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ABSTRACT

The cytotoxic effects of thiopurine drugs are
mostly exerted through the formation of thioguanine
nucleotide and its subsequent incorporation
into DNA. The 6-thioguanine (6-TG) in DNA can
be converted to S6-methylthio-2-aminopurine (2-AP-
6-SCH3) and 2-aminopurine-6-sulfonic acid (2-AP-6-
SO3H) upon reaction with S-adenosyl-L-methionine
and irradiation with UVA light, respectively. Here we
prepared oligodeoxynucleotides (ODNs) harboring a
6-TG, 2-AP-6-SCH3 or 2-AP-6-SO3H at a defined site
and examined, by using LC-MS/MS, the in vitro
replication of these substrates with yeast polymer-
ase g and Klenow fragment (KF�). Our results
revealed that 2-AP-6-SCH3 could be bypassed by
KF�, with significant misincorporation of thymine
opposite the lesion. The 2-AP-6-SO3H, however,
blocked markedly the nucleotide insertion by KF�.
Yeast pol g could bypass all three modified nucleo-
sides; although dCMP was inserted preferentially,
we found substantial misincorporation of dTMP and
dAMP opposite 2-AP-6-SCH3 and 2-AP-6-SO3H,
respectively. Moreover, both KF� and yeast pol g
induced a considerable amount of -2 frameshift
products from the replication of 2-AP-6-SCH3- and
2-AP-6-SO3H-bearing substrates. Our results also
underscored the importance of measuring the
relative ionization efficiencies of replication pro-
ducts in the accurate quantification of these pro-
ducts by LC-MS/MS. Moreover, thermodynamic
studies revealed that 2-AP-6-SCH3 and 2-AP-6-
SO3H could cause more destabilization to duplex
DNA than 6-TG. Taken together, the results from this
study shed important new light on the bio-
logical implications of the two metabolites of 6-TG.

Abbreviations: 6-thioguanine, 6-TG; thioguanine
nucleotide (TGN); oligodeoxynucleotide, ODN;
S6-methylthio-2-aminopurine, 2-AP-6-SCH3; 2-ami-
nopurine-6-sulfonic acid, 2-AP-6-SO3H; S-adenosyl-
L-methionine, S-AdoMet; 1,1,1,3,3,3-hexafluoro-2-
propanol, HFIP; electrospray ionization, ESI; 30-50-
Exonuclease-free Klenow fragment, KF–; uracil-DNA
glycosylase, UDG; polyacrylamide gel electrophor-
esis, PAGE; melting temperature, Tm.

INTRODUCTION

Thiopurine drugs, 6-thioguanine (6-TG), 6-mercaptopu-
rine and its prodrug azathioprine, are common therapeu-
tic agents for the treatment of acute leukemia,
inflammatory bowl disease, autoimmune hepatitis and
other pathological conditions (1–4). The primary activa-
tion pathway of the thiopurine drugs is through the
formation of thioguanine nucleotide (TGN) and its
subsequent incorporation into DNA (1,5). Although
extensive studies on 6-TG metabolism have been carried
out (2,6), the biochemical mechanisms for its cytotoxicity
remain largely unclear, partially because of the lack of a
strong mutagenic effect of 6-TG (7,8). On the other hand,
further transformation of 6-TG in DNA might be
involved in the cytotoxicity of the thiopurine drugs.
In this regard, 6-TG in DNA can be methylated
by S-adenosyl-L-methionine (S-AdoMet) to give
S6-methylthio-2-aminopurine (2-AP-6-SCH3, Scheme 1)
(9). In addition, 6-TG in DNA can be oxidized to
2-aminopurine-6-sulfonic acid (2-AP-6-SO3H, Scheme 1)
upon UVA irradiation (10–12).
Both metabolites of 6-TG may miscode during DNA

replication (9,10,12). In this respect, it was found that
2-AP-6-SCH3 could block slightly the replication by 30-50-
Exonuclease-free Klenow fragment (KF�) (9), and, while
the primer extension experiments were carried out in the
presence of dCTP or dTTP alone, the insertion of dTMP
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opposite the lesion by KF� was found to be nearly as
efficient as the incorporation of dCMP (9). In addition,
2-AP-6-SO3H can be bypassed by a Y-family DNA
polymerase, human pol Z (10); on the other hand,
a very recent study revealed that this lesion blocked
DNA synthesis by KF� (12).
The NMR structural data and thermodynamic studies

suggested that the replacement of a guanine with a 6-TG
perturbs slightly the normal helical form of DNA (13–16),
where the sulfur atom in 6-TG exists in keto form and
assumes weakened Watson–Crick hydrogen bonding
with the opposing cytosine. However, the other two
important metabolites of 6-TG, namely, 2-AP-6-SCH3

and 2-AP-6-SO3H, have not been investigated thoroughly
for their effects on duplex stability.
We set out to examine, in detail, how the two modified

thionucleobases affect DNA replication and duplex
stability by using structurally defined substrates. In this
context, the steady-state kinetics assay has been com-
monly used for determining the cytotoxic and mutagenic
properties of DNA lesions in vitro (17). In these
experiments, the efficiency and fidelity of nucleotide
incorporation are determined by measuring the rates for
the incorporation of one type of nucleotide at a time
and fitting the rate data with the Michaelis–Menten
equation (17). Recently, Guengerich et al. (18,19)
introduced an elegant LC-MS/MS method to investigate
the multiple bypass mechanisms of polymerases
toward DNA lesions in vitro. This method provides an
efficient way for determining the identities and distribu-
tions of various replication products resulting from
the polymerase reaction in the presence of all four
dNTPs, which, relative to the conditions used for
steady-state kinetic measurements, mimics better the
replication conditions in vivo.
The previous LC-MS/MS quantification of replication

products was based on the relative ion abundances of the
composing oligodeoxynucleotides (ODNs) observed in
ESI-MS under an assumption that different ODNs,
regardless of their lengths and nucleobase compositions,
have the same ionization efficiency (18,19). This assump-
tion, however, may not be valid owing to the fact that the
hydrophobicity and free energy of solvation for different
ODNs can vary, which can affect their signal intensities

in ESI mass spectrum (20). Thus, accurate LC-MS/MS
quantification of the replication products requires the
consideration of the different ionization efficiencies for
different ODNs.

In the present study, we prepared ODNs containing a
6-TG, 2-AP-6-SCH3 or 2-AP-6-SO3H at a defined site and
carried out the in vitro replication studies by using an
improved LC-MS/MS method, which takes into account
the ionization efficiency differences of ODNs. We also
measured the thermodynamic parameters for the forma-
tion of duplexes bearing a 6-TG and its oxidized/
methylated derivatives. The results from this study
provide insights toward understanding the biological
implications of 6-TG and its major metabolites.

MATERIALS AND METHODS

Chemicals and enzymes

The phosphoramidite building block of 6-thio-20-deoxy-
guanosine was obtained from Glen Research (Sterling,
VA, USA). Unmodified ODNs used in this study were
purchased from Integrated DNA Technologies
(Coralville, IA, USA). [g-32P]ATP was obtained from
Amersham Biosciences Co. (Piscataway, NJ, USA).
All other chemicals unless otherwise noted were obtained
from Sigma-Aldrich (St Louis, MO, USA). 30-50-
Exonuclease-free KF� and uracil-DNA glycosylase
(UDG) were from New England Biolabs (Ipswich, WA,
USA). The C-terminal catalytic core of yeast
Saccharomyces cerevisiae pol Z, which was an
N-terminally His6-tagged fusion protein (21), was kindly
provided by Prof. John-Stephen A. Taylor at Washington
University in St Louis.

Preparation of ODN substrates containing a 6-thioguanine
or its metabolites

We first synthesized 6-TG-bearing ODNs by using
phosphoramidite chemistry. After solid-phase synthesis,
the controlled pore-glass (CPG) support was treated
with 1.0M DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene) in
anhydrous acetonitrile at room temperature for 5 h to
remove the cyanoethyl protecting group for the thionu-
cleoside, followed by treatment with 50mM NaSH in
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Scheme 1. The formation of 2-AP-6-SCH3 and 2-AP-6-SO3H.
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concentrated NH4OH solution at room temperature
for 24 h to complete the deprotection. The synthesized
d(ATGGCSGCGCTAT) (‘SG’ represents 6-TG) was
purified by HPLC and its identity was confirmed by
ESI-MS and tandem MS (MS/MS).

The 2-AP-6-SCH3-containing substrates were prepared
following previously published procedures (22). Briefly,
d(ATGGCSGCGCTAT) (20 nmol) was treated with 10%
CH3I/CH3CN (v/v) in 0.05M phosphate buffer (pH 8.5)
at room temperature overnight, and the methylation
reaction was quenched by addition of HCl until the
solution pH reached 7.0. The reaction mixture was
separated by HPLC on a 4.6� 250mm Apollo C18
reverse-phase column (5 mm in particle size and 300 Å in
pore size, Alltech Associates Inc., Deerfield, IL, USA).
The composition of buffer A was 50mM TEAA (pH 6.5),
and buffer B contained 50mM TEAA and 30% acetoni-
trile (v/v). The gradient program for the mobile phase was:
0min, 0% B; 5min, 20% B; 45min, 50% B; 50min, 100%
B; 55min, 0% B. The flow rate was 0.8ml/min, and a UV
detector was set at 260 nm to monitor the effluents.
The identity of the methylated ODN
d(ATGGCMeSGCGCTAT) (‘MeSG’ designates 2-AP-6-
SCH3) was confirmed by ESI-MS and MS/MS.

Selective oxidation of 6-TG in ODNs was performed
according to previously published procedures for the
oxidation of 2-AP-6-SCH3-bearing ODNs (22). In this
respect, d(ATGGCSGCGCTAT) (50 nmol) was incu-
bated with 50-ml of 3.56mM magnesium monoperox-
yphthalate (MMPP) at room temperature for 1 h.
The oxidation mixture was separated by HPLC with the
conditions described above. The identity and purity of
2-AP-6-SO3H -containing ODN were confirmed by ESI-
MS and the sequence of the ODN was verified by MS/MS.
The presence of 2-AP-6-SO3H in the resulting ODN was
also supported by its characteristic fluorescence spectrum.

To further confirm the structure of the oxidation
product of 6-TG, the 2-AP-6-SO3H-containing dodecamer
(1 nmol) was digested by four enzymes, i.e. nuclease P1,
calf spleen phosphodiesterase, snake venom phosphodies-
terase and alkaline phosphatase, to give mononucleosides
(23,24). The nucleoside mixture was separated by using a
0.5� 150mm Zorbax SB-C18 column (particle size, 5 mm,
Agilent Technologies, Palo Alto, CA, USA). The HPLC
gradient was 0–15% acetonitrile in 20mM ammonium
acetate in 60min, and the flow rate was 6.0ml/min, which
was delivered by using an Agilent 1100 capillary HPLC
pump (Agilent Technologies).

The effluent from the LC column was coupled directly
to an LTQ Linear ion-trap mass spectrometer (Thermo
Electro Inc., San Jose, CA, USA). The spray voltage was
4.0 kV, and the capillary temperature was maintained at
2258C. The mass spectrometer was set up to monitor the
fragmentation of the [M–H]� ion (m/z 330) of 2-AP-6-
SO3H 20-deoxyribonucleoside, i.e. d(2-AP-6-SO3H).
Standard d(2-AP-6-SO3H) was also injected in a separate
LC-MS/MS experiment with the identical experimental
setup as that for the digestion sample.

For the modified ODNs used in replication studies,
a 20-mer ODN, d(ATGGCSGCGCTATGATCCTAG),
was first synthesized. This ODN was then selectively

methylated or oxidized by using the same experimental
protocols as described above for the dodecameric
substrates.

Primer extension assays by gel electrophoresis

For primer extension assays, the 20-mer lesion-containing
or unmodified ODN (20 nM) was annealed with a 50-32P-
labeled 15-mer primer, d(GCTAGGATCATAGCG)
(10 nM) and the resulting ODN solution was incubated
with 100 mM of each of the four dNTPs and a DNA
polymerase (KF� or yeast pol Z) in a buffer containing
10mM Tris–HCl (pH 7.5), 5mM MgCl2 and 7.5mM
DTT. The reactions were continued at 378C for 60min
and then quenched by adding a 2-volume excess of
formamide gel-loading buffer [80% formamide, 10mM
EDTA (pH 8.0), 1mg/ml xylene cyanol and 1mg/ml
bromophenol blue]. The replication products were
resolved on 20% (1:19) cross-linked denaturing polyacryl-
amide gels containing 8M urea. Gel images were obtained
by using a Typhoon 9410 Variable Mode Imager
(Amersham Biosciences Co.).

Primer extension assays by LC-MS/MS

We replaced the primer used in gel electrophoresis with an
unlabeled, uracil-containing ODN, d(GCTAGGATCAU
AGCG), which facilitated the production, after UDG
treatment, of short ODNs containing the extended portion
of the primer (Scheme 2). These short ODNs were readily
amenable to sequencing analysis by MS/MS (18). The
lesion-containing template and primer (100 pmol each)
were annealed and incubated at 378C in the presence of
1mM dNTPs and a buffer containing 10mM Tris–HCl
(pH 7.5), 5mM MgCl2 and 7.5mM DTT. KF� (2 U) or
yeast pol Z (1.6 mg) was added and the reaction was
continued overnight. The replication reaction was stopped

X: 6-TG, 2-AP-6-SCH3, or 2-AP-6-SO3H
N: random nucleobases inserted 

5′- ATG GCX CGC TAT GAT CCT AG –3′
3’- GCG AUA CTA GGA TCG –5′

KF−/yeast pol η, 4 dNTPs

5′- ATG GCX CGC TAT GAT CCT AG – 3′
3′- NN NNN NNN GCG AUA CTA GGA TCG – 5′ 

UDG hydrolysis

d(pA GCG NNN NNN NN)– 3′

5′- ATG GCX CGC TAT GAT CCT AG – 3′

d(GCT AGG ATC Ap)– 3′

ATG GC CGC TAT GAT CCT AG 
3’- GCG AUA CTA GGA TCG 

ATG GC CGC TAT GAT CCT AG 
NN NNN NNN GCG AUA CTA GGA TCG 

UDG hydrolysis

5′- d(pA GCG NNN NNN NN)–

ATG GCX CGC TAT GAT CCT AG 

5′- d(GCT AGG ATC Ap)–

LC-MS/MS

Scheme 2. Experimental procedures for the LC-MS/MS analysis of
replication products.
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by heating to 658C for 10min, and the resultant mixture
was then incubated with UDG (4 U) in a buffer contain-
ing 20mM Tris–HCl (pH 8.0), 1mM DTT and 1mM
EDTA at 378C for 5 h. The UDG cleavage reaction
was quenched by adding piperidine until its final
concentration reached 0.25M. The resulting mixture was
then incubated at 608C for 1 h, the proteins in the mixtures
were removed by chloroform extraction, and the aqueous
layer was dried by using a Savant Speed-Vac (Thermo
Savant Inc., Holbrook, NY, USA). The dried residue was
redissolved in 100-ml H2O for the following LC-MS/MS
analysis (A 25-ml aliquot was injected in each run).
The conditions for LC-MS/MS analysis were similar as

described above. The gradient for the HPLC elution was
as follows: 0–5min, 0–20% methanol in 400mM
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, pH was
adjusted to 7.0 by addition of triethylamine); 5–40min,
20–50% methanol in 400mM HFIP. The capillary
temperature was maintained at 3008C to minimize the
formation of the HFIP adducts of ODNs. MS/MS data
were acquired over an m/z range of 500–1500.
To identify the replication products, the mass spectro-

meter was first operated in data-dependent scan mode,
where the four most abundant ions found in MS were
chosen for fragmentation in MS/MS. The MS/MS data
were then manually inspected to assign the fragment ions
and determine the sequences of the ODNs. In this respect,
some tandem mass spectra were not of high-enough
quality for complete sequence assignments. These spectra
were recorded again by monitoring specifically the
fragmentation of the precursor ions. After identifying
the ODNs from the replication mixture, the quantification
of replication products was carried out by operating the
instrument in specific-ion monitoring mode, where the
precursor ions for the extended fragments of the primer
strand were chosen for fragmentation. The specific-ion
monitoring mode offered enhanced signal-to-noise ratio
for the measurement of replication products.

To correct for the effect of varied ionization efficiencies
of different ODNs on quantification, we introduced a
relative-ratio method. To this end, we first obtained the
standard phosphorylated ODNs by treating 20 nmol
unphosphorylated ODNs with 20 U of T4 polynucleotide
kinase (New England Biolabs) in a buffer containing
50mM Tris–HCl (pH 7.5), 10mM MgCl2, 1mM ATP,
10mM DTT and 25 mg/ml BSA at 378C for 1 h.
Immediately after the reaction, the reaction mixture was
extracted with chloroform to remove the enzymes.
The aqueous layer was dried, redissolved in water, and
subjected to HPLC separation, where the gradient
program was 0–40% methanol in 50mM phosphate
buffer (pH 6.8) in 60min. The phosphate buffer, instead
of TEAA buffer, was employed to avoid the loss of
terminal phosphate group from the 50-phosphorylated
ODNs.

A mixture composed of 5 pmol each of the standard
phosphorylated ODN substrates, which were identified in
each set of replication mixture (shown in Tables 1 and 2),
was dispersed in the same buffer as that used in the
extension assays and injected for LC-MS and MS/MS
analyses with the same experimental setup as that used
for the analysis of the replication mixture. The integrated
area of peak, which was found in the total-ion chromato-
gram (TIC) plotted for the production of the most
abundant deprotonated molecular ion for each standard
ODN, or in the selected-ion chromatogram (SIC) plotted
for the formation of three abundant fragment ions of
the ODN, was normalized against that of one specific
ODN. The corresponding normalized ratios for the
replication samples were also determined and combined
with the ratios obtained from the analyses of standards
to calculate the percentage of each product in the
replication mixture.

Here we use the KF�-mediated reaction of the 2-AP-6-
SO3H-bearing substrate as an example to illustrate how
the method works. In this reaction mixture, we found

Table 1. Percentages of the replication products in the reaction with Klenow fragment

Name Sequence 6-TG 2-AP-6-SCH3 2-AP-6-SO3H

4mer d(pAGCG) 2.9� 0.4 8.4� 0.6 32� 4
5C d(pAGCGC) 0.7� 0.0 1.6� 0.7 21.4� 0.9
5T d(pAGCGT) 0.2� 0.0 1.1� 0.0 4.5� 0.0
5A d(pAGCGA) 0.6� 0.0 2.4� 0.1 6.0� 0.7
6C d(pAGCGCC) ND ND 14� 2
8C d(pAGCGCCAT) ND 4.8� 0.3 5.5� 0.2
11C d(pAGCGCGCCATA) 19.3� 0.2 12.6� 0.8 17� 2
11T d(pAGCGTGCCATA) 3.2� 0.0 35� 2 ND
11A d(pAGCGAGCCATA) 1.5� 0.0 0.9� 0.0 0.8� 0.0
11G d(pAGCGGGCCATA) ND 5.2� 0.4 ND
12C d(pAGCGCGCCATAT) 45� 7 6.7� 0.0 ND
12T d(pAGCGTGCCATAT) 4.2� 0.5 18� 1 ND
12A d(pAGCGAGCCATAT) 12� 2 3.7� 0.0 ND
13C d(pAGCGCGCCATATA) 8.2� 0.1 0.4� 0.0 ND
13T d(pAGCGTGCCATATA) 0.5� 0.0 ND ND
13A d(pAGCGAGCCATATA) 1.3� 0.0 ND ND

The template is d(ATGGCXCGCTATGATCCTAG), where ‘X’ represents 6-TG, 2-AP-6-SCH3 or 2-AP-SO3H. For all the full-length products,
the nucleosides incorporated opposite the lesion are highlighted in bold.
ND, not detectable.
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eight replication products, and the identities of these
substrates are listed in Table 1. To determine the
percentage of the un-extended primer (4mer) in the
reaction mixture, we first determined the ratio of
the peak area for the 4mer over that for the 11C found
in the SICs for the analysis of the mixture of standard
ODNs, i.e. R8 (4mer) (the SICs are shown in Figure S8):

R�ð4merÞ ¼
A�ð4merÞ

A�ð11CÞ
:

We then calculated the corresponding ratio for the
analysis of the replication mixture:

Rð4merÞ ¼
Að4merÞ

Að11CÞ
:

The A8 and A represented the peak areas found in SICs
for the analysis of standards and replication samples,
respectively. The ratio determined for the replication
mixture was then normalized against that determined for
the standards, which gave normalized ratio for the 4-mer,
i.e. RR(4mer):

RR 4merð Þ ¼
R 4merð Þ

R0 4merð Þ
:

The normalized ratio was then calculated for each
identified replication product, and the percentage of 4mer
in the replication mixture was calculated from the ratio of
the normalized ratio for the 4mer over the sum of the
normalized ratios for all the replication products by using
the following equation:

Pð4merÞ ¼
RRð4merÞ

RRð4merÞ þRRð5CÞ þRRð5TÞ þRRð5AÞ
þRRð6CÞ þRRð8CÞ þRRð11CÞ þRRð11AÞ

� �
:

Other replication products present in this or other
polymerase-catalyzed reaction mixtures were calculated in
the same fashion.

Measurement of melting curves

The above dodecameric ODNs containing a guanine,
6-TG or its modified derivative were annealed with
another 12-mer ODN to form the duplex. The specific
nucleotide sequences were:
Strand 1 50- ATGGCXCGCTAT -30

Strand 2 30- TACCGCGCGATA -50,
where ‘X ’ represents an unmodified guanine, 6-TG, or

its methylated/oxidized derivative.
The UV absorbance-versus-temperature profiles were

recorded on a Varian Cary 500 spectrophotometer
(Varian Inc., Palo Alto, CA, USA), and the ODNs were
dispersed in a 1.2-ml solution containing 10mM phos-
phate (pH 7.0), 100mM NaCl and 0.1mM EDTA at a
varying total ODN concentration (Ct) of 1.0, 1.8, 3.2, 5.6,
or 10 mM. The absorbance was recorded in the reverse and
forward directions for a temperature range of 80–108C at
a rate of 18C/min, and the melting temperature (Tm) value
was obtained by the derivative method (25).
The thermodynamic parameters were obtained from the

van’t Hoff plot (25), where the reciprocal of Tm was
plotted against ln Ct/4:

1

Tm
¼

R

�H�

� �
ln
Ct

4
þ

�S�

�H�

and

�G� ¼ �H� � T�S�

in which R is the universal gas constant (¼1.987 cal
mol�1 K�1). The error limits for iG8, iH8 and iS8

Table 2. Percentages of the replication products in the reaction with yeast pol Z

Name Sequences 6-TG 2-AP-6-SCH3 2-AP-6-SO3H

4mer d(pAGCG) 11� 2 18� 2 22� 2
5C d(pAGCGC) 0.4� 0.0 ND 1.3� 0.0
5A d(pAGCGA) ND ND 0.2� 0.0
5G d(pAGCGG) ND ND 0.2� 0.0
6C d(pAGCGCC) 0.4� 0.0 ND 2.7� 0.0
6A d(pAGCGAC) ND ND 0.6� 0.0
6G d(pAGCGGC) 1.3� 0.3 ND 0.3� 0.0
8C d(pAGCGCCAT) 4.1� 0.7 5.0� 0.3 29� 3
8A d(pAGCGACAT) ND ND 6.9� 0.7
10C d(pAGCGCGCCAT) 39� 6 39� 9 20� 2
10T d(pAGCGTGCCAT) 3.4� 0.6 13� 3 ND
10A d(pAGCGAGCCAT) 1.8� 0.3 5� 1 4.0� 0.4
10G d(pAGCGGGCCAT) ND ND 0.7� 0.0
11C d(pAGCGCGCCATA) 8.6� 0.5 3.7� 0.8 1.6� 0.0
11T d(pAGCGTGCCATA) 1.0� 0.0 1.4� 0.0 0.8� 0.0
11A d(pAGCGAGCCATA) 0.5� 0.0 ND ND
11C_T d(pAGCGCGCCATT) 26� 4 9.3� 0.2 6.9� 0.6
11T_T d(pAGCGTGCCATT) 0.8� 0.0 2.6� 0.0 0.4� 0.0
11A_T d(pAGCGAGCCATT) 2.4� 0.4 3.0� 0.7 1.8� 0.1

The template is d(ATGGCXCGCTATGATCCTAG), where ‘X’ represents 6-TG, 2-AP-6-SCH3 or 2-AP-SO3H. For all the full-length products,
the nucleosides incorporated opposite the lesion are highlighted in bold.
ND, not detectable.
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derived from fitted parameters were calculated by using
previously the described equations (26).

RESULTS

Preparation of ODNs containing a 6-thioguanine or its
modification products

We employed traditional phosphoramidite chemistry and
synthesized two 6-TG-containing ODNs, d(ATGGCS

GCGCTAT) and d(ATGGCSGCGCTATGATCCTAG).
The identities of these two substrates were confirmed by
ESI-MS and MS/MS analyses (Figures S1 and S4).
As reported previously (22), 6-TG in ODNs can be

selectively methylated to 2-AP-6-SCH3 by treatment with
methyl iodide (CH3I) in a phosphate buffer (pH 8.5,
Scheme 1). In addition, 2-AP-6-SCH3 in ODNs can be
oxidized selectively to 2-AP-6-SO2CH3 upon treatment
with MMPP (magnesium monoperoxyphthalate) (22).
We employed similar procedures and isolated the desired
2-AP-6-SCH3- and 2-AP-6-SO3H-containing ODNs from
the reaction mixtures by HPLC (Scheme 1 and Figure S2).
The yields for the selective formation of these two
products, as estimated from peak areas in the HPLC
traces, were �45 and 75%, respectively (Figure S2).
The molecular masses of the 2-AP-6-SCH3- and 2-AP-6-
SO3H-containing dodecameric ODNs were measured by
ESI-MS to be 3690.9 and 3724.8Da, respectively, which
are in accordance with the corresponding calculated
average masses of 3691.3 and 3725.0Da, respectively.
Moreover, the sites of the lesions were confirmed by the
product-ion spectra (MS/MS) of the [M–3H]3� ions of
these ODNs (Figure 1).
The 2-AP-6-SO3H-containing substrate was further

examined by fluorescence spectroscopy and LC-MS/MS
analysis of the enzyme-generated nucleosides of the ODN
(see Materials and Methods). The oxidized ODN gave
identical fluorescence spectrum (Figure S3) as the authen-
tic d(2-AP-6-SO3H), which had an excitation maximum at
324 nm and an emission maximum at 410 nm (10).
LC-MS/MS of the nucleoside mixture showed a fraction
eluting at the same time (�8min) and exhibiting the same
MS/MS fragmentation pattern as the standard d(2-AP-6-
SO3H) (data not shown).
The same methylation and oxidation procedures were

employed to obtain the 20-mer ODNs containing the two
metabolites of 6-TG. The identities of the 20-mer
substrates were again confirmed by ESI-MS and MS/MS
(Figure S4).

In-vitro replication studies with KF� and yeast pol g by gel
electrophoresis

We next examined how the presence of 6-TG or its
oxidized/methylated derivative affects DNA replication by
carrying out primer extension assays with a replicative
polymerase, KF� and a Y-family DNA polymerase, yeast
pol Z. As depicted in Figure S5, 6-TG and 2-AP-6-SCH3

inhibited slightly the replication by KF�, whereas the
presence of a 2-AP-6-SO3H inhibited KF�-mediated
DNA replication to a greater extent. The latter result
was consistent with what was reported by Zhang and

coworkers (12). Yeast pol Z, on the other hand, could
bypass 6-TG and its modified derivatives to give full-
length products.

LC-MS/MS analysis of in-vitro replication products

We further assessed the bypass and miscoding properties
of 6-TG and its metabolites by LC-MS/MS following the
previously described method (18,19) with some modifica-
tions. In this context, we adopted the HFIP buffer system,
which was first reported by Hancock et al. (27) for the
LC-ESI-MS/MS analysis of ODNs. It turned out that this
buffer system resulted in high efficiency in both HPLC
separation and electrospray ionization of ODNs with
minimal cation adduction.

To illustrate this, we use the analysis of the yeast pol Z-
catalyzed primer extension products of the 2-AP-6-SCH3-
containing substrate as an example. As shown in the
TIC (Figure 2a), the lesion-bearing strand elutes at
29.5min. After UDG cleavage and hot alkaline treatment,
the 50 portion of the primer is produced in two forms,
namely, d(GCTAGGATCAp) and d(GCTAG
GATCAXp) (‘X ’ represents an abasic site), eluting at
26.5min and 26.0min, respectively. The latter form results
from the incomplete cleavage of the abasic site by hot
piperidine treatment, which might be attributed to the
relatively low temperature (i.e. 608C) employed for the
treatment. The 30 portion of the primer strand, which
carried the extension products and included 10C, 10T,
10A, 11C, 11T, 11C_T, 11T_T, 11A_T, elutes at 26.9min
(ESI-MS averaged from this retention time is shown in
Figure 2b, and the sequences for the identified products
are listed in Table 2). Other than these full-length
products, we also found the un-extended primer (4mer)
and a frame-shift product (8C), which elute at 20.8min
and 26.5min, respectively. The identities of the above
ODNs were determined from ESI-MS and MS/MS
measurements. For instance, the MS/MS of several
replication products, including a frameshift product,
are shown in Figure S7, and the MS/MS for the
[M–4H]4� ions of the 50 segments of the primer are
shown in Figure S6. The same LC-MS/MS method also
allows us to identify the replication products from the
other five in vitro replication reactions (the identified
products are listed in Tables 1 and 2).

To quantify accurately the relative amounts of these
extension products, we first examined the relative ioniza-
tion efficiencies of ODNs in negative-ion ESI-MS. To this
end, we injected a mixture, which contained 5-pmol of
each standard 50-phosphorylated ODN in the same
buffer as that used for extension assays, for LC-MS and
MS/MS analyses. As depicted in Figure 3, the seventeen
50-phosphorylated ODNs identified from the pol
Z-mediated replication mixture of the 2-AP-6-SO3H-
bearing substrate indeed exhibit substantially different
efficiencies in forming the most abundant molecular ions,
revealing the importance of considering the varied
ionization efficiencies of different ODNs in the LC-MS/
MS quantification of replication products. In this respect,
the relative ionization efficiencies were assessed by
normalizing the total-ion current observed for the most
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Figure 1. Product-ion spectra of the ESI-produced [M–3H]3� ions of d(ATGGCSO3HGCGCTAT) (m/z 1240.6, a) and d(ATGGCMeSGCGCTAT)
(m/z 1229.3, b), where ‘SO3HG’ and ‘MeSG’ represent 2-AP-6-SO3H and 2-AP-6-SCH3, respectively. Shown in the insets are the negative-ion ESI-MS
for the two modified ODNs and schemes summarizing the observed fragment ions.
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Figure 2. (a) Total-ion chromatogram from the analysis of the yeast pol Z-induced replication products that have been treated with UDG and hot
piperidine. A 25-pmol replication mixture was injected for analysis. (b) ESI-MS averaged from the peak eluting at 26.9 min in part (a), where ‘*p’
designates the remanent of the 50 portion of the primer.
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abundant deprotonated molecular ion found for each
ODN against that found for the [M–3H]3� ions of 10C,
for the yeast pol Z-mediated reaction, and 11C, for the
KF�-catalyzed reaction (See Figure S8 for an example).

In the viewpoint that MS/MS provides improved signal-
to-noise ratio for measuring the relative amounts of
different ODNs present in the replication mixture, we also
examined the relative efficiencies for the formation of
three abundant fragment ions, from the injection of an
equimolar mixture (5 pmol each) of the 17 authentic
ODNs as mentioned earlier. It turned out that the ratios
obtained for most ODNs are similar to those found based
on molecular ions, and the efficiencies for the formation of
three abundant product ions were again markedly
different for these ODNs (Figure 3). In this respect,
t-test showed that, at 99.9% confidence level, the mean
ratio obtained for 10A or 10G was significantly different
from that determined for 4mer, 5C, 5G, 6C, 6A, 6G, 8A,
10A, 11C or 11T_T.

It is worth noting that two isomeric ODN products
were found in the pol Z-catalyzed replication mixture of
all three thionucleoside-containing substrates (Table 2 and
Figure S10), i.e. 11T or 11A_T, which exhibit very similar
retention time. Therefore, the quantification of these two
products has to rely on MS/MS. In this context, it is worth
noting that the quantification of these two ODNs also
necessitates the use of fragment ions with distinct m/z
values for the two ODNs. In this case, we employed the
[a6-G]2�, [a7-C]

2� and [a8-C]
2� ions, which have m/z

values of 870.6, 1035.1 and 1179.7, respectively, for 11T
and 875.1, 1039.7 and 1184.1, respectively, for 11A_T
[Nomenclature for fragment ions follows that described by
McLuckey et al. (28)].

By using the relative ratio method described in
‘Materials and Methods’ section, we quantified the
percentages of individual ODNs in the reaction mixtures
and summarized the results in Tables 1 and 2. Our results
showed that KF� could bypass 6-TG efficiently, and the
most abundant product was found to be the products with
a dCMP being inserted opposite the 6-TG and with
the blunt-end addition of a dA, d(AT) or d(ATA) (Table 1
and Figure S9d). Consistent with the results from the
primer extension monitored by PAGE analysis, the 2-AP-
6-SCH3-containing substrate can also be bypassed; how-
ever, the 2-AP-6-SCH3 induced much more nucleotide
misincorporation than 6-TG. Among all the full-length
products, dTMP (�53%) is inserted opposite the 2-AP-6-
SCH3 much more preferentially than dCMP (�20%),
followed by dAMP (�5%) and dGMP (�5%, Table 1 and
Figure S9e). This result is significantly different from the
similar efficiency of dCMP and dTMP incorporation in
primer extension experiments where only dTTP or dCTP
was present in the replication mixture (9).
The 2-AP-6-SO3H-bearing substrate blocked KF�-

mediated primer extension more readily as represented
by the formation of much smaller amount of the full-
length products (a total of �18%, Table 1 and Figure S8).
In contrast to what we found for the 2-AP-6-SCH3-
containing substrate, KF� preferentially incorporates a
dCMP opposite 2-AP-6-SO3H. Considering the full-length
products formed from this reaction, the incorporation of
dCMP and dAMP constitute 17% (11C, Table 1) and
0.8% (11A, Table 1), respectively, whereas the insertion of
dTMP was barely detectable.
For the primer extension with yeast pol Z, substrates
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Figure 3. Ratios of peak areas of individual ODNs to that of 10C in the mixture based on the SIC (solid bar), and based on TIC (open bar).
All authentic ODNs were identified from the replication mixture of 2-AP-6-SO3H-containing substrates induced by yeast pol Z. Error bars represent
the standard deviations of results from three independent experiments. The top and bottom numbers listed above the bars are data obtained from
SICs for three abundant fragment ions and based on TICs for the most abundant molecular ion, respectively.
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with different levels of efficiencies, which is consistent with
the results obtained from the above gel electrophoresis
experiment. For all three lesions, the most abundant
products carry the correct nucleotide (dCMP) opposite the
lesion (Table 2, the SICs for monitoring the formation of
replication products and a summary of the identities and
percentages of those products are shown in Figure S9).
Aside from the correct nucleotide incorporation, the
insertions of dAMP and dTMP were also observed
(Table 2). In this respect, if we only consider the full-
length products, dCMP, dTMP and dAMP were inserted
opposite 6-TG at frequencies of 74, 5.2 and 4.7%,
respectively (Table 2), whereas these three nucleotides
were incorporated opposite 2-AP-6-SCH3 at frequencies
of 52, 17 and 8%, respectively (Table 2). The respective
frequencies for the insertion of these three nucleotides
opposite 2-AP-6-SO3H are 29, 1.2 and 5.8%. These
results, therefore, demonstrated that 2-AP-6-SO3H
also blocked pol Z-mediated polymerization more
effectively than 6-TG or 2-AP-6-SCH3 (Table 2).
In keeping with our findings for the KF�-mediated
reaction, pol Z also misincorporated dTMP more
frequently than dAMP opposite 2-AP-6-SCH3, whereas
the wrong nucleotide dAMP was inserted opposite the
2-AP-6-SO3H with greater efficiency than the incorrect
nucleotide dTMP.
It is worth mentioning that a single LC-MS/MS

experiment facilitates us to gain insights into both the
nucleotide incorporation opposite the lesion and the
primer extension beyond the lesion site. In this
context, our data demonstrated the presence of a
significant amount of frame-shift products in the
reaction mixture, particularly in the mixtures resulting
from the replication of 2-AP-6-SO3H-harboring
substrate induced by yeast pol Z (6C, 6A, 6G, 8C and
8A, a total of �40%, Figure S9c) and KF� (6C and 8C,
a total of �20%, Figure S8).

Thermodynamic properties of lesion-containing duplexes

To gain insights into the effects of 6-TG and its
metabolites on duplex stability, we further determined
the thermodynamic parameters for duplex formation by
measuring the melting temperatures for the thionucleo-
side-containing duplex ODNs (see ‘Materials and
Methods’ section and Figure S10). It turned out that the
replacement of a guanine with a 6-TG resulted in the
destabilization of the duplex by 2.4 kcal/mol in free

energy at 378C (Table 3). In addition, 2-AP-6-SCH3 and
2-AP-6-SO3H caused even more destabilization to duplex
DNA, with iiG being 4.2 and 4.3 kcal/mol, respectively
(Table 3).

DISCUSSION

The cytotoxicity of the thiopurine drugs involved mostly
the formation of 6-TG nucleotide upon metabolic activa-
tion and its subsequent incorporation into DNA (2).
In DNA, 6-TG can be methylated by S-AdoMet to form
2-AP-6-SCH3 (9) and converted to 2-AP-6-SO3H upon
UVA irradiation (10). Both 2-AP-6-SCH3 and 2-AP-6-
SO3H may affect DNA replication and/or repair,
thereby exerting their cytotoxic and mutagenic effects
in vivo (9,10).

In this article, we obtained pure ODNs containing a
structurally defined 6-TG, 2-AP-6-SCH3, or 2-AP-6-SO3H
at a specific site, and confirmed the identities of these
ODNs by ESI-MS, MS/MS and, for the 2-AP-6-SO3H-
bearing substrate, by fluorescence spectroscopy. In addi-
tion, the 2-AP-6-SO3H-containing ODN was digested by
enzymes to mononucleosides, and LC-MS/MS analysis
confirmed the presence of 2-AP-6-SO3H 20-deoxyribonu-
cleoside in the nucleoside mixture.

We then carried out the in vitro replication studies of
6-TG and its metabolites with KF� and yeast pol Z.
Consistent with previous studies (9,29), we found that
6-TG and 2-AP-6-SCH3 slightly blocked the replication by
KF�, whereas 2-AP-6-SO3H blocked substantially the
primer extension by KF�. All three thionucleosides,
however, could be bypassed by yeast pol Z with varying
efficiencies.

The miscoding and polymerase stalling properties of
DNA lesions are frequently assessed by the steady-state
kinetics assay (17). Recently, LC-MS/MS, because of its
high efficiency and its capability in offering sequence
information for many ODNs in a single experiment,
has been developed as a new tool to investigate the
mutagenic and cytotoxic effects of DNA lesions
in vitro (18). Different from the steady-state assay, the
LC-MS/MS method can allow for the analysis of the
replication products from the reactions with the mutual
presence of all four dNTPs, instead of adding one type of
dNTP at a time. It may better represent the real
polymerization reaction conditions in vivo, thereby pro-
viding more accurate measurements. However, the

Table 3. Thermodynamic parameters of duplex formation

Duplex T a
mð

�CÞ DH (kcal/mol) DS (cal/mol K) DG378C (kcal/mol) DDGb
37�C

50-ATGGCXCGCTAT-30

30-TACCGCGCGATA-50

X¼G 60.9� 0.5 �80� 5 �210� 16 �13.8� 0.3
X¼ 6-TG 51.2� 0.6 �77� 4 �210� 14 �11.4� 0.2 2.4� 0.4
X¼ 2-AP-6-SCH3 43.8� 0.5 �74.1� 0.6 �208� 2 �9.6� 0.0 4.2� 0.3
X¼ 2-AP-6-SO3H 43.8� 0.5 �82� 2 �230� 8 �9.5� 0.0 4.3� 0.3

aCt ¼ 10 mM.
bDDGb

37�C ¼ DG37�C (lesion-containing duplex)—DG378C (undamaged duplex).
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LC-MS/MS analysis of extended ODNs in the replication
mixture was somewhat limited because common HPLC
mobile phases are not compatible with both the HPLC
separation and the electrospray ionization of ODNs.
Here we found that the HFIP buffer reported by
Hancock et al. (27) allowed for the effective separation
and efficient ionization of ODNs in the replication
reaction mixture.

In this newly developed LC-MS/MS method, the
quantitative analysis of individual ODNs in the reaction
mixture is complicated by the different ionization efficien-
cies of the composing ODNs. In this article, we
quantitatively assessed the ionization and detection
efficiencies of different ODNs through the analysis of
authentic compounds. Our results revealed that different
ODNs could exhibit significant differences in the magni-
tude of signals produced in MS or MS/MS, which calls for
the need of assessing the relative ionization efficiencies
of different ODNs while LC-MS/MS is used for this type
of analysis.

With the consideration of different ionization efficien-
cies of different replication products, our LC-MS/MS
results revealed that dTMP is inserted opposite 2-AP-6-
SCH3 with much greater efficiency (2.5-fold) than dCMP
by KF�. The resulting 2-AP-6-SCH3/T base pair may
trigger the DNA mismatch repair pathway (9). If not
repaired efficiently, the lesion may lead to a high incidence
of G!A transversion mutation. Our LC-MS/MS
data also demonstrated that 2-AP-6-SO3H can block
significantly the extension by KF� as represented by the
formation of a large amount of the unextended primer
(4mer, 32%, Figure S8) and pentameric products (5C, 5A
and 5T, larger than 30% in total, Figure S8), suggesting
that this lesion may introduce significant structure
distortion to duplex DNA. However, the translesion
synthesis polymerase, yeast pol Z, can bypass all
three thionucleosides, including 2-AP-6-SO3H, and give
full-length products. Although dCMP is the most
favorite nucleotide being inserted opposite 2-AP-6-SCH3

and 2-AP-6-SO3H, we observed significant frequencies
of misincorporation of dTMP and dAMP opposite 2-AP-
6-SCH3 and 2-AP-6-SO3H, respectively.

Other than nucleotide misincorporation opposite
the lesion sites, we also found a substantial amount of -2
frameshift products in the replication mixtures for 2-AP-6-
SCH3- and 2-AP-6-SO3H-containing substrates.
Remarkably, this type of products account for �40% of
the products in the pol Z-mediated replication of the
2-AP-6-SO3H-containing substrate. We reason that three
possible mechanisms may contribute to the formation of
these products (Scheme 3). In this respect, yeast pol Z
incorporates both dCMP and dAMP opposite the lesion,
and the resulting 2-AP-6-SO3H/A and the 2-AP-6-SO3H/
C base pairs may distort the local double helix structure,
which may cause the two bases on the 50 side of the lesion
to flip out. The polymerase can then continue to add one
or three correct nucleotides in the presence of template
(Scheme 3, left). Other two mechanisms involve the
looping-out of the lesion together with flanking 30 or 50

nucleotide followed by the incorporation of the
correct nucleotides by the polymerase (Scheme 3, middle

and right). The latter two mechanisms may account for
the high occurrences of 6C and 8C in the replication
mixtures of 2-AP-6-SO3H-containing substrate mediated
by KF� or pol Z. In this context, it is worth noting that
different flanking sequences may give rise to different types
of frameshift products.
The thermodynamic studies revealed that the presence

of a 6-TG caused an increase in iG8 at 378C by 2.4 kcal/
mol relative to that of the parent duplex. The iiG8 was
close to that induced by one mismatched base pair (30).
The presence of 2-AP-6-SCH3 and 2-AP-6-SO3H resulted
in even greater destabilization to duplex DNA, i.e. by 4.2–
4.3 kcal/mol in Gibbs free energy at 378C. The increased
destabilization to double-stranded DNA induced by 2-
AP-6-SCH3 and 2-AP-6-SO3H than by 6-TG may facil-
itate the more efficient recognition of the two lesions by
DNA repair enzymes, though other factors, e.g. substrate
specificities of DNA repair enzymes and base pairing, may
also contribute to the recognition of these lesions during
repair (31,32).
Since the approval of the thiopurine drugs by FDA in

the 1960s, azathioprine, 6-mercaptopurine, and 6-TG have
been widely used as therapeutic agents in the treatment of
a variety of human diseases (1,3). However, there is a high
occurrence of certain cancers in long-term survivors of
these patients (33–35). For example, 20 years after
transplant, about 60–90% of the patients who have
taken azathioprine as an immunosuppressant develop
squamous cell carcinoma (36). Such great prevalence of
skin cancer in transplant patients is not found in the
general population. The methylation and oxidation of
6-TG, due to the increased potential in miscoding and in
inducing frameshift mutations, may contribute to the
development of cancers in those patients. In this respect, it
was shown that aberrant processing of 2-AP-6-SCH3/T
mismatch was more toxic in mismatch repair-proficient
than in deficient cells (32). Future studies on the
quantification of these lesions formed in vivo and in vivo
mutagenesis study of these lesions using shuttle vector
technology should offer more insights into the roles of
these lesions in the development of cancers in those
patients who have been treated with the thiopurine drugs.
Such studies are currently being pursued in our
laboratory.
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3′-TCGC  GGTA–
XC

5′-AGCG– 3′

5′
XC

3′-TCGC  GGTA– 5′
XC

CX

CX

CX

Scheme 3. Proposed mechanisms for the formation of �2 frameshift
mutation products.
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