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*e biomechanical behaviour of the periodontal ligament (PDL) is still not well understood although this topic has been studied
for almost 100 years.*is study reports on clinical and mathematical studies to determine the constitutive law of the PDL. A set of
mechanical parameters of the tooth-PDL system is obtained, and a new method for the evaluation of these parameters from the
free response of the tooth is introduced. *is response is produced by repeated impacts applied to the gingival tissue in the apical
part of the tooth investigated—with the aid of a Periotest exciter. A Doppler ultrasound probe is utilized to determine the response
of the tooth-PDL system. *e parameters evaluated from these measurements can be considered as the elastometric properties of
the dental system investigated. A modal analysis/system identification method is utilized to estimate these parameters. *e
investigations are carried out for different teeth abutments, both with and without a dental bridge/fixed partial prosthesis (FPP).
*e differences between the responses of the systems in these two cases are determined with the new method proposed. *ey are
discussed with regard to the specific purposes of the FPP.*e study demonstrates that this method can provide the dentist with the
necessary objective evaluations regarding the properties and health of the tooth-PDL system, as well as of the construct that is
obtained after installing a dental bridge.

1. Introduction

*e periodontal ligament (PDL) system connects the tooth
with the alveolar bone [1]. It supports the tooth in contact
with compressive masticatory forces. A proper, healthy
tooth-PDL tissue system will result in a normal mobility and
in a good support of the tooth. However, in time, this system
may be affected by periodontal diseases, which induce

changes in the tooth mobility, with consequences on the
well-being of the patient.

*is tooth mobility is an important parameter that has
to be evaluated for the current medical practice, as well as
for scientific investigations. It is strongly correlated with
the mechanical properties of the tooth-PDL tissue system.
Its biomechanical behaviour is still not well understood
although this topic has been studied for almost 100 years
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[2–5]. Several devices and methods have been therefore
introduced in order to provide quantitative measurements
regarding the tooth mobility; they are an alternative to
purely empirical tests. One of these devices is the Periotest
[6, 7]. *is device, which is used in this research as well,
applies a series of small mechanical collisions on the tooth
and measures the impact pressure on the tooth expressed
as an integer score, intuitively defined, with a range be-
tween −8 and 50. Another device is the Osstell ISQ [8, 9],
based on vibrating the tooth at its resonance frequency.
Other devices, for example, based on the piezoelectric
actuators, are in development, for adjustable testing re-
gimes on the tooth [10].

*ese methods are based on the investigation of the
function of the frequency response to a harmonic excitation
[11]. *e resulting vibrations of the tooth are measured
using the laser Doppler vibrometry [12, 13]. *is method of
the function of frequency response is adequate for dental
implants, as well as for in vitro investigations [14–16]. In all
such investigations, a mechanical system with a single degree
of freedom (DOF) has been considered; therefore, a single
damped oscillator has been used. *is approach has the
advantage of the simplicity of the mathematical model in-
volved, but it lacks accuracy in modeling precisely the
physical phenomenon. *erefore, other investigation
methods have also been developed, in which more complex
and thus more accurate mechanical models are utilized, with
two [17] or four DOFs [18–20]. *e latter are taking into
account the tooth mass, the head mass, and the mandibular
and the maxillary tooth mass.

As it has been considered that these models are still not
able to explain the different motions of the tooth in the
alveolar bone which are due to the PDL system, continuous
mechanical models of the tooth-PDL system have been
further developed. *ese studies have been focused on two
main directions:

(i) Finite element methods (FEMs) are used in order to
calculate the different eigenfrequencies of the tooth,
considered as an elastic solid [21, 22]. However, these
eigenfrequencies cannot be used for practical in-
vestigations of the tooth mobility because they are
strongly dependent on the links that the tooth has
with the gingiva and with the jaw bone.

(ii) Rheological models of the periodontal tissue [23, 24]
have developed more precise nonlinear systems [24],
as well as isotropic hyperelastic constitutive models
[25, 26]. *eir main drawback is the difficulty to
perform accurate in vivo experiments in order to
identify the values of the parameters that describe
the rheologic models because it is difficult to make
precise and reproductive rheological measurements
with small devices and in a noninvasive way [27].

Taking into account the aspects above, we have chosen in
the present study not a continuous mechanical model, but
the method of the impact response of the tooth withmultiple
DOFs in order to fulfill the aim of this work, i.e., to provide
a more accurate, but also a clinically applicable information

on the elastic properties of the tooth-PDL tissue. *is
evaluation is useful for a better understanding of the
properties of the periodontal system considered in it en-
tirely, with the remark that the useful number of DOFs that
are relevant is a subject of an evaluation as well. *e aim of
this assessment of the tooth mobility is to offer both re-
searchers and clinicians an indication of the state of health of
the PDL system of the patient.

Another important aspect that has to be investigated is
the PDL system for the teeth abutments under dental
bridges/fixed partial prostheses (FPPs). No evaluations have
been performed for such systems until now, to our
knowledge, because the abutments and the FPP are difficult
to be investigated separately. We thus consider in the first
step of this study different individual teeth, and in the second
step, the dental bridge/FPP system which unites such teeth.
For simplicity, to demonstrate the validity of the in-
vestigation method proposed, two teeth separated by
a missing one are considered, and then the FPP which unites
them.

We have to point out in this respect that by using the
Periotest system, only the mobility of a single tooth can be
evaluated. *ere are no records, to our knowledge, about
a mobility evaluation method for teeth placed under
a bridge, due to the fact that the behaviour of the teeth is
different when they are connected. Imagistic methods like
radiography or periodontal probing are also useless in this
case. *e method to be developed is intended to be utilized
for such a specific situation, when it is important to monitor
(or to evaluate) the mobility of a tooth under a prosthetic
construct without taking out that bridge. *e scope is to be
able to predict the possibility to change the bridge with a new
one on the same teeth and also to determine if it is rec-
ommended to extract one or some of the teeth involved
before taking out the old bridge.

*e methodology of this study is to introduce a set of
mechanical parameters using the modal analysis method,
with a model with several DOFs. A nonperturbative mea-
surement method, based on the impact response of the
tooth, is further discussed for the estimation of these pa-
rameters. *eir usefulness, the efficiency of the related
measuring method to assess the mobility of the teeth affected
by periodontal diseases, and the effects of the FPP are finally
investigated.

In the remaining of this paper, the mechanical models of
the PDL system are discussed in Section 2, while the
measuring device and method are described in Section 3.
*e signal processing is pointed out in Section 4. Section 5
presents the experimental results, while Section 6 discusses
them and extracts rules-of-thumb for such a multi-
parametric analysis. Section 7 presents the conclusions of the
study and directions of future work.

2. Mechanical Models of the Tooth-Periodontal
Ligament (PDL) Tissue System

*e tooth-PDL tissue system represents a continuous de-
formable solid, with distributed mass, damping, and elas-
ticity. As pointed out above, there are two ways to describe
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the properties of this deformable solid, each with a corre-
sponding set of parameters which expresses the physical
properties of the system investigated: with more precise
rheological models or with a simplified description of these
properties with discrete mechanical models with n DOFs.
*is latter type of investigation which we utilize in this study
is employed in the modal analysis of vibrating systems or in
mechanical systems identification [28, 29].

An advantage of such discrete dynamical models is the
fact that the free response of the tooth presents one to several
damped harmonic components, corresponding to the one or
several DOFs of the system. For this reason, we present in
this study first the simple model, with a single DOF, but
finally focus on the model with multiple DOFs, to model
more precisely the physical phenomenon.

(i) <e classical one-dimensional (1D) vibrational system
with viscous damping consists of a mass m, an elastic
element with an elastic constant k, and a damper
characterized by a constant c (Figure 1). *e system
can be subjected to an excitation force F(t). *e
classical equation of motion of the mass m is

m €x(t) + c _x(t) + kx(t) � F(t), (1)

where x(t) is the instantaneous position of the vibrating
mass, v(t) � _x(t) is its speed, and a(t) � _v(t) � €x(t) is its
acceleration. If an impact is applied to the mass in the
absence of the excitation force (i.e., F� 0) and for the case of
an oscillatory regime (i.e., for c2 < 4km), the free response of
the system can be written in the real or complex form as

x(t) � Ae
−ξt sin pt + ϕ0( 􏼁 � c1e

λ1t
+ c2e

λ2t
, (2)

where A, ϕ0, and c1,2 are the integration constants.
*e parameters of the damped vibrations are the eige-

nangular frequency ωn, the reduced angular frequency p,
and the damping factor ξ:
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as well as the complex pair of eigenvalues

λ1,2 � −ξ ± ip, (4)

where i �
���
−1

√
is the imaginary unit.

If one is satisfied with less precise measurements, the free
response of the tooth at an impulse excitation may be
presented in the form of a damped vibration, Equation (2),
which can be characterized by measuring the instantaneous
position x, the speed v, or the acceleration a of a point of the
tooth. *e other two functions can be determined from the
one that is measured.

One may see that the properties of the tooth-PDL tissue
system can be expressed by different pairs of parameters:
(ξ, p), (ξ,ωn), or (c, k). *ey all can be a measure of the
integrity (i.e., of the health state) of the tooth-PDL systems
and can thus be added to the score parameter measured with
the Periotest device in order to improve the evaluation of
such systems.

(ii) To achieve more accurate measurements, the impact
response (the “free response”) of the tooth has to
contain several components; therefore, a model with
n DOFs has to be used. Specifically, if we consider
that the tooth is a free rigid body, it has six DOFs
corresponding to its six possible independent mo-
tions: three translations of the center of mass along
the axes (x, y, z) and three rotations around these
axes, characterized by the angles (α, β, c) (Figure 2).
Actually, because the tooth is an elastic deformable
solid, additional motions exist as a result of its
flexural and torsional motions; these motions have
been investigated by using FEM on simplified
models [21, 22].

On the contrary, the tooth is also subjected to constraints
that actually reduce its possible motions and its number of
DOF. For example, translations on the x-axis and y-axis, as
well as c rotations (i.e., with regard to the z-axis) are in-
tuitively not possible. *e three remaining movements
should be possible—with certain parameters. *e discussion
on these aspects is completed in Section 6.

*is brief analysis shows that one should describe the
tooth-PDL system as a linear, coupled vibrating system with
n DOFs—where a probable useful value, as pointed out
above, is n which equals 3 and with viscous damping. It is
characterized, in a generalization of the discussion on the
model (i), by a classical system of second-order differential
equations:

[m] €q􏼈 􏼉 +[c] _q􏼈 􏼉 +[k] q􏼈 􏼉 � F{ }, (5)

where q􏼈 􏼉 � q(t)􏼈 􏼉 is the n-dimensional column matrix of the
generalized coordinates; F{ } � F(t){ } is the n-dimensional
column matrix of the excitation forces; [m] represents the

x (t), v (t), a (t)

F (t)

c

3

2

1
m

k

Figure 1: *e classical model of a single degree of freedom (DOF)
damped oscillator with viscous damping.
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n× n-dimensional matrix of inertia (in our case a diagonal
matrix, which contains the masses and the moments of
inertia); [c] is the damping n× n symmetric matrix; and [k] is
the stiffness matrix, which is also n× n symmetric. *e
symmetry of these matrices results from the action-reaction
principle.

System (5), which represents n-coupled oscillations is
therefore expressed as follows:

m1 0 0 . . . 0

0 m2 0 . . . 0

0 0 m2 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . mn
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

€x1(t)

€x2(t)

€x3(t)

. . .

€xn(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

c11 c12 c13 . . . c1n

c21 c22 c23 . . . c2n

c31 c32 c33 . . . c3n

. . . . . . . . . . . . . . .

cn1 cn2 cn3 . . . cnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_x1(t)

_x2(t)

_x3(t)

. . .

_xn(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

k11 k12 k13 . . . k1n

k21 k22 k23 . . . k2n

k31 k32 k33 . . . k3n

. . . . . . . . . . . . . . .

kn1 kn2 kn3 . . . knn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1(t)

x2(t)

x3(t)

. . .

xn(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

F1(t)

F2(t)

F3(t)

. . .

Fn(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(5a)

In the absence of the excitation force, Equation (5)
becomes

[m] €q􏼈 􏼉 +[c] _q􏼈 􏼉 +[k] q􏼈 􏼉 � 0{ }. (6)

Its solution gives the free response (i.e., the response to
a Dirac impulse) of the system:

q􏼈 􏼉 �

a1

a2

. . .

an

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
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eλt
, (7)

where aμ, μ � 1, ..., n are the complex quantities.
Equation (5) gives n solutions for the n complex con-

jugate pairs of eigenvalues λμ and eigenvectors aμ􏽮 􏽯, where
μ � 1, ..., n. *ese eigenvalues and eigenvectors are the so-
lutions of the matrix equation:

[m]λ2 +[c]λ +[k]􏼐 􏼑 a{ } � 0{ }. (8)

*e eigenvalues λμ are characterized by n complex
conjugate pairs because, similar to the model (i),

λμ � −ξμ ± ipμ. (9)

It is well-known that the free response can be written as
a combination:

x(t) � 􏽘

n

μ�1
Aμ exp −ξμt􏼐 􏼑 · cos pμt + ϕμ􏼐 􏼑

� 􏽘
n

μ�1
cμ exp −ξμ + ipμ􏼐 􏼑t􏼐 􏼑 + dμ exp −ξμ − ipμ􏼐 􏼑t􏼐 􏼑􏽨 􏽩,

(10)

where the pairs (Aμ, ϕμ) or (cμ, dμ) represent the integration
constants.

*e superposition of the free responses of the
n-independent damped oscillations (Equation (10)) with
motion equations given by Equation (9) and characterized by
the same eigenvalues λμ finally produces the following:

Mμ
€Xμ(t) + Cμ

_Xμ(t) + KμXμ(t) � 0, μ � 1, ..., n, (11)

where Xμ are the modal coordinates and Mμ, Cμ, andKμ
represent the modal mass, the modal damping coefficient,
and the modal elastic constant, respectively.

Finally, the mechanical parameters of the free n-
dimensional vibrating system can be expressed in three
different ways: using the damping factors and the pseu-
doangular frequencies ξμ, pμ􏽮 􏽯, μ � 1, ..., n; using the modal
parameters Mμ, Cμ, Kμ􏽮 􏽯; or using the damping factors and
the natural angular frequencies ξμ,ωnμ􏽮 􏽯, the latter equiv-
alent to ξ], p]􏼈 􏼉. *ese parameters are defined for each of the
n DOFs, similar with the definitions for a single DOF given
by Equation (3).

3. The Measuring Device and Method

In order to measure experimentally the elastic parameters
ξμ, pμ􏽮 􏽯, ξμ,ωnμ􏽮 􏽯, or Mμ, Cμ, Kμ􏽮 􏽯, where μ � 1, ..., n of the
tooth-periodontal tissue system defined in the previous
section, we introduce a method for measuring the free re-
sponse of this periodontal system.

To achieve this, we utilize a repetitive impact exciter
represented by a Periotest device in order to periodically

γ

x

z

y

α

β

O

Figure 2: Possible elementary motions of the tooth (considered as
a rigid body): the displacements (x, y, z) of its center of mass O and
the corresponding rotations (α, β, c) of the tooth.
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apply short impulses normal to the crown region of the
teeth, as shown in Figure 3. *e PDL is a complex structure
which consists of fiber bundles, fluids, cells, and vessels; it
displays a time-dependant and force-dependant, nonlinear
behaviour. *e force/velocity regime of a clinical situation
is typically low to medium speed, high force, but in the
present study, we chose an experimental protocol which is
common for the Periotest, i.e., with a higher speed and
a lower force, in order to provide a significant response
from the tooth. *e mass of the excitation head of the
Periotest device is m � 8 g and the time of impact is τ � 0.1
to 0.2ms, with a repetition frequency of 4Hz. All these
parameters are also common for such tests. In order to
insert the Doppler system in the same position when the
measurements are done, we used a plastic individual dental
guard extended in the investigation zones (i.e., in the apical
regions) with a 5mm support channel.

*e free response of the tooth to the impacts was
recorded with a Doppler ultrasound sensor-type Mini
Dopplex D900 (Huntleigh Healthcare Inc., Cardiff, UK),
applied to the apical area of the tooth investigated. *is
analog device measures the instantaneous speed of the
tooth (Figure 4), with an analog voltage as the output
signal. An advantage of this measuring method is that the
Doppler ultrasound device does not interact mechan-
ically with the tooth-PDL system; the measuring method
is thus a contactless one. *e analog output signal from
the Doppler ultrasound sensor is introduced in a PC
with a professional sound card-type Creative AUDIGY
2 which operates on 16 bits with a sampling frequency of
44.1 kHz.

4. Signal Processing and Identification
Procedure: The Prony Series Method

We consider the system as a linear vibrational one with
viscous damping and n degrees of freedom. Its impact re-
sponse measured in a point can be written classically as the
linear combination of 2n terms of complex argument
exponentials:

x(t) � 􏽘
2n

]�1
A]e

λ]t. (12)

*e modal analysis/structural dynamics provides a series
of methods (in time or in the frequency domain) that are able
to extract the relevant information concerning the properties
of the physical system from the experimental results [28, 29].
In the presence of noise or of a reduced number of measured
values, nonparametric methods like the autoregressive or the
minimum variance method have to be utilized [27, 30]. In this
study, we utilize the Prony series method because of its ca-
pability to provide accurate results from the free response. In
comparison to other methods, it also has the advantage that it
does not require a response signal with numerous precision
points.*e algorithm of this Prony series method is presented
in the following part of this section [31].

*e function x(t) is the impulse response signal of the
system, which represents the acceleration, the speed, or

the instantaneous position measured in a point of the
system. We consider that the recorded signal is sampled
with a sampling frequency ]s in accord with Shannon’s
theorem; thus, the sampling frequency obeys the con-
dition ]s ≥ 2]max, where ]max represents the maximum
frequency of the signal. *e sampling frequency is given
by Δt � 1/]s.

*e sampled signal represents the signal at the discrete
equidistant moments of time tk � kΔt:

xk � x tk( 􏼁, k � 0, 1, 2, ..., N− 1, (13)

where N represents the number of points in which the signal
is recorded.

*e recorded response given by Equation (12) can then
be expressed in the sampled form:

xk � 􏽘

2n

]�1
A]e

λ]kΔt, (14)

where λ] are unknown complex conjugate quantities,
depending on the damping factors and on the pseu-
doangular frequencies defined for each DOF similar to
Equation (9).

*e first step in order to obtain λμ is to built the
overdetermined system of equations [32, 33]:

6000

4000

2000

0

–2000

–4000

–6000

v

0.0 0.5 1.0 1.5 2.0
t (s)

Figure 4: Typical sequence of the measured response to the
Periotest pulses (where the instantaneous velocity v(t) is in ar-
bitrary units).

Periodontal
exciter

Doppler
ultrasound

probe

Figure 3: Positioning of the Periotest and of the Doppler ultra-
sound sensor towards an investigated tooth.
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x0 x1 x2 . . . x2n−1

x1 x2 x3 . . . x2n

x2 x3 x4 . . . x2n+1

. . . . . . . . . . . . . . .

x2n−1 x2n x2n+1 . . . x4n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s2n

s2n−1

s2n−2

. . .

s1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

� −

x2n

x2n+1

x2n+2

. . .

x4n+1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(15)

which can be written in the formal form [X] s{ } � − x{ },

where [X] is a m× 2n matrix, {s} is a 2n× 1 column matrix,
and {x} is a m× 1 matrix (where m≥ 2n). *is represents, if
m> 2n, an overdetermined system of equations.*e solution
s{ } of this system will be found by using the method of the
least squares:

s{ } � − [X]′[X]( 􏼁
−1

[X]′ x{ }, (16)

where (. . .)′ represents the transpose matrix and (. . .)−1 is
the inverse matrix operation.

As a second step, with the aid of the solution
x{ } � s1, s2, ..., s2n􏼈 􏼉, a 2n-degree algebraic equation can be
built:

z
2n

+ s1z
2n−1

+ s2z
2n−1

+ · · · + s2n � 0, (17)

which has its solutions dependent on the modal parameters
λ]:

z] � exp λ]Δt( 􏼁, where ] � 1, 2, ..., 2n. (18)

*e modal parameters finally are obtained as a set of n
pairs of complex numbers:

1
Δt

ln z] � Re λμ ± i Im λμ. (19)

*e modal damping factor ξμ and the pseudoangular
frequency pμ will therefore be the absolute values of

ξμ �
1
Δt

Re ln z]( 􏼁􏼂 􏼃,

pμ �
1
Δt

Im ln z]( 􏼁􏼂 􏼃,

(20)

where μ � 1, ..., n. From Equation (3), it is possible to obtain
the rest of the modal parameters.

5. Experimental Results

In order to study and validate the method, the in-
vestigations are carried out in two clinical situations of
interest to the practitians. In each of them, the same
tooth (i.e., the first right mandibular molar 46) was
absent and three metal-ceramic FPPs were made. We
have used Ni–Cr Wiron 99 (BEGO, USA) for this
prosthesis for the metallic infrastructure. Its thermal
dilatation coefficient is 13.8 ×10−6 K−1 for the 25–500°C
temperature interval. IPS d.Sign (Ivoclar Vivadent AG,
Principality of Liechtenstein) ceramic layers were de-
posed on the metallic infrastructures.

*e mobility of the periodontal system was evaluated
before and after the insertion of the metal-ceramic FPPs

in the oral cavities for all the clinical cases considered.
*e Doppler response to the Periotest excitation, mea-
sured with the Doppler ultrasound sensor—as described
in Section 3—is represented by a series of equidistant
strongly damped oscillations separated by Δt � 25ms
(Figure 4). *ey were recorded on a computer in wav
format with a 16 bits precision and a sampling frequency
of 44.1 kHz (Section 3). *e impulse response of a tooth
(abutment) was extracted from the wav files using the
Cool Edit Pro 2.0 audio processing software (Syntrillium
Software, Informer Technologies, Inc.). In order to en-
sure the same level of the signal, the normalised function
included in the software was used. *e signal was pro-
cessed using Visual Sound Instrument (Version 3.2) from
heliso.tripod and Auto Signal 6.0 trial edition (Seasolve
Software). An accurate damped response was selected for
each case from the series of impulses.

In the second clinical case, three units of metal-ceramic
FPPs were inserted in the oral cavity.*e investigations were
performed after preparing the abutments and after the FPP
insertion.

In Figure 5, the responses for the abutment 45 and for
the abutment 47 are presented, in the case of the blunt: 5(a)
without and 5(b) with the bridge. *ese sequences were
utilized to identify the characteristic mechanical param-
eters. From these sequences, it can be remarked that the
signal presents two domains with different forms. *e first
part (i.e., the 0–2ms interval) contains the response of the
tooth (abutment) during the impact period between the
Periotest hammer and the tooth (abutment), followed by
the true free response. For the accurate identification of the
mechanical parameters from the measured free response,
the sequence which contains the interaction between the
Periotest impact and the tooth (abutment) had to be
eliminated. *e remaining part was utilized for the
identification procedure with the aid of the Prony series
method.

For an accurate application of this method, it is im-
portant to know the number n of the DOF identified for the
system (Equation (15)). *is number n is determined from
the number of peaks that appear in the Fourier spectrum of
the signal.

Once n is established, the Prony series method is utilized
to determine the reduced eigenangulars pμ and the damping
factors ξμ, where μ � 1, ..., n. Each corresponding reduced
eigenfrequency is

]μ �
pμ

2π
, μ � 1, ..., n. (21)

*emodal elastic constant and the damping constant are
therefore given as follows:

kμ � mμ p
2
μ + ξ2μ􏼐 􏼑,

cμ � 2mμξμ, μ � 1, ..., n.
(22)

As an option, the density of the elastic constant and of
the damping constant can also be defined as the elastic and as
the damping constant on the unity of modal mass:
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κμ �
kμ

mμ
� p

2
μ + ξ2μ,

cμ �
cμ

mμ
� 2ξμ, μ � 1, ..., n.

(23)

In Tables 1 and 2, the parameters estimated for the
abutments 45 and 47, respectively, are presented—for the
corresponding records obtained without and with the dental
bridge/fixed partial prostheses (FPPs). A clear change of
these modal parameters can be remarked; therefore, they can
be considered in order to investigate the mobility of the teeth
affected by the periodontal diseases [34], as well as the in-
fluence of the FPP on this mobility.

6. Discussion

*e results in Tables 1 and 2 allow for drawing a series of
conclusions regarding the tooth-PDL system:

(i) *ree DOFs can be identified in Tables 1 and 2—by
using the analysis in Figures 4 and 5—out of the six
possible DOFs of the tooth marked in Figure 2.*us,
a confirmation of the initial discussion on the useful
number of DOF to be considered—as made with

regard to Figure 2—is made.*ese DOFs refer to both
abutments, when considered individually (i.e., without
an FPP), and also after the FPP has been installed.

(ii) From the amplitudes Aμ and from the damping
factors ξμ of these three movements, the active DOFs
can be clearly identified:

(a) <e β oscillation (rotation with regard to the y-
axis, Figure 2) corresponds to the movement
with the highest amplitude, as this is the most
important movement that the periodontal tis-
sue allows for and as it is in the direction of the
impact produced on the tooth (Figure 3).
*erefore, in Table 1, for the blunt 45 without
an FPP, the y-axis oscillatory rotation corresponds
to the movement (1), while with an FPP, it cor-
responds to the movement (2). In Table 2, for the
blunt 47 without an FPP, the y-axis oscillation
corresponds to the movement (2), while with an
FPP, it corresponds to the movement (1).

(b) <e z-axis translation (Figure 2) is the move-
ment with the smallest oscillatory amplitudes
Aμ and with one of the highest damping fac-
tors ξμ—the latter aspect due to the fact that
the rigidity on the z-axis is the highest, as this
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Figure 5: *e free response of two blunts for an impact test: blunt 45 (a) without a bridge/FPP and (b) with a bridge/FPP, and blunt 47 (c)
without a bridge/FPP and (d) with a bridge/FPP.
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movement is related to the adaptation to the
masticatory forces and thus to the necessary
stability of each tooth in the alveole of their
gum. In both Tables 1 and 2, for the blunts 45
and 47 without and with an FPP, this z-axis
translation corresponds to the movement (3).

(c) <eα oscillation (rotation with regard to the x-axis,
Figure 2) corresponds to the movement which has
an amplitude that is in-between the minimum and
the maximum values above; as this is the move-
ment, the periodontal tissue still allows for a tooth.
*erefore, in Table 1, for the blunt 45 without an
FPP, the x-axis oscillatory rotation corresponds to
the movement (2), while with an FPP, it corre-
sponds to the movement (1). In Table 2, for the
blunt 47 without an FPP, this oscillation corre-
sponds to the movement (1), while with an FPP, it
corresponds to the movement (2).

As it can be seen from the analysis below, from the three
movements identified above, it is even enough to use only the
first two, i.e., those that are the easiest to point out, as they
have the highest and the smallest amplitudes, respectively.*e
third one may be utilized for a supplemental validation of the
conclusions extracted using the previous two.

(iii) By comparing the highest amplitudes Aμ of the two
blunts (i.e., those corresponding to the y-axis ro-
tation), the blunt 47 has less stronger links to the
periodontal tissue, as its oscillations are more
significant; therefore, it is a much worst “shape”
than the blunt 45 from the point of view of the
health of the periodontal tissue.

(iv) After the FPP is in place, the amplitudes Aμ of the
y-axis rotation grow closer for the two teeth: the
one of the blunt 45 increases, while the one of
the blunt 47 decreases—as the former stabilizes the

latter. *e same aspect can be concluded/is con-
firmed from the z-translations, which for the blunt
45 are larger, while for blunt 47 remain approxi-
mately constant.

(v) *e eigenfrequencies υμ are higher for a healthy
periodontal tissue, which acts as a strong spring for
the system, and are smaller for an affected peri-
odontal tissue, which acts as a weaker spring.
However, such a comparison could be done only
between the same blunts of a certain person—in
time. In the case of the two blunts considered,
i.e., 45 and 47, they are different; thus the con-
figuration of their equivalent system (as consid-
ered, simplified, in Figure 1) is different.*erefore,
one cannot compare their state of health based on
the values of their υμ, but only based on the values
of their Aμ, as performed above. It can actually be
remarked that the eigenfrequencies are higher for
the blunt 47 with regard to the blunt 45—due to
this different configuration of their systems.

(vi) However, regarding the previous aspect, one can
successfully compare the situation of the blunts
before and after placing the FPPs: for the blunt 45,
the values of υμ decrease, while for the blunt 47,
they decrease. Again, like for the amplitudes Aμ, an
average of the initial values is achieved after
placing the FPPs, in accordance with the conclu-
sion obtained in point (iv).

(vii) Using the values of the eigenfrequencies υμ, one
can make a comparison between the different
DOFs but, again, for the same tooth. *us, from
both tables, the z-axis translation has not only the
smallest oscillatory amplitudes Aμ, but also the
highest eigenfrequencies υμ. *is is also a confir-
mation of the choice of this DOF; as on the z-axis,

Table 1: Elastometric parameters of the 45 tooth-PDL tissue system—with and without an FPP.

Blunt 45

Case n ]μ(Hz) Aμ ξμ(s−1) κμ cμ

Without FPP
1 286.4067 1.097711 337.4217 3352220 674.8434
2 852.1179 0.2212718 993.2421 2.965201E+ 07 1986.484
3 2499.865 0.2102088 1514.978 2.490086E+ 08 3029.956

With FPP
1 341.1231 1.61918 427.1722 4776381 854.3445
2 1183.321 1.715744 4200.505 7.292389E+ 07 8401.011
3 3256.205 0.8393298 6296.236 4.582272E+ 08 12592.47

Table 2: Elastometric parameters of the 47 tooth-periodontal tissue system—with and without an FPP.

Blunt 47

Case n ]μ(Hz) Aμ ξμ(s−1) κμ cμ

Without FPP
1 495.2435 1.051082 420.4894 9859532 840.9789
2 1091.073 3.355402 3601.523 5.996768E+ 07 7203.047
3 1559.037 0.3151164 1231.853 9.747362E+ 07 2463.707

With FPP
1 291.2956 1.092437 371.1869 3487646 742.3738
2 837.9702 0.8992419 1667.244 3.050121E+ 07 3334.488
3 1459.554 0.3104216 1741.271 8.71328E+ 07 3482.542
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the rigidity of the tooth-tissue system is the highest
one, as an adaptation to the maximum forces
applied to the system in this direction (i.e., for the
masticatory process).

(viii) *e modal damping factor ξμ is less relevant for the
analysis; as by comparing the values in Tables 1 and
2, some of them increase and some decrease after
the FPP is placed—with regard to a different DOF.
However, by using the composed parameter Kμ
defined by Equation (22), the analysis can be
completed successfully, as one may see that this
parameter follows the trend of the eigenfrequencies
υμ—for each blunt and case; therefore, the same
conclusions as at points (v) and (vi) can be reached.

(ix) A confirmation of the entire analysis made above
can be made using the third DOF, i.e., the α oscil-
lation (rotation with regard to the x-axis, Figure 2):
Aμ is again higher for the blunt 47 with regard to the
blunt 45; after placing the FPP, it increases for 45
and it decreases for 47, thus reaching a sort of av-
erage of the initial values. For υμ and for Kμ, we have
already seen that they have the same behaviour as for
the other two DOFs. *erefore, in performing such
an analysis, one may use only two or even one of the
DOF considered, while the other(s) can be used to
confirm the results obtained—as it has been seen
from the above discussion.

As a remark, one can see that similar conclusions can be
reached by analysing the modal damping factor ξμ and the
damping constant on the unity of modal mass cμ (the latter
in the last column of Tables 1 and 2), as these two parameters
are proportional (Equations (22) and (23)). *erefore, only
one of these two parameters is enough to complete the
analysis. However, such a simplifying remark cannot be fully
made for Kμ (in order to completely eliminate it from the
analysis) as this parameter is (Equation (22)) a combination
of the parameters υμ and ξμ. Still, as pointed out in (viii), Kμ
and υμ do have the same trend.

In order to make a clinical validation of the results in this
study, we did a mobility evaluation of the teeth 45 and 47
with the Periotest (which is dedicated to such an evaluation)
and with the Doppler system—before the application of the
bridge. *e Periotest is thus giving initial information on
which tooth is in a good shape and which is in a bad one.*e
Doppler evaluation made for the same teeth placed under
the bridge gave results of the same type, so the two results of
the methods, the classical, clinical (but approximate one)
and of the more accurate (but more elaborate) method
developed in this study confirm each other.

7. Conclusions

We have introduced a linear mechanical model with several
DOFs, consisting of a viscous-damped vibrating system.*e
model was able to describe the mobility of the tooth-PDL
tissue system with or without a dental bridge/FPP, as well as
to complete the evaluation of each dental bridge abutment.

For the physical modal parameters of the mechanical
model, we have used the modal elastic constants and the
modal damping constants kμ and cμ, respectively, where
μ � 1, ..., n (where n is the number of DOFs of the system),
or the modal reduced frequency and the modal damping
factor pμ and ξμ. *ese can be considered the elastometric
parameters which characterize the status of the tooth-PDL
tissue system [32, 33], affected in a certain degree by
parodonthosis [34]. An experimental method based on
the free response analysis was utilized in order to obtain
these parameters. Using a Doppler ultrasound sensor
placed on the gingiva in the vicinity of the tooth in-
vestigated, this method eliminated the interaction be-
tween the exciter and the tooth-PDL tissue system. *e
identification of the modal parameters has been per-
formed using the Prony series method because for other
methods a response signal with numerous points would
have to be used.

As demonstrated in the examples considered, these
parameters can be utilized to analyse and to compare the
status of the teeth affected by the periodontal disease and
what happens after the FPP is set in place. To complete this
analysis, an identification of the most significant
DOF/movements of the teeth can be easily made first. As
demonstrated, the results of the analysis when considering
the different DOF/movement possibilities confirm each
other—for both teeth considered, both without and with the
FPP. In the latter case, the expected average of the pa-
rameters is reached, as the healthier tooth losses some of the
quality of the tooth-tissue system, while the less healthier
tooth gains some of this quality. *e stronger tooth-PDL
system thus supports the weaker. In conclusion, the results
of the model are in good accordance with the physical
phenomena.*ese parameters and their analysis can be thus
added to the empirical score parameter measured with the
Periotest device, which is useful, but provides too little detail
on the situation of the health of the tooth-periodontal
system.

Future work in our groups includes the study of the
variation of these parameters with the repeated applica-
tion of the impacts, which constitutes the so-called ad-
aptation phenomenon. An optimization of the testing
parameters can also be performed, once the study
methodology was determined in the present study. Fi-
nally, a distinct direction of work refers to applying
imaging methods, including noninvasive ones like optical
coherence tomography (OCT) in order to evaluate in vivo
the health of the periodontal pockets with dedicated
handheld scanning probes [35, 36].
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