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Senescence, the deterioration of morphological, physiological, and reproductive functions
with age that ends with the death of the organism, was widely studied in plants. Genes
were identified that are linked to the deterioration of cells, organs and the whole plant. It
is, however, unclear whether those genes are the source of age dependent deterioration
or get activated to regulate such deterioration. Furthermore, it is also unclear whether
such genes are active as a direct consequence of age or because they are specifically
involved in some developmental stages. At the individual level, it is the relationship between
quantitative genetic variation, and age that can be used to detect the genetic signature of
senescence. Surprisingly, the latter approach was only scarcely applied to plants.This may
be the consequence of the demanding requirements for such approaches and/or the fact
that most research interest was directed toward plants that avoid senescence. Here, I
review those aspects in turn and call for an integrative genetic theory of senescence in
plants. Such conceptual development would have implications for the management of
plant genetic resources and generate progress on fundamental questions raised by aging
research.
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Senescence is not a simple concept. Senescence is the decline of
organismal functions with age. For physiologists, it can be defined
as the degradation of cells or organs and their associated func-
tionality. For demographers, senescence is defined by the positive
relationship between the probability to die and age. For evolution-
ary biologists, senescence is also defined as a decline in function
and an increase in the chance of dying with age. Their focus is,
however, made on the decline in the strength of natural selection
with age at the population level. In the present review, my aim is
not to discuss the knowledge accumulated on plant senescence in
every discipline. It is not to animate a semantic debate for the sake
of providing a unique definition of senescence. Here, my focus is
on genetic data and its involvement with plant senescence. I will
explore that question at the level of cells, organs, and individuals
within populations. I will then discuss how recent methodological
developments in quantitative genetics could be used to develop an
integrative framework and investigate the links observed between
those scales.

GENES INVOLVED WITH CELL SENESCENCE
Senescence at the cellular level is the deterioration of the cell that is
due to the age of the cell and not to the age of the whole organism.
In plant cells, as in animal cells, life in aerobic conditions induces
the production of reactive oxygen species (ROS) such as hydrogen
peroxide (H2O2), and nitric oxide (NO). They are toxic and despite
the action of antioxidant mechanisms, their toxicity leads to the
death of cells (Van Breusegem and Dat, 2006). Their production is
inevitable because they are the consequence of membrane linked
electron transport in plant cells. ROS are generated during the

production of energy through respiration and photosynthesis. In
Arabidopsis cells, the expression level of the gene LSC54 was found
to increase with the age of cells. The activity of LSC54 was also
found to be linked with the level of oxidative stress in the cell. One
might think that the activity of LSC54 is generating oxidative stress
but in fact, the activity of LSC54 is induced by increased levels
of ROS (Navabpour et al., 2003). Such genes probably become
active in response to ROS signaling in order to regulate oxidative
mechanisms of deterioration.

Many genes are involved with cell senescence. They can be
found under the name of senescence associated genes (SAG) or
senescence enhanced genes (SEN). Their activity is generally linked
to protein and/or lipid degradation. For example SAG101 codes
for acyl hydrolase and the activity of SEN3 is linked to the degra-
dation of leaf tissues (Buchanan-Wollaston et al., 2003). Proteins
such as RuBisCO, which is the key protein for carbon fixation
during photosynthesis, are also degraded during the deterioration
of leaf cells. ROS can be responsible for such degradation. How-
ever, the activity of protease genes involved with the degradation
of RuBisCO was also found to increase during cell senescence in
leaves. Several other genes that encode for enzymes are responsible
for the degradation of membrane lipids during cell deterioration.
Whether the activity of the many genes involved with cell senes-
cence is directly causing cell deterioration or not remains unclear.
This is because some of the genes that are active during cell dete-
rioration are likely to be directly involved in such deterioration
whereas others are likely to be involved in regulatory mecha-
nisms counteracting deterioration (Buchanan-Wollaston, 1997).
Whatever the scenario, detecting the activity of such genes implies
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that cell deterioration is underway because the cell is becoming
older.

GENES INVOLVED WITH ORGAN SENESCENCE
Many genes that are involved in the senescence of plant cells are
also found to play a role in organ senescence (Table 1). This
is partly because many studies on organ senescence investigate
how leaf tissues deteriorate with leaf age at the cellular level
(e.g., ROS accumulation; Thomas and Stoddart, 1980; Smart
et al., 1995; Gan and Amasino, 1997; Bleecker, 1998). Leaf senes-
cence intervenes right after growth and involves the deterioration
of the mesophyll from the tip to the base of the leaf (Jansson
and Thomas, 2008). Regulatory gene activity was found to vary
between the early growth of the organ and its death (Guo and
Gan, 2011). MicroRNAs such as miR156 were identified in pri-
mordia of rice leaves where they target transcription factors of
the SQUAMOSA PROMOTER BINDING-LIKE (SPBL) family

and affect the duration of juvenile leaf character expression. The
interplay of those MicroRNAs with the expression of miR164
was also found to affect age related cell death in Arabidopsis
(Kim et al., 2009).

At the level of the leaf organ, the assimilation and storage
of carbon and nitrogen during leaf development stops when
leaf senescence starts. It is important to note that the timing
of leaf senescence depends on leaf age and on the environmen-
tal resources available (Wingler et al., 2006). Leaves start their
life by being a sink for the products of photosynthesis and
accumulate Carbon and Nitrogen until their function changes
when senescence starts. At that time, they stop being a sink
and become a source of Carbon and Nitrogen for the rest of
the plant. Leaves reach an advanced stage of deterioration when
they transfer the products of photosynthesis to the whole plant.
The shift toward leaf senescence is associated with the increased
transcription of photosynthesis-associated (PAG) genes (Hensel

Table 1 | Genes that are known to play a role in organ senescence (compiled from Bleecker, 1998;Thomas et al., 2009;Thomas, 2013, and

references therein).

Gene Related function Reference

Arabidopsis RCCR (Red Chlorophyll Catabolite

Reductase)

Chlorophyll degradation Wüthrich et al. (2000), Pružinská et al. (2007)

Arabidopsis PaO Chlorophyll degradation Oshio and Hase (1969), Rodoni et al. (1997)

Arabidopsis Sgr1 (Stay green) chlorophyll degradation Guiamet and Giannibelli (1996), Armstead et al.

(2006), Park et al. (2007), Sato et al. (2007)

Arabidopsis Wrky53 Cell and tissue specialization Miao et al. (2004), Uauy et al. (2006)

Arabidopsis AtNAP Cell and tissue specialization Guo and Gan (2006)

Auxenochlorella dee4 – amino acid permease Cell and tissue specialization Hörtensteiner et al. (2000)

Arabidopsis Fibrillin Cell and tissue specialization Yang et al. (2006), Brehelin et al. (2007)

Arabidopsis Carotenoid Cleavage Dioxygenase8 Plastid trans-differentiation Snowden et al. (2005)

Brassica dnaJ chaperone OrI Plastid trans-differentiation Lu et al. (2006)

Arabidopsis dnaJ chaperone OrII Plastid trans-differentiation Giuliano and Diretto (2007)

Zea Bronze1 Vacuole function Furtek et al. (1988)

Zea myb C1 anthocyanin TF Vacuole function Paz-Ares et al. (1990)

Arabidopsis AtMRP2 ATP transporter Vacuole function Hinder et al. (1996), Lu et al. (1998)

Zea See2 Vacuole function Smart et al. (1995), Carter et al. (2004)

Squamosa Promoter Binding-Like (SPBL) gene

family

Leaf development Poethig (2010), Bergonzi and Albani (2011), Wang

et al. (2011), Xie et al. (2012)

TFL1 (Terminal Flower 1) juvenile period in perennials Bergonzi and Albani (2011)

SnRK1 (Snf1-Related Kinase1 Sugar mediated regulation of aging Thelander et al. (2004), Baena-Gonzalez et al. (2007)

Hexokinase1 (HXK1) Sugar mediated regulation of aging Jongebloed et al. (2004), Parrott et al. (2007),

Smeekens et al. (2010)

Arabidopsis “old” mutant Sugar mediated regulation of aging Schippers et al. (2008)

Arabidopsis AtMYB2 Bud outgrowth during monocarpic senescence Guo and Gan (2011)

Arabidopsis TERT (Telomerase Reverse

Transcriptase)

Telomere attrition Watson and Riha (2010)

RTBP1 (Rice Telomere Binding Protein) 1 Telomere attrition McKnight and Shippen (2004), Hong et al. (2007)

ATGs (Autophagy genes) Cell degradation Thompson et al. (2005)

TOR (Target of Rapamycin) Growth and development Blagosklonny and Hall (2009)
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et al., 1993). A whole network of regulatory functions associ-
ated with genes was found to be active during leaf senescence
(e.g., CWinv, HXK1, TOR, and SnRK1, see Thomas, 2013). Other
genes such as the HYS1/CPR5 have also been identified because
they are activated during leaf senescence but they are in fact
counteracting the deterioration (Yoshida et al., 2002). Delayed
leaf senescence was also found in etr1-1 mutant plants. The
specificity of those plants is to be that are insensitive to the
plant hormone ethylene (Grbić and Bleecker, 1995). Further-
more, many other SAG and SEG genes were identified using
mutant lines and Next Generation Sequencing methods (see
Buchanan-Wollaston et al., 2003).

It remains unclear whether most genes involved with leaf senes-
cence or organ senescence are directly part of a genetic program
coding for senescence at these biological scales. One alterna-
tive scenario is that they exhibit an activity that is associated
with the degradation of organs because they are participating
to genetic mechanisms that are in fact counteracting degrada-
tion (Nam, 1997). However, whatever the reasons, the activity
of these genes can therefore be used to detect organ senescence.
Whether those genes are truly involved with organ senescence
or are part of a developmental program of organ turnover
throughout the plant life also remains unclear. It is interest-
ing to note that leaf characteristics (defense, photosynthesis
and the age at which they fall) have evolved under domesti-
cation (El-Sharkawy, 2004; Mondolot et al., 2008; Pujol et al.,
2008b). These results suggest that leaf senescence may be inte-
grated in the evolution of senescence at the whole plant level.
It is nevertheless difficult to figure out how those genes can
help infer how senescence affects the whole plant (Bleecker,
1998). Indeed, many of the genetic mechanisms presented
above are shared by plants characterized by completely differ-
ent life histories such as annual plants, short lived perennial
monocarpic plants (i.e., semelparous: a single reproductive
episode precedes death) and long lived perennial polycarpic (i.e.,
iteroparous: multiple flowering events throughout a lifetime)
plants (Munné-Bosch, 2008).

GENES PLAYING A ROLE IN WHOLE PLANT SENESCENCE
Whether the activity of the genes and the epigenetic changes pre-
sented below are relevant to the study of senescence at the whole
plant level is at the center of a debate between, on one hand,
physiologists, and system biologists, and in the other hand, demog-
raphers, and evolutionary biologists. How to define senescence
at the level of the whole plant? Is it chronological age and/or
a suite of developmental stages that lead to mortality? This is
not a simple question because those two chronological factors
are often confounded. Physiologists and system biologists study
senescence by analysing developmental modifications. Demogra-
phers and evolutionary biologists study senescence by assessing
the age trajectory of fitness components. The genetic mechanisms
presented below play a role in the chronological succession of
developmental stages. A doubt therefore remains on the direct
relationship between the activity of those genes and age. At the
level of the whole plant, TERMINAL FLOWER 1 (TFL1) genes
are involved with developmental changes. TFL1 genes are sus-
pected to play a role in senescence because they regulate the

length of the juvenile period in perennial plants. The life stage-
dependent activity of those genes affects, albeit only indirectly, the
expression of the LEAFY genes and the APETALA 1 genes that
determine the development of flowers from meristematic tissue
(Ratcliffe et al., 1998). In Arabidopsis, the AGAMOUS gene, which
is known to play a crucial role in the development of flowers,
was only found to be active during the flowering period (Yanof-
sky et al., 1990). Other genes are known to be responsible for
an increased regulation of branching during successive develop-
mental phases from germination to death in Arabidopsis (Guo
and Gan, 2011). Epigenetic methylation may also play a role in
the whole plant senescence. Changes in DNA methylation that
drive the silencing of MuDR transposable elements were indeed
observed during transitions between life stages in maize (Li et al.,
2010). Furthermore, the global level of DNA methylation was
also found to vary across life stages in the giant redwood tree
(Monteuuis et al., 2008). It would be a great breakthrough to deter-
mine whether the chronological genetic and epigenetic changes
documented above are directly playing a role in the genetic pro-
gramming of senescence. To this aim, it would be necessary to
disentangle age and stage specific organismal changes (Roach,
1993; Caswell and Salguero-Gómez, 2013).

HOW TO PREDICT SENESCENCE AT THE INDIVIDUAL LEVEL
Senescence at the level of the whole organism, be it a plant
or an animal, affects complex physiological, and reproductive
functions. Complex characters often depend on a large genetic
basis formed by more than a few genes. Quantitative genet-
ics offers an opportunity to analyze the genetic architecture of
complex traits. Using quantitative genetics to identify the sig-
nature of senescence may therefore prove useful in plants. To
understand the value of using quantitative genetics in order to
identify senescence at the level of the whole plant, one must
go back to the basics of the evolutionary theory of senescence.
In plants, as in animals, the deterioration with age of fitness
related characters can evolve if older individuals contribute less
in the gene pool of the next generation than younger indi-
viduals. As first suggested by Fisher (1930) and Haldane (see
Medawar, 1952, p. 3), selection against age related malfunc-
tions is not efficient if the underlying genes have already been
transmitted to the next generation. This idea was further devel-
oped by Medawar (1952) and Williams (1957) who discussed
the underlying genetic mechanisms. At the level of the genetic
architecture of fitness related characters, theory predicts that the
deleterious mutations responsible for senescence and expressed
in old age will accumulate in the genome (“Mutation Accu-
mulation” theory) as selection fails to remove them (Medawar,
1952). Another non exclusive expectation regarding the genetic
architecture of senescence is that genes coding for a fitness advan-
tage in young age, but having detrimental effects in older age
(“Antagonistic Pleiotropy” theory) will be favored by selection
(Williams, 1957).

In Hamilton (1966) claimed that the evolution of senescence
could be universal. However, in plants, a recent analysis of demo-
graphic data bases showed that most plant species were not affected
by a decay in fertility and by an increase in the risk of mortality
with age (Baudisch et al., 2013). The age dependent decrease of
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the individual probability of survival that is expected in the case
senescence was nevertheless found to be common in perennial
plant species (Silvertown et al., 2001). Furthermore, longitudi-
nal demographic surveys show that demographic senescence can
occur in wild plant populations (Picó and Retana, 2008; Roach
et al., 2009; Roach, 2012). Whether the demographic assumptions
underlying Hamilton’s claim apply to most plants is still debated.
The evolution of senescence does not depend only on survival.
Reproductive success is also a key parameter that must be taken
into account because it molds the relative contribution of individ-
uals to the gene pool of the next generation (Partridge and Barton,
1993). In a scenario where a higher reproductive success is favored
in younger age, theory also predicts that senescence will evolve.

In the 1990s, Roach inventoried cases of indirect phenotypic
evidence suggesting that senescence had evolved in Papaver, Sol-
idago, Poa, and Geranium plant species (Roach, 1993). At the
genetic level, two theories (Mutation Accumulation and Antag-
onistic Pleiotropy) predict specific modifications of the additive
genetic variability of fitness traits with age (Flatt, 2012; Rose et al.,
2012). These predicted changes are the consequence of the fail-
ure of natural selection to remove genes with deleterious effects
in old age (Greer, 2012). This is because such genes were already
transmitted to the next generation. Under the evolutionary the-
ory of senescence, age is correlated with a decline in fitness.
We also expect aging rates to be genetically based. Finally, both
the mutation accumulation and antagonistic pleiotropy mech-
anisms are expected to drive an increase in additive genetic
variance with age. Negative genetic correlations between early and
late age classes are expected to bring evidence for antagonistic
pleiotropy. In animals, especially in birds, and ungulates, quan-
titative genetics was used to confirm these expectations already
several times (Charmantier et al., 2006a,b; Brommer et al., 2007;
Kruuk et al., 2008; Monaghan et al., 2008; Nussey et al., 2008; Wil-
son et al., 2008). It is likely that age dependent specific patterns
of quantitative genetic variation, in other words Gene by Age
interactions (G × A), can also be used to detect senescence in
plants.

THE EVOLUTIONARY QUANTITATIVE GENETICS OF
SENESCENCE IN PLANTS
Pujol et al. (2014) detected the quantitative genetic signature of
senescence in Silene latifolia, a short lived perennial plant species.
They found that the reproductive performance of individuals was
declining with age. They also found that the age dependent dete-
rioration of reproduction had an additive genetic basis. Finally,
they found that additive genetic variation for reproductive char-
acters increased with age, which is predicted under both Mutation
Accumulation and Antagonistic Pleiotropy hypotheses. However,
they did not find negative genetic correlations between young
and old age classes as expected under the Antagonistic Pleiotropy
hypothesis. This investigation was rendered possible by the use
of a pedigree based random regression animal model which is a
method first designed to estimate the quantitative genetic variation
of phenotypic plasticity (Wilson et al., 2005; Nussey et al., 2007b;
Brommer et al., 2008; Pujol and Galaud, 2013). Such finding calls
for the replication of such studies in other plant species across the
plant kingdom.

Roach (1993) was already calling for investigating the
quantitative genetic architecture of senescence in plants. Sheffer-
son and Roach (2012) found evidence for genetic variation in
population growth rates. There is now evidence that variation in
individual aging rates has a genetic basis (Pujol et al., 2014). Why
are such studies so rare? First, the longitudinal surveys that are
necessary for such studies are very demanding. Those surveys are
labor and time intensive and require large sample sizes. Another
non exclusive explanation is that research projects on plant senes-
cence are often investigating how plants can escape senescence
rather than analyzing the senescence process in plants that are neg-
atively affected by aging. Already Harper (1977) was mentioning
that plants did not show apparent senescence as a consequence of
their indeterminate growth. Ever since then, many efforts were log-
ically directed toward identifying what could cause plants to avoid
senescence (Watkinson, 1992; Orive, 1995; Pedersen, 1995; Gard-
ner and Mangel, 1997; Vaupel et al., 2004; Munné-Bosch, 2008;
Garcia et al., 2011; Martínez, 2012; Morales et al., 2013; Salguero-
Gómez et al., 2013). As a consequence, it is not surprising that
the quantitative genetic signature of senescence may have been
overlooked in plants. Some insights could certainly be gained by
comparing the effect of age on the quantitative genetic basis of fit-
ness related traits in species whose demography and/or physiology
suggest that senescence is absent.

Knowledge on additive genetic variation at fitness related traits
can be used to predict the evolutionary potential of a popula-
tion (Etterson, 2004; Pujol and Pannell, 2008; Pujol et al., 2008a;
Dibattista et al., 2009; Pujol et al., 2010). This is because additive
genetic effects are expected to underlie most phenotypic evolution-
ary changes under selection (Hill et al., 2008). Today, methods are
available to describe the age dependent additive genetic variation
of fitness related traits in animals and plants (Charmantier et al.,
2006a,b; Brommer et al., 2007, 2010; Nussey et al., 2007a, 2008;
Wilson et al., 2007; Monaghan et al., 2008; Wilson, 2008; Morrissey
et al., 2010, 2012; Pujol et al., 2014). Knowing such age dependent
patterns has implications for the study of the adaptive potential of
populations because populations that are characterized by differ-
ent age structures have different evolutionary properties (Ronce
and Promislow, 2010).

It is important to note that genes with additive effects on the
phenotype are probably not the only genes forming the genetic
architecture of senescence. Ignoring other components of the
genetic architecture of fitness related traits such as dominance
and epistasis may result in missing an important part of an evo-
lutionary process (Barton and Turelli, 1989; Fenster et al., 1997;
Barton and Keightley, 2002; Wilson and Reale, 2006; Reid et al.,
2011; Hansen, 2013; Mackay, 2013). Quantitative genetics mod-
els including dominance effects have already been proposed (e.g.,
Wolak, 2012; Vitezica et al., 2013; Sun et al., 2014). An alterna-
tive way to approach dominance is to study inbreeding depression
because it is the expression of recessive deleterious mutations.
Under the Mutation Accumulation hypothesis (Medawar, 1952),
inbreeding depression should depend on age (Charlesworth and
Hughes, 1996). In a landmark meta-analysis of the magnitude and
timing of inbreeding expression in plants, Husband and Schemske
(1996) conjectured that the accumulation of late-acting inbreed-
ing depression usually found across plant taxa was likely the result
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of the expression of mildly deleterious recessive mutations that
could not be purged by natural selection (because the mutations
had small effects). However, the patterns they observed are also
consistent with a weaker action of selection with age as expected
under the evolutionary theory of senescence. The magnitude of
inbreeding depression was often compared among populations
and environments (Husband and Schemske, 1996; Pujol and
McKey, 2006; Pujol et al., 2009; Facon et al., 2011). It would be
insightful for the understanding of the evolution of senescence
in plants to accumulate case studies that compare inbreeding
depression between age classes in the litterature.

Environmental variability can interact with genetic variability
to shape the phenotype (Wilson et al., 2005; Kruuk and Hadfield,
2007; Nussey et al., 2007b; Pujol and Galaud, 2013). However,
only few studies quantified how the environment interacts with
the genetic architecture of senescence (Nussey et al., 2007a). In
their study, Nussey et al. (2007a) found that age did interact
with both quantitative genetic variation and environmental vari-
ation. Their findings imply that environmental constraints have
the potential to amplify the magnitude of senescence. It would
be worth testing whether such results can be found in other
taxa and correspond to a general property of senescence. Also,
age dependent epigenetic changes were found to be associated
with senescence (Li et al., 2010). It is now widely acknowl-
edged that epigenetic variation can be transmitted to the next
generation and that such inheritance system can influence phe-
notypic evolution (Danchin et al., 2011; Mesoudi et al., 2013;
Singh et al., 2014). Since quantitative genetic statistical models can

also accommodate such non genetic source of transgenerational
variation (Day and Bonduriansky, 2011; Danchin et al., 2013;
Townley and Ezard, 2013), it would be worth verifying whether
senescence related expectations on genetic variation also apply to
transgenerational epigenetic variation.

TOWARD AN INCLUSIVE GENETIC THEORY OF SENESCENCE
At present, prediction of plant senescence based on geneti and
environmental data is hampered by the lack of integration between
the scales at which senescence is studied, i.e., cells, organs, and
individuals (Figure 1). One if not the most important challenge
for the future is to understand the genetic interactions between
those scales. Are the genes involved with senescence at the cell and
the organ level similar to those that are affected by the increase
with age of deleterious mutations balanced by selection? Quanti-
tative genetics offers an opportunity to advance in that direction.
Quantitative genetics provides us with the framework to predict
the phenotype of individuals on the basis of our knowledge of
their genetic architecture (Falconer and Mackay, 1996; Roff, 1997;
Lynch and Walsh, 1998; Mackay, 2001). The usual approach in
quantitative genetics is to use statistical models in order to relate
phenotypic resemblance to genetic similarities. Those genetic sim-
ilarities can be established on the basis of pedigree information
and/or molecular genomic data (Abney, 2008; Carré et al., 2013;
Gay et al., 2013; Bérénos et al., 2014). This framework allows us
to accommodate multi-trait analyses, longitudinal analyses, and
nested genetic effects (Lande and Arnold, 1983; Roff, 1996; Delph
et al., 2004, 2005; Etterson, 2004; Clements et al., 2011; Teplitsky

FIGURE 1 | Age-dependent information at different levels of organization that can be integrated within a quantitative genetics framework as to

identify their relationship.
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et al., 2014). As a result, age-dependent variation in cell, organ, and
individual characteristics can be adequately studied using models
accommodating longitudinal data such as a random regression
animal models (Fischer et al., 2004; Schaeffer, 2004; Wilson et al.,
2005; Nussey et al., 2007b; Brommer et al., 2008; Pujol and Galaud,
2013). Such models can evaluate genetic effects at different bio-
logical scales by including multi-trait and nested variables. In this
way, it is possible to study the dynamics of senescence and the
genetic correlations among the genetic components of senescence
at multiple biological scales. Only then will we be able to test
the hypothesis that cellular, organ, and individual senescence are
interdependent (Bleecker, 1998) and to bring an answer to the
question: are genes underlying senescence at multiple biological
scales belonging to the same genetic program that was shaped by
the failure of natural selection in old age? Access to genome wide
decrypted information may help answering that question. The
combination of next generation sequencing techniques to novel
methodological developments in quantitative genetics (Beraldi
et al., 2007; Brown et al., 2012; Gay et al., 2013; Bérénos et al., 2014)
has a lot of unexploited potential for the genetic study of senes-
cence. Using those methods, DNA sequence variation data can be
used to quantify how molecular polymorphism is expressed in dif-
ferent compartments (cells, organs, etc.) in function of the age of
the plant. Collectively, the elements presented above illustrate how
the genetic knowledge on senescence is scattered across separated
research domains. The time is ripe to integrate those disciplines
in one approach that will include multiple biological scales. Only
then will we be able to identify the relationship between the genes
involved with senescence at the cell, organ, and individual levels
(Figure 1).

CONCLUSION
The genetic prediction of senescence in plants can be seen as
an equation. The genetic architecture of a plant would be on
one side of that equation. On the other side of this multi-
variate equation would be the age dependent deterioration of
cells, organs, and functions that define the fitness performance
of plants. The reviewed elements presented above imply that
several links between the two sides of the equation do exist. How-
ever, this equation remains incomplete. As I underlined above
in various sections of the text, many genetic, and environmental
effects remain to be investigated. It is also crucial to identify the
genetic links between the biological scales at which organismal
functions decline. Quantitative genetics offers a unique opportu-
nity to build such an integrative framework. Understanding the
genetic architecture of senescence in plant populations is equiva-
lent to evaluating the adaptive potential of fitness changes with age.
Such studies should therefore be an asset for the management of
plant genetic resources and the conservation of endangered plant
species.

In fact, attempts to reconcile the separated components of
the genetic architecture of senescence in plants are scarce. The
potential implications of such studies conducted across the plant
kingdom in the light of the immense variation it conceals in terms
of genomic complexity, life spans, reproductive systems, and life
histories are immense. In plants, it is easier to find closely related
species that display large phenotypic resemblances but have very

different life histories. Genetic studies on senescence in animals
and humans are a top research priority that has a direct interest
for the people (Zimniak, 2012; Yashin et al., 2013). It is under-
standable that the interest for these studies outweighs the interest
for genetic research on plant senescence. One should nevertheless
not neglect that adopting an inclusive approach of senescence in
plants that integrates multiple biological scales would bring alter-
native insights on issues raised by aging research in animals and
humans.
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