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A B S T R A C T

Bovine respiratory disease complex is a major cause of illness in dairy calves. The diagnosis of active infection of
the lower respiratory tract is challenging on daily basis in the absence of accurate clinical signs. Clinical scoring
systems such as the Californian scoring system, are appealing but were developed without considering the
imperfection of reference standard tests used for case definition. This study used a Bayesian latent class model to
update Californian prediction rules. The results of clinical examination and ultrasound findings of 608 pre-
weaned dairy calves were used. A model accounting for imperfect accuracy of thoracic ultrasound examination
was used to obtain updated weights for the clinical signs included in the Californian scoring system. There were
20 points (95% Bayesian credible intervals: 11–29) for abnormal breathing pattern, 16 points (95% BCI: 4–29)
for ear drop/head tilt, 16 points (95% BCI: 9–25) for cough, 10 points (95% BCI: 3–18) for the presence of nasal
discharge, 7 points (95% BCI: −1 to 8) for rectal temperature ≥39.2 °C, and −1 points (95% BCI: −9 to 8) for
the presence of ocular discharge. The optimal cut-offs were determined using the misclassification cost-term
term (MCT) approach with different possible scenarios of expected prevalence and different plausible ratio of
false negative costs/false positive costs. The predicted probabilities of active infection of the lower respiratory
tract were also obtained using posterior densities of the main logistic regression model. Depending on the
context, cut-off varying from 9 to 16 can minimized the MCT. The optimal cut-off decreased when expected
prevalence of disease and false negative/false positive ratio increased.

1. Introduction

The diagnosis of bovine respiratory disease complex (BRD) has been
of interest for many researchers over the past 30 years. The BRD
complex is one of the 2 most frequent diseases that can affect young-
stock cattle including dairy, veal, preweaned beef, and feedlot calves
(Assie et al., 2004; McGuirk, 2008; Pardon et al., 2012; Woolums et al.,
2013). In dairy calves specifically, BRD is commonly enzootic in a herd
with periodic outbreaks (Ames, 1997).

Various systemic clinical signs (fever, depression, anorexia) and
respiratory signs (nasal discharge, tachypnea, dyspnea, cough, etc…)
characterize the classical BRD presentation (McGuirk, 2008). Due to the
variety of infectious agents involved in BRD, the clinical signs vary in
terms of intensity and duration. The term of subclinical BRD can also be
used for defining calves not detected as sick by clinical examination but
presenting lung lesions (e.g. detected at slaughter or by ultrasound
examination). The primary surveillance of BRD is generally performed
by the farmers or their workers who observe calves daily (especially
during the feeding period). However, this BRD detection strategy, based

on human observation is most often considered as an art rather than a
science (Portillo, 2014). Pen riders detecting BRD in feedlot calves are
good examples of this concept. It is difficult to “teach” how to be a good
pen rider (Portillo, 2014). For these reasons, using a simple and prac-
tical systematic approach is of interest to develop a common BRD de-
finition and a structured examination process. Two of them have gained
in popularity for dairy calves in North America (McGuirk, 2008; Love
et al., 2014). The first scoring system is based on 5 clinical signs as-
sessment (rectal temperature, cough, nasal and ocular discharges, and
ear position) which are categorized in 4 (0–3) different ordinal levels
(McGuirk, 2008). The accuracy of this clinical scoring system was re-
cently assessed using a Bayesian latent class framework (Buczinski
et al., 2015b). The score sensitivity (Se) for detection of active BRD was
62.4% (95% Bayesian credible intervals (BCI): 47.9–75.8%) and spe-
cificity (Sp) was 74.1% (95% BCI: 64.9–82.8%). Recently, a second
clinical scoring system was developed considering previous clinical
signs included in Wisconsin score and trying to assess weight of each
clinical signs based on logistic regression coefficients (Aly et al., 2014;
Love et al., 2014). One of the advantages of this new clinical scoring
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system is that each clinical sign is assessed using a dichotomous way
(normal vs. abnormal). The weight attributed for each selected clinical
item was determined using a conditional logistic regression analysis.
Two different BRD case definitions were used in this study. The calves
with a positive nasopharyngeal PCR for viral pathogens (bovine re-
spiratory syncytial virus, herpesvirus type 1, or bovine viral diarrhea
virus) were defined as cases. The calves with a nasopharyngeal swab
culture positive for an aerobic respiratory pathogen (Pasteurella multo-
cida, Mannheimia haemolytica, Histophilus somni or Bibersteinia trehalosi)
or Mycoplasma spp. were defined as cases if their Wisconsin score was
≥5. The rounded regression coefficients obtained from logistic re-
gression models were used as prediction rule’s weight for each retained
clinical sign. Three different scoring systems were reported but the
third presented model (BRD3 score) using a threshold ≥5 to define a
case was selected for further use by the authors (Aly et al., 2014; Love
et al., 2014, 2016). One of the limitations of the methodology presented
for obtaining clinical signs “weights” was that the calves’ BRD defini-
tion was determined partly using Wisconsin score results (80% of BRD
cases and 71% of control cases were classified according to their Wis-
consin score result). This implies that the same clinical signs for which
the authors tried to define accuracy were also included in case defini-
tion. This “testimation” problem could potentially artificially inflate
prediction weight due to collinearity between the test to assign BRD
status (Wisconsin score) and the clinical signs assessed (same clinical
signs than the Wisconsin score) as previously described (Steyerberg,
2008). Attribution of weight for prediction rules and their validation is
an important but challenging task in medical science (Toll et al., 2008;
Collins et al., 2015). This challenge is even more important in the ab-
sence of a gold standard to define the true disease status of each patient
(Magder and Hughes, 1997; McInturff et al., 2004). Bayesian latent
class models have received a lot of attention in the recent years to study
diagnostic tests in the absence of gold standard (Branscum et al., 2005;
van Smeden et al., 2014). The use of Bayesian methodology is also
flexible and allows incorporation of classification error in the reported
outcome from logistic regression modeling (McInturff et al., 2004). It
would therefore be of interest to assess the accuracy of the Californian
scoring system considering the imperfection of thoracic ultra-
sonography.

Our hypothesis was that the weights of clinical signs used in
Californian score would differ from the originally published score when
using Bayesian latent class modeling. The main objective of the study
was therefore to update the Californian prediction rules system using a
Bayesian framework to attribute score weights using thoracic ultra-
sonography as an imperfect reference standard to determine BRD
status. A second objective of the study was to determine the optimal
strategy for using this updated test in situations with different clinical
settings (expected prevalence of disease and relative cost of false ne-
gative/false positive cases).

2. Materials and methods

2.1. Animals selection and thoracic examination diagnostic test

The database that was used for this study validation was described
in a previous cross-sectional study which aimed to assess the prevalence
of lung lesions using thoracic ultrasonography in pre-weaned dairy
calves from the Province of Québec, Canada (Buczinski et al., 2018).
The sample size calculation for the number of herds to include in that
previous study was based on an expected prevalence of 10% of lung
consolidation with a 7.5% precision estimate. In participating herd,
6–12 preweaned female calves randomly selected from all preweaned
calves were included in summer 2015 and winter 2016. A total of 608
calves from 39 herds were then recruited and the clinical signs used in
the Californian scoring system were collected on these calves during
farms visits. A systematic bilateral thoracic ultrasonography (TUS) was
also performed in all enrolled calves by one experienced veterinarian
(SB) and a recently graduated veterinarian who received a specific
training on TUS. The agreement for finding lung consolidation using
this training technique was previously reported with κ values from 0.6
to 1.0 (moderate to perfect) in preweaned dairy calves (Buczinski et al.,
2013). The lung field caudal to the heart (right and left) and the cranial
right lung field were screened as previously reported (Buczinski et al.,
2016; Ollivett and Buczinski, 2016). The TUS examination was positive
if consolidation (depth ≥1 cm) was diagnosed. The TUS was negative if
consolidation was< 1 cm (Buczinski et al., 2015b).

2.2. Clinical signs data collection

The clinical signs data were collected as described elsewhere (Aly
et al., 2014). These clinical signs were assessed by 2 different operators
(not the same than those performing TUS examination) who received
the same background information on clinical scoring using the reported
visual Californian scoring chart (Aly et al., 2014). Briefly, the presence
of nasal (NAS) or ocular (EYE) discharge were recorded as well as the
presence of ear drop/head tilt (EAR), the presence of spontaneous
cough during the examination (COUGH), abnormal breathing
(BREATH) or increased rectal temperature (≥39.2 °C; TEMP using a
digital thermometer (#8076, Formedica, Montréal, QC, CAN)). These
dichotomous variables were recorded for every calf as well as its TUS
tests results. The clinical signs were also assessed using Wisconsin
scoring rules (McGuirk, 2008).

2.3. Statistical analyses

The analyses were performed using different software (SAS, v9.4,
Cary, NC and OpenBUGS, version 3.2.3 rev 1012, MRC, UK).

The general assumption for the model was that there was no cov-
ariance between ultrasonography test results and clinical signs data
included in the Californian scoring system. Because clinical signs and

Fig. 1. Diagram representation of the latent class model used
for determining the clinical score accuracy for the diagnosis of
active infection of the lower respiratory tract in dairy calves.
The rectangles correspond to observed variables (ultrasound
result and clinical score results) and the oval represents the
latent variable (active infection of the lower respiratory tract).
The circles represent the sensitivity and specificity of ultra-
sound (Seus and Spus) and clinical score (Sec and Spc).
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ultrasonography assess different biological processes we thought that
these assumptions were most likely true. Another assumption of the
model was that the accuracy of ultrasonography would be the same for
all calves included in the study.

2.3.1. Prediction rules of score using logistic regression model considering
the imperfect nature of ultrasound examination

The latent variable was an active infection of the lower respiratory
tract that could be either bacterial, viral or of mixed etiology. This la-
tent variable is applicable because it requires an immediate therapeutic
action for either limiting bacterial growth (in cases of bacterial pneu-
monia) or bacterial complication in case of initial viral infection.
Healthy animals, animals sick with other diseases than lower re-
spiratory tract BRD or previously affected by BRD (with no further
associated signs of inflammation/infection) were therefore not included
in that definition. The general framework is illustrated in Fig. 1.

The probability of the ith calf for being TUS positive (Pus+) was
described as a function of the probability of the calf being BRD positive
(PBRD+), TUS sensitivity (Seus) and specificity (Spus).

Pus+i=PBRD+
i×Seus+ (1−PBRD+

i)× (1−Spus) (1)

with Seus and Spus priors assumed to follow beta distributions which are
specified in the next section.

For the ith calf, the latent BRD status (Yi) was assumed a Bernoulli
event defined by the probability of being BRD affected (PBRD+ defined
as the probability of active infection of the lower respiratory tract (ie.
latent variable)).

Yi∼ Bernoulli (PBRD+) (2)

A general mixed logistic regression model was built using all clinical
signs from the Californian scoring chart:

The herd was considered as a random effect (Robert et al., 2012).
The specific herd term (ε) accounted for data structure with calves
clustered within specific farms:

(4) ε∼ norm (0;τ) and τ∼ dgamma (1,1)
The choice of gamma (γ=1, γ=1) for precision specification was

considered as reasonably non-informative (Gelman, 2006) with γ≤ 1
avoiding γ→ 0 (eg 0.01 or 0.001). Relaxing to gamma (0.001, 0.001)
did not significantly change the posterior density estimates (supple-
mental files).

Main model implementation (MODEL 1) was performed using
OpenBUGS. The priors used for modeling TUS accuracy were based on
previously reported posterior results of TUS accuracy (Seus= 79.4%
(95%BCI, 66.4–90.0%); Spus= 93.9% (95%BCI, 88.0–97.6%)) obtained
in preweaned dairy calves populations different from the present study
(Buczinski et al., 2015b). The corresponding beta distribution chosen
for TUS were beta (27.02, 7.92) for Seus (best guess 79%, 5th percentile
65%) and beta (80.58, 6.08) for Spus (best guess 94%, 5th percentile
88%). Since it is not clinically intuitive to define informed priors on
logistic regression parameters from Eq. (4), we used the method of
conditional means priors elicitation of different clinical profiles by two
different experts on calf health (McInturff et al., 2004).

The priors of PBRD+ depending on the different clinical profiles
(xi:x1, …, x7) that were assessed and PBRD+ probabilities (yi:p1,…, p7)
used were used for determining the vector [β] as described by McInturff
et al. (2004) using the inverse relation:

∑⎜ ⎟
⎛
⎝ −

⎞
⎠

= + + =
=

y
y

β β X ε βXlog
1

[ ]i

i
i

i i7

1

6

(5)

[β]= [X]−1× logit(y) (6)

Briefly, two experts on dairy calves’ health (GF, DF) were in-
dependently solicited to elicit probability of active infection of the
lower respiratory tract based on 7 different clinical profiles (Table 1).
For example, for the first clinical profile, the experts were asked to
consider the example of a calf with no abnormal clinical signs to be
affected by active infection of the lower respiratory tract. The second
clinical profile was a hypothetical calf with increased rectal tempera-
ture, abnormal breathing pattern and nasal discharge. The experts were
asked for their best guess for PBRD+ of 7 hypothetical different calves
as well as their 5th or 95th percentile for this prior distribution. The
experts were not aware of the score distribution relative to ultrasono-
graphic results. This blinding aimed avoiding bias on PBRD+ assign-
ment.

The model was based on a total of 50,000 iterations using a 5000
burn-in. Three different chains with different inits values were per-
formed for each model. Rapid mixing and stationary distribution were
searched as signs of good modeling ability. The convergence of the
model was checked using visual trace-plots and Gelman-Rubin statistic
plot. Autocorrelation was detected using autocorrelation plots and
thinning was performed when required. The distribution of BRD
probabilities and 95% BCI of posterior densities from different clinical
profiles were then obtained as practical ways for interpreting the study
findings and uncertainty for the different possible clinical presenta-
tions. These clinical profiles were obtained from all possible permuta-
tions of clinical signs (6 dichotomous clinical signs with 26 (64) possible

permutations obtained with Interactive Matrix Language (IML) of SAS
software)

2.3.2. Sensitivity analysis
Sensitivity analysis was performed using non-informative priors for

all probability densities (MODEL 2). In this model, all probabilities
profiles (p1,..,p7) were assumed following a uniform non-informative
probability density from 0 to 1 (beta (1,1)). A third model (MODEL 3)
was built using non-informative priors for ultrasonography accuracy
which was also assumed to follow the same flat distribution. The de-
viance information criteria (DIC) and effective number of models’
parameters (pD) were noted as indicators of model fit accounting for
overfitting risk (Spiegelhalter et al., 2002). A DIC difference of 5 or
more was considered as indicative of a better fit although this is a de-
batable issue (Adrion and Mansmann, 2012).

2.3.3. From logistic regression parameters to prediction rules
The coefficients obtained from the main model (MODEL 1) regres-

sion analysis were used for using the score weight of every parameter
included in the main model. The score’s weights were obtained after
rounding logistic regression coefficient parameters multiplied by 10
(Moons et al., 2002; Toll et al., 2008). All possible obtained scores from
the calves were then used as possible cut-offs (defining positive score
if≥ to cut-off values, negative if < to cut-off) to obtain cross-classifi-
cation (2 by 2 tables) with lung consolidation results. The sensitivity

Logit PBRD+= β7+ β1×BREATH+ β2×TEMP+ β3×EYE+ β4×NAS+ β5×EAR+ β6×COUGH+ ε
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and specificity for every cut-off was obtained using a latent class model
using 1 population 2 independent tests modeling. Non-informative
priors (beta(1,1)) were used for score Sec/Spc and prevalence of BRD.
The prior of TUS were the same as in model 1. Posterior distributions
were obtained in OpenBUGS using the same method that previously
described (see Section 2.3.1). Median estimate and 95% BCI of score
sensitivity and specificity for each cut-off were then compiled.

2.3.4. Determination of the optimal cut-off chosen to detect BRD in dairy
calves

The accuracy of the scores using across all possible cut-offs was
explored using the misclassification cost-term (MCT) approach con-
sidering the differential cost of false negative versus false positive cases
(Greiner, 1996; Dufour et al., 2017). The MCT was calculated for each
specific cut-off using the equation:

MCT= (1−PBRD+) ∗ (1−Spc)+ r*PBRD+ ∗ (1−Sec) (7)

This term depends on the prevalence of BRD (PBRD+), the false-
negative to false-positive cost ratio (r), and the sensitivity and specifi-
city of the score at a specific cut-off (Sec, Spc). The minimum value of
MCT can be considered as the value which minimizes the costs. The
plausible ranges for the relative costs of false negative to false positive
cases ratio are presently unknown for dairy calves. We used wide ranges
that were obtained on a previous study where four different experts
were asked to determine this value in feedlot calves (Buczinski et al.,
2015a). In the absence of specific studies on dairy calves reporting this
ratio, we assumed plausible ranges variations (1:1, 3:1; 8:1, and 20:1)
indicating that the cost of false negative case is generally higher than a
false positive case. We thought that this general rule applies in dairy
calves, however, the last ratio (20:1) was perceived as a low probability
event.

3. Results

Data from a total of 608 preweaned calves were included for this
study (no missing data). Two hundred twenty (36.2%) calves showed
evidence of lung consolidation (≥1 cm consolidation). The repartition
of abnormal clinical signs conditional to ultrasound findings are pre-
sented in Fig. 2.

The prediction according to different clinical profiles provided by
the 2 clinical experts are summarized in Table 1. Convergence and good
mixing were obtained rapidly for all the models. The regression para-
meters obtained from the different modeling strategies are summarized
in Table 2. The expected predicted probabilities for the 7 different
clinical profiles are summarized in Fig. 3. Briefly, the different priors
had a relatively low impact on posterior densities of all tested models
(Table 2, Supplemental file). The BRD probabilities and their 95% BCI
are presented in Fig. 4 for all possible 64 clinical signs permutations
using the posterior distributions of Model 1.

The regression coefficients were obtained (using rounded value of
10*β (Moons et al., 2002)) and the final weight attributed to every
clinical sign is presented in Table 3 as well as comparison of the relative
weight of each clinical sign when compared with the original BRD3
Californian score proposed by Love et al. (2014) and Aly et al. (2014).
The Sec and Spc were then obtained for all possible scores obtained in
the database (Table 4) and associated accuracy was recorded in Fig. 4.
The MCT analysis is presented in Fig. 5 using a BRD prevalence of 5, 20
and 40% respectively. In a high prevalence scenario (40% prevalence as
in a clinical outbreak) or for r= 1:20, a very low score cut-off would be
the optimal choice (eg treating all calves with one abnormal sign). For a
low prevalence scenario and for r of 1:8 or less, a cut-off of 13 or 15
would minimize MCT. In average BRD prevalence situation (20%), a
cut-off between 9 to 16 would minimize MCT depending on r values.
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4. Discussion

Using detection strategy that can be used daily is of key importance
to adequately detect and manage BRD in dairy calves. A simple clinical
scoring rule appears as a promising tool for the farmers and their
workers. However, it is crucial to establish an unbiased estimate of the
accuracy of this scoring rule. This study considered the absence of gold
standard for BRD definition in calves to assess clinical score accuracy.
Rather than basing our approach on an hypothetical gold standard we
used a reference standard test with imperfect accuracy (thoracic ul-
trasound). With our latent class modeling approach, we establish that
the optimal cut-off to define a positive case varied from 9 to 16 in low
to average BRD prevalence situations. However, in high prevalence
situation (≥40%) treating all calves with one abnormal clinical sign
would be the most cost-effective strategy. Relaxing accuracy results
from thoracic ultrasound with non-informative priors had a limited
impact on our predicting regression coefficient scores, which reinforces
the external validity of the present findings.

Our study results can be interpreted and used in two different ways.
First, it can be intuitive to look for the predicted probability of suffering
from active lower respiratory tract infection for a calf with a specific
clinical profile using the posterior probabilities from the main logistic
regression model based on the 64 different clinical signs permutations.
These predicted probabilities can be directly used by either veterinar-
ians or farmers for assessing the risk of being sick based on our decision
tree. Secondly, the clinical prediction rule using updated weights for
each clinical item can also be used with some flexibility. Depending on
the context (low vs. high expected prevalence of BRD, producer effi-
ciency to detect calves), the cut-offs used for defining an affected an-
imal could be modified considering the relative cost of misclassified
calves. This scoring rule could also serve as a screening test before
applying other more specific tests such as thoracic auscultation or de-
termination of serum acute phase protein concentrations in calves with
abnormal clinical signs profiles. Used for this purpose, the cut-off could
be adjusted to be more sensitive since the false positive cases would be
correctly classified by the second test.

The absence of a gold standard test is a recurrent issue in BRD re-
search (White and Renter, 2009; Abdallah et al., 2016; Timsit et al.,
2016; White et al., 2016). Due to this limitation, composite reference
standard definition is frequently used. Association of multiple positive
test (ex: increased rectal temperature, specific clinical signs, abnormal

auscultation or ultrasound findings) for assessing new test accuracy or
when reporting impact of different interventions on BRD are good ex-
amples. However, this type of composite reference standard can lead to
biased estimates due to spectrum bias risk (Schiller et al., 2016). One
can easily admit that a calf with clinical signs of BRD but without ab-
normal ancillary test may still be truly affected by BRD. This is parti-
cularly true when the ancillary test lacks sensitivity. In this situation,
composite reference standard would classify this calves with discordant
result i) as either a negative case or ii) as a calf not enrolled in the study
(depending on negative case definition). These 2 types of considerations
would i) decrease the apparent specificity of the new test or ii) increase
the new test accuracy excluding cases with discordant results (which
obviously may be the typical clinical cases where the clinician want to
use another test to determine the “true” patient’s status).

The Californian scoring system is relatively easy to implement in a
dairy farm since the clinical signs evaluated are dichotomised (normal
vs. abnormal). The different weights we found for these specific clinical
signs slightly differs from what was originally reported (Aly et al., 2014;
Love et al., 2014). This is not surprising since external validation of
prediction rules most often justified some changes when compared with
initial findings (Steyerberg, 2008; Collins et al., 2015). When looking
more specifically on the main differences between the relative weights
found in the current study vs the initial report of Californian score (Love
et al., 2014) we can note that the weight attributed to the dyspnea and
cough was higher in our study (representing 28.6% and 22.8% of the
total points, respectively) than initially reported (11.8% for both signs).
In contrast, eye discharge’s weight was lower in the current study
(1.4%) than in Love et al. (2014) study where it represents 11.8% of the
score. The rectal temperature weight was similar in both scores (10% vs
11.8% in Californian score). In the present study, rather than presenting
new clinical signs or new categorization for the clinical signs (for ex-
ample: temperature) that were assessed, we focused our attention on
updating prediction rules. This strategy has been reported as a better
approach to optimize prediction rule rather than creating a different
rule, which can in term limit the application in the field (Toll et al.,
2008). As an example, in 2008 more than 60 different prediction rules
(with different covariates) existed to estimate the risk breast cancer in
human medicine (Toll et al., 2008). This would obviously become a
limitation for the physician who cannot intuitively know which one is
the best. Therefore, it could be discouraging to use any prediction rule.

The present score’s accuracy varied, as expected, depending on the

Fig. 2. Repartition of clinical signs observed in 608 pre-
weaned dairy calves in association with their and consolida-
tion status.
For each clinical sign included in the scoring system, the
calves with no abnormal clinical sign are indicated in green
and the calves with abnormal clinical sign are indicated in red.
The relative number of calves with lung consolidation condi-
tional on their clinical sign status (normal or abnormal) is
graphically represented as the relative length of dark (no
consolidation) vs pale (consolidation) colored bars. Lung
consolidation was defined as a calf with at least one site of
visible lung tissue ≥1 cm of depth when performing thoracic
ultrasonography. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 3. Median and 95% credible intervals of predicted prob-
abilities and ultrasound accuracy for the diagnosis of active
infection of the lower respiratory tract in dairy calves com-
pared with experts’ conditional means probabilities.
M1: Model 1 is obtained using informative prior information
from thoracic ultrasonography accuracy and clinical profiles
BRD probability (see Table 2).
M2: Model 2 is obtained using informative prior information
from thoracic ultrasonography accuracy and non-informative
priors for clinical profiles BRD probability (see Table 2).
M3: Model 3 is obtained using non-informative prior for
thoracic ultrasonography accuracy and clinical profiles BRD
probability (see Table 2).
p1, …p7 are corresponding to 7 different calves’ clinical
profiles (see Table 1).
Prior_E1, Prior_E2 are the conditional means priors obtained
from expert 1 and 2 consultation (see Table 1).

Fig. 4. Practical application of clinical assessment of dairy calves using 6 different clinical signs. The decision tree is based on 64 possible different clinical signs
profiles to predict the probability (95% credible intervals) of an active infection of the lower respiratory tract based on posterior densities from model 1 (Table 2).
The calves with normal vs rapid or abnormal breathing pattern are presented in Fig. 4A and 4B respectively. The clinical signs are dichotomous as reported by Love
et al. (2014).
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selected cut-off. The MCT analyses revealed that cut-offs from 9 to 16
were optimal decision thresholds in the different scenarios with Se
varying from 83.0 to 66.9% and Sp from 69.1 to 82.7% respectively.

These ranges can be compared with reported for the Californian score
with screening sensitivity of 46.8% (95% confidence interval;
39.5–54.3%) and specificity of 87.6% (82.6–91.1%) using a cutoff score

Fig. 4. (continued)

Table 3
Proposed clinical scoring system for detection of active infection of the lower respiratory tract in dairy calves and comparison with original Californian scoring chart.

MODEL 1 Californian scoring system

Modified scoring rule (relative
weight%)

95% credibility intervals for modified
scoring rule

Scoring rule from the Californian score (Love et al., 2014; Aly et al.,
2014) (relative weight (%))

Presence of dyspnea 20 (28.6) 11–29 2 (11.8)
Temperature ≥39.2 °C 7 (10.0) −1 to 8 2 (11.8)
Eye discharge −1 (1.4) −9 to 8 2 (11.8)
Nasal discharge 10 (14.3) 3–18 4 (23.5)
Ear drop/Head tilt 16 (22.8) 4–29 5 (29.3)
Spontaneous cough 16 (22.8) 9–25 2 (11.8)
Maximal score (points) 70 17

aThe number of points for every abnormal clinical sign was obtained using the rounded 10*b (b:logistic regression coefficients) value according to Moons et al.
(2002).
bThe relative weight of each clinical sign was obtained dividing the number of point for this specific clinical sign by the total number of points (17 possible points in
the Californian score and up to 70 points for the updated prediction rule).
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of 5 or more. In this study, case definition was a composite reference
standard with abnormal thoracic ultrasound or auscultation findings
which may either include misclassified animals or calves with non-ac-
tive pneumonia lesions. This risk of bias was avoided using a latent
class approach.

One limitation of the present study is due to the imperfect test that
was used as a proxy of BRD. Thoracic ultrasound is a fast and reliable
test to detect BRD induced lung lesions (Ollivett et al., 2015). Moreover,
it can be performed even by relatively novice ultrasound operator
(Buczinski et al., 2013). Thoracic ultrasound findings correlates with
necropsy findings (which can be considered as a gold standard) in
chronic (Rabeling et al., 1998), subclinical BRD cases (Ollivett et al.,
2015) and experimentally induced Mannheimia haemolytica infection
(Ollivett et al., 2013). However, lung consolidation can be absent in
early BRD cases or viral pneumonia (false negative case) and false po-
sitive cases may occur when lung consolidations are the consequences
of a previous BRD episode but now inactive (ie. animal that previously
had BRD but who will now not benefit from treatment). Other lung
lesions associated with ultrasonographic lung consolidation (atelectasia
or pulmonary tumor) may also occur (Lichtenstein et al., 2009). The
sensitivity analysis showed that the informative prior on ultrasound
accuracy had little impact on posterior distributions (model 2).

We used conditional mean priors based on experts’ opinion of ex-
pected BRD probability associated with different clinical profiles. These
priors had limited impacts on posterior probabilities as shown by sen-
sitivity analysis. Interestingly, there was some discrepancies between
experts and for some clinical profiles (posterior densities very different
from priors). These discrepancies may reflect several mechanisms in-
herent to dichotomous scoring system and clinical decision-making.
Three of the four profiles where either the expert did not agree or where
posterior densities changed from priors densities included increased
rectal temperature (≥39.2 °C). Although very simple to understand,
categorization of a dynamic continuous biologic process has some
limitations. For example, a 39.2 °C calf with slight nasal discharge and a
40.5 °C calf with bilateral purulent nasal discharge would have received
the same clinical score. However, most of clinicians would admit that
the probability of BRD in these two calves are quite different. The
clinical thinking and reasoning is impacted when estimating the risk
(best guess) of BRD probability by the spectrum of clinical signs in-
cluded in a scoring system. This process would indeed influence the
predicted probability. This may also explain why some posterior den-
sities where significantly different from prior densities because LCM
models considers the information lost in the categorization process.

Our model assumes that the herds have a specific BRD probability
(using herd random intercept) but it was assumed a constant slope for
each predictor of the model for a specific herd. However, since we did
not have any bacterial or viral samples from calves in specific farms we
could not investigate the impact of the specific etiological agent on the
score accuracy (impact on the model slopes). In Québec dairy farms
with preweaned calves’ enzootic pneumonia, bacteria were most fre-
quently isolated from deep nasopharyngeal swabs. Viruses were un-
commonly present except for bovine coronavirus at least in one recent
study (Francoz et al., 2015). The exact role of coronavirus in BRD
complex remains uncertain. We tried to avoid bias in the present study
using a random sampling of farms considered representative of the
Québec dairy industry. From 6 (where only 6 calves were present) to 12
calves (where 12 or more preweaned calves were present) were selected
as a requirement of our initial study (Buczinski et al., 2018). No specific
internal validation of the proposed clinical scoring method was per-
formed which can also be a study limitation.

In conclusion, this is the first study upgrading currently predicted
rules for BRD diagnosis in calves considering the absence of gold
standard for this disease. Using a Bayesian framework and including
expert conditional means priors, it was possible to optimize an existing
score which can be further used in practice. The different predicted
probability for calves with various clinical signs have been reported and
can be helpful for decision-making when using this score in practice.
Dairy practitioners could either use the updated clinical score selecting
the optimal cut-off depending on the clinical context of application
(high vs. low expected prevalence of respiratory problems) or directly
use the results of the 64 clinical profiles probability results. As with any
diagnostic or prediction study, the findings of this study need to be
confirmed, updated, and refined by future studies, particularly using
different populations of calves. The applications of these clinical signs
at the group level would also be helpful to decide when a group of
calves is at high (vs. low) risk of being BRD affected.
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Table 4
Sensitivity and specificity of different scores cut-offs for the diagnosis of active
infection of the lower respiratory tract in dairy calves using updated predicting
rule.

Cutoff to define a positive score Sensitivity (95% BCI) Specificity (95% BCI)

≥0 97.3 (92.0–98.2) 11.7 (8.8–15.1)
≥6 84.3 (72.2–98.2) 57.7 (52.5–63.8)
≥7 82.5 (70.1–97.8) 60.3 (55.1–66.6)
≥9 83.0 (69.5–98.2) 69.1 (63.7–75.9)
≥10 81.6 (68.2–97.8) 71.0 (65.7–77.5)
≥15 71.1 (56.6–92.3) 81.2 (76.4–87.5)
≥16 66.9 (52.3–92.3) 82.7 (78.0–88.4)
≥17 50.8 (37.4–80.3) 90.3 (86.5–95.0)
≥20 49.3 (35.6–81.8) 93.5 (89.9–98.1)
≥22 43.1 (30.8–73.4) 93.3 (90.0–97.4)
≥23 42.2 (30.0–76.4) 94.2 (90.9–98.0)
≥25 36.7 (25.3–64.5) 95.8 (92.8–99.0)
≥26 35.3 (24.0–64.6) 97.0 (94.3–99.6)
≥27 26.5 (16.8–50.5) 98.5 (96.5–99.9)
≥30 26.7 (16.7–51.9) 99.0 (97.2–99.9)
≥32 26.5 (16.9–56.5) 99.1 (97.5–100)
≥33 24.3 (15.2–46.0) 99.2 (97.6–100)
≥35 21.0 (12.7–42.1) 99.5 (98.3–100)
≥36 18.4 (10.7–40.5) 99.5 (98.2–100)
≥37 13.3 (7.1–27.7) 99.4 (98.1–100)
≥42 11.4 (5.7–24.3) 99.3 (98.0–100)
≥43 10.3 (5.0–24.7) 99.5 (98.2–100)
≥45 6.2 (2.5–16.0) 99.7 (98.7–100)
≥46 5.9 (2.3–14.8) 99.8 (98.9–100)
≥42 3.2 (0.9–9.5) 99.7 (98.9–100)
≥52 3.0 (0.8–8.94) 99.9 (99.2–100)

The computations of sensitivity and specificity were obtained from latent class
model (1 population, 2 independent tests) using informative prior for ultra-
sound accuracy (Se∼ beta (27.02, 7.92); Sp∼ beta(80.58, 6.08)) and non in-
formative prior for score accuracy and respiratory disease prevalence (beta
(1,1)). The median estimates were used for generating the misclassification
cost-term analyses.
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