temperature. This scale was chosen because the AAG (kcal/mol)
values are expected to directly reflect changes in stability of beta-
sheets associated with a substitution. Pace & Scholtz [37] scale was
used for alpha-helix propensity.

Initially, total beta-sheet propensity over the conserved elements
of V1/V2 domain were evaluated for each env sequence:

Pu()) :Zp(Sj(i))

where (i) is the amino acid at i-th position in j-th sequence
according to the alignment, p() is the appropriate propensity
according to the scale and summation is over all well-aligned
positions. Highly variable segments with insertions/deletions in
many sequences were excluded from the analysis, leaving 60 well-
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aligned positions within N-terminal (in HXB2 numbering AA
C119-C131), central (E153-1184), and C-terminal (Y191-C205)
conserved elements.

Total beta-sheet or alpha-helix propensities for 5-residue
segments within a window sliding along V1/V2 domain sequence
were calculated:

Ps(ij)=
P(Si(i=2)) +p(S;(i—1)) +p(S;(0) +p(S;(i+1)) +p(S;(i+2))

Thus, vectors of propensities across 106 sequences were
generated for each position within the alignment of V1/V2
domains. Pierson correlation coefficient of log;g ID50 with total
propensity and 5-residue segment propensities for each position
was calculated. Randomization test [46] was used to estimate p-
values of the correlations (1,000,000 samples). To control errors
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