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Swidbert R. Ott*

Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom

Phenotypic plasticity often entails coordinated changes in multiple traits. The effects

of two alternative environments on multiple phenotypic traits can be analyzed by

multivariable binary logistic regression (LR). Locusts are grasshopper species (family

Acrididae) with a capacity to transform between two distinct integrated phenotypes or

“phases” in response to changes in population density: a solitarious phase, which occurs

when densities are low, and a gregarious phase, which arises as a consequence of

crowding and can form very large and economically damaging swarms. The two phases

differ in behavior, physiology and morphology. A large body of work on the mechanistic

basis of behavioral phase transitions has relied on LR models to estimate the probability

of behavioral gregariousness from multiple behavioral variables. Martín-Blázquez and

Bakkali (2017; doi: 10.1111/eea.12564) have recently proposed standardized LRmodels

for estimating an overall “gregariousness level” from a combination of behavioral and,

unusually, morphometric variables. Here I develop a detailed argument to demonstrate

that the premise of such an overall “gregariousness level” is fundamentally flawed,

since locust phase transformations entail a decoupling of behavior and morphology.

LR models that combine phenotypic traits with markedly different response times to

environmental change are of very limited value for analyses of phase change in locusts,

and of environmentally induced phenotypic transitions in general. I furthermore show why

behavioral variables should not be adjusted by measures of body size that themselves

differ between the two phases. I discuss the models fitted by Martín-Blázquez and

Bakkali (2017) to highlight potential pitfalls in statistical methodology that must be

avoided when analysing associations between complex phenotypes and alternative

environments. Finally, I reject the idea that “standardized models” provide a valid shortcut

to estimating phase state across different developmental stages, strains or species. The

points addressed here are pertinent to any research on transitions between complex

phenotypes and behavioral syndromes.

Keywords: phenotypic plasticity, phenotypic integration, behavioral syndrome, phase change, logistic regression,

multivariable analysis, desert locust, Schistocerca gregaria

1. INTRODUCTION

A central question in animal behavior is the extent to which individual differences in multiple
behavioral traits are integrated together into behavioral syndromes (Sih et al., 2004; Dingemanse
et al., 2010; Wolf and Weissing, 2012) or with other phenotypic dimensions such as morphology
and physiology to form complex integrated phenotypes (Pigliucci, 2003; Murren, 2012; Armbruster
et al., 2014; Kern et al., 2016). Phase change in locusts is a paradigmatic example of phenotypic
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plasticity and integration. Locusts can transform between two
very distinct integrated phenotypes or phases in response to
changes in population density (Pener and Simpson, 2009). This
capacity for “phase change” underpins the formation and break-
up of swarms (Simpson and Sword, 2008; Cullen et al., 2017).
Locust populations that have experienced low density conditions
for several generations comprise individuals in the solitarious
phase, which is characterized by cryptic coloration and a cryptic
behavioral strategy that includes sparse locomotor activity with
a crepuscular diel pattern and an aversion to conspecifics.
Conversely, populations that have experienced high density
conditions for several generations comprise individuals in the
gregarious phase, which shows distinct morphometric ratios,
aposematic coloration, and a very different behavioral strategy
that includes high levels of activity with a diurnal diel pattern and
a propensity to be attracted toward conspecifics. The two phases
also differ profoundly inmetabolic and endocrine physiology and
reproductive biology (Pener and Simpson, 2009).

Full phase transformation thus entails changes in many
aspects of the phenotype that unfold over very different
time scales: behavioral changes can occur within a few hours
(Roessingh et al., 1993), whereas morphological changes can
only occur over weeks or months, primarily as animals molt,
with further changes accruing trans-generationally. Long-term
phase state can be easily assessed by measuring morphological
variables, and is therefore widely used in field surveys to inform
locust control operations (Dirsh, 1951, 1953). The behavioral
phenotype, however, cannot be inferred from morphometric
measurements because it changes more quickly to reflect
the recent history of population density. It also follows that
mechanistic laboratory studies that target different aspects of
phase change (behavioral, physiological, morphological) must
each operate on an appropriate time scale. Most mechanistic
studies to date have focussed on behavioral phase change,
and have therefore operated on a time scale of hours or
days (Anstey et al., 2009; Ma et al., 2011; Ott et al., 2012;
Guo et al., 2015). In contrast, manipulations targeted at
morphological phase traits would necessarily take weeks to
manifest.

A trivially obvious prerequisite for any analysis of a
specific phase trait is a meaningful measure of that trait. To
this end, Martín-Blázquez and Bakkali (2017) have recently
proposed standardized logistic regression (LR) models for
estimating “the gregariousness level” of individuals of the
desert locust (Schistocerca gregaria Forskål) for adoption
by the research community, together with suggestions for
extending their approach to other locust species including
the migratory locust (Locusta migratoria L.). I agree that
standardized, accessible, open and transparent methods are
needed (see also Cullen et al., 2017), but the models promoted
by Martín-Blázquez and Bakkali (2017) are, regrettably,
fundamentally flawed. The present paper is not intended
as a comprehensive and detailed critique of the paper by
Martín-Blázquez and Bakkali (2017); instead, I discuss specific
conceptual and methodological shortcomings of that work that
are germane to any research on transitions between complex
phenotypes.

2. METHODS

The raw data included in the Supporting Information of
Martín-Blázquez and Bakkali (2017) were analyzed in R
(RRID:SCR_001905) version 3.3.3 (R Core Team, 2017) and
RStudio (RRID:SCR_000432) version 1.0.143 (RStudio Inc.,
Boston, MA) running under OS X El Capitan version 10.11.6
(Apple Inc., Cupertino, CA). LR models were fitted using the
function glm from the built-in R package core to exactly replicate
the analysis inMartín-Blázquez and Bakkali (2017). Additionally,
LR models were fitted using the lrm function in package rms,
version 5.1-1 (Harrell, 2017), to obtain bootstrap-corrected
values for two measures of model performance: (1) Somers’
D, a measure of the rank discrimination of the model; and
(2) the intercept and slope of the calibration line, a measure
of model calibration (Harrell, 2001). Coefficients of variation
were compared using the test of Feltz and Miller (1996) as
implemented in the function asymptotic_test from the package
cvequality, version 0.1.1 (Marwick and Krishnamoorthy, 2017).
All analyses are documented in the Supplementary Material of
the present paper, which includes a report in PDF format and the
.Rmd source code that generates the report reproducibly from the
raw data of Martín-Blázquez and Bakkali (2017).

For Figure 1, observations on N = 800 individuals with
bivariate phenotypes T = (t1, t2) were simulated by
independently sampling t1 and t2 from a continuous uniform
distribution in [−0.5, 0.5]. The simulated observations were
assigned to two environments (A, B) via a latent variable y′:

y′ = β0 + β1 t1 + β2 t2 + ǫ

E = B if y′ > 0,

E = A otherwise,

with β0 = 0, β1 = 2.5, β2 = 5 and ǫ sampled from the
logistic distribution with location µ = 0 and scale s = 1.
The LR model E ∼ t1 + t2 was then fitted to the simulated
data using the lrm function in rms, and the fitted model was
used to predict P(E = B|T). The model fit gave the following
estimates and standard errors (SE) for the model coefficients:
β̂0 = −0.067, SE = 0.087; β̂1 = 2.26, SE = 0.319; β̂2 =

4.95, SE = 0.360. The slope estimate of the latent axis over t1
(solid line in Figure 1C) was calculated as β̂2/β̂1 = 2.187. The
code for generating Figure 1 is included in the Supplementary
Material.

3. PHASE TRANSITIONS DO NOT OCCUR
ALONG A SINGLE LATENT AXIS

For the arguments that follow, it is useful to briefly explain how
the effect of two alternative environments (A and B) on multi-
trait phenotypes can be analyzed by multivariable binary logistic
regression (LR; Figure 1). The LR approach entails modeling the
association between phenotypes T and the environment E as E ∼

T, with E as dependent variable, and estimating the probability
that a given phenotype T is derived from environment B rather
than A (or the other way around). In short, LR estimates P(E|T).
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FIGURE 1 | Binary logistic regression (LR) analysis of phenotypic differentiation between two environments A and B on simulated data (N = 800; see section Methods

for details). In this example, the phenotypes comprise two uncorrelated continuous traits T = (t1, t2) and the association between the phenotypes T and the

environment E follows logit(P(E = B|T )) = 2.5 t1 + 5 t2. To help visualize how LR estimates P(E|T ) for any given T from the relative frequency of individuals from A and

B, t1 and t2 are here simulated as uniformly distributed in [−0.5, 0.5], so that within this range, all phenotypes (trait combinations) are equally frequent in the total

population. (A,B) Sample distributions of traits t1 and t2 in the two environments A and B: low values of t1 and t2 are more typical of individuals from environment A,

high values more typical of individuals from B. (C) Visualization of the LR model fitted to the simulated data. Individuals from environment A and B are plotted as ×

and ◦, respectively; the color scale indicates their estimated P(E = B|T ). LR entails projecting all phenotypes (trait combinations) on a single latent axis according to

their estimated P(E|T ). Any line orthogonal to the latent axis defines phenotypes that have the same P(E|T ). The solid line is the latent axis as estimated by the fitted

model (slope over t1 = 2.187); the true latent axis of the data generating model is shown by the thin dashed line (slope over t1 = 5/2.5 = 2). (D) The distributions of

P(E = B|T ) in the two environments A and B as estimated by the LR model.

Of all phenotypes with P(E = B|T) = 0.75, for example, 75%
are expected to originate in environment B. A LR analysis thus
projects all possible phenotypes (trait combinations) on a single
latent axis (solid line in Figure 1C) according to their estimated
P(E|T). An obvious but pertinent point is that very different
phenotypes can be represented at the same position on this latent
axis.

Martín-Blázquez and Bakkali (2017) introduce the notion
of an overall “gregariousness level” that encompasses all
gregarious phase characteristics, be they molecular, behavioral,
physiological, morphological or otherwise. I shall argue that
this premise is conceptually misguided and of very limited
value for any mechanistic analysis of phase change. In a
series of influential papers, Simpson and colleagues introduced
multivariable LR models to the analysis of behavioral phase
change in the desert locust (Roessingh et al., 1993; Roessingh
and Simpson, 1994; Simpson et al., 1999), and the approach has
subsequently been extended to other locust species including
Locusta migratoria (Guo et al., 2011; Ma et al., 2011) and
Chortoicetes terminifera (Gray et al., 2009; Cullen et al., 2010,

2012). In all instances, the aim was to quantify behavioral
gregariousness from multiple behavioral traits. Importantly, this
approach assumes that phase-related behavioral traits change
in concert during phase transformation, such that they can
be interpreted as manifestations of a single latent behavioral
phase state. In the desert locust, this assumption is not entirely
uncontroversial (Tanaka and Nishide, 2013) but reasonably well-
supported by experimental data (Rogers et al., 2014); in other
species, the behavioral coherence during phase change would
need to be explicitly tested.

The notion in Martín-Blázquez and Bakkali (2017) of a
“gregariousness level” that encompasses all gregarious phase
traits is altogether different. They state that

“In order to successfully test functionality of a gene or molecule,

quantitative measurements of the level of gregariousness are

needed. Currently no valid molecular marker is available, thus

the assessment of the degree of locust gregariousness is based

onmathematical modeling.” (Martín-Blázquez and Bakkali, 2017,

abstract).
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According to this notion, one is resorting to LR models only in
lieu of a single reliable marker—which could, in principle, be any
trait that differs between phases:

“There is a plethora of [. . . ] potential indicators of the state of

a locust population. Apart from their developmental, survival,

reproductive, immunological, and physiological differences, [the

two] phases also differ in their morphology [. . . ] and behavior.”

(Martín-Blázquez and Bakkali, 2017, p. 21).

This presumes that all phase-related traits are tightly coupled
at all times, so that any one can serve as a measure of the
same latent “gregariousness.” It is a ground truth, however, that
phase transformation entails a decoupling of different phase-
related traits: some behaviors change within hours, whereas
morphological changes take several generations to fully manifest
(Pener and Simpson, 2009).

Martín-Blázquez and Bakkali (2017) set out with a LR
model that is based on a combination of morphometric and
behavioral variables (model “Sg_extended”), and a version of
this model (“Sg_extended_corrected”) is one of two put forward
for adoption by the research community. To be clear, it is
perfectly feasible to define a statistically sound LR model that
incorporates morphometric, behavioral and other kinds of traits
to predict the probability that a locust has a long-term history of
high population density. For locusts that are undergoing phase
transition, however, the “probability of gregariousness” (Pgreg)
predicted by a morphological-behavioral “hybrid” model will be
wholly uninformative. This becomes clear when one considers
a long-term solitarious locust that has been crowded for one
day. Its morphology will not have changed, but in important
aspects of its behavior, such as locomotor activity, it will already
be comparable with long-term gregarious locusts (Roessingh
and Simpson, 1994). A first problem is that including both
morphometric and behavioral predictors into a multivariable LR
model does not guarantee that they will have equal weight—
in fact, this outcome is unlikely. The estimation of the weights
(coefficients) of the predictors is entirely data-dependent: each
estimate reflects the association of the predictor with phase after
adjusting for the associations of all other predictors with phase
and, importantly, the degree of collinearity among predictors,
with all estimates subject to stochasticity in the data sample
to which the model is fitted. One or more predictor variables
will dominate the prediction, and the dominant predictor(s)
may be behavioral or morphological depending on the specific
combination of predictors included in the model and the sample
that the model is fitted to. For a one-day crowded locust,
models that combine morphological and behavioral variables
may therefore predict any Pgreg value between near-zero (high
probability of “solitariousness”) and near-one (high probability
of “gregariousness”).

However, that entering predictors does not determine their
weighting is almost a side point because, whatever the model
prediction for our one-day crowded locust, it will in any case be
inappropriate with respect to behavior, morphology, or both. If
the model predicts a Pgreg close to zero, it is obviously useless
for detecting behavioral gregarisation. A value close to one

would be entirely wrong as an estimate of morphometric phase
state. Martín-Blázquez and Bakkali (2017) may have hoped for
a value of around 0.5—the prediction from a model in which
behavioral and morphometric variables have equal weight—but
this value too would be discordant with phase state: our one-day
crowded locust is intermediate neither in morphology (it still has
completely solitarious morphology) nor in behavior (it behaves
gregariously). Overall phase state cannot be measured on a single
latent axis but requires a multidimensional metric space—at least
a plane spanned by behavior and morphology if we consider
only those two aspects and were to assume that they can each be
sensibly collapsed onto a single axis. Even this assumption is too
simplistic, however, because different aspects of morphological
phase change are known to be mechanistically decoupled from
each other. For example, different components of the gregarious
coloration can be induced by separate sensory stimuli (Lester
et al., 2005).

4. BEHAVIORAL PREDICTORS SHOULD
NOT BE ADJUSTED FOR BODY SIZE

Martín-Blázquez and Bakkali (2017) furthermore argue strongly
that “speed-related behavioral variables” should be “normalized”
for body size, criticize previous work for not having done
so, and advocate dividing the “speed-related variables” by
the length of the hind leg femur. Their argument is based
on their reported correlations between “speed-related” and
morphometric variables (Table S5 in the Supporting Information
of Martín-Blázquez and Bakkali, 2017). Here, it is necessary to
distinguish between correlations within a phase and correlations
across the two phases—a distinction that is not explicit inMartín-
Blázquez and Bakkali (2017). Gregarious desert locusts have
shorter hind femora than solitarious locusts (Dirsh, 1951, 1953),
yet they walk faster, more frequently and spend more time
walking, and consequently they cover more ground during the
assay duration (Ellis and Pearce, 1962; Roessingh et al., 1993;
Rogers et al., 2014). Clearly, leg length does not explain these
phase differences in locomotion, and the apparent correlations
with hind femur length across the two phases are expected to
be negative. The locusts used by Martín-Blázquez and Bakkali
(2017) are unusual in that they apparently have about 1.6×
longer hind legs in the gregarious phase (final instar nymphs; my
analysis, Figure S1 and Tables S5, S6 in Supplementary Material).
This may reflect a strain peculiarity that has not been reported in
any other lab or wild strain, inappropriate husbandry, or a data
labeling error; but whatever the cause it results in an unexpected
positive across-phase correlation between hind femur length and
average speed (my analysis; Spearman’s ρ = 0.336; N = 66,
S = 31832, P = 0.00589; Figure S2 in Supplementary Material).

For correlations within a phase, I have in most instances
been unable to replicate the results in Martín-Blázquez and
Bakkali (2017) from the raw data provided in their Supporting
Information (see Table S8 in Supplementary Material). For
example, their Table S5 gives the correlation between average
speed and hind femur length in gregarious nymphs as r =

0.442 (N = 51, P = 0.00128); I obtained r = −0.0612
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(N = 51, t49 = −0.429, P = 0.670), which indicates that leg
length has a negligible effect on locomotor speed. Also, several
correlation coefficients in Martín-Blázquez and Bakkali’s (2017)
Table 2 do not match those in their more detailed Table S5 (e.g.,
correlation between hind femur length and raw erratic movement,
their Table 2: 0.215; their Table S5: −0.065; neither matches my
calculation).

Nevertheless, one must concede that such correlations are
plausible in principle. If, however, one were to commit to
including both morphometric and behavioral predictors in a LR
model, then adjusting upfront for a correlation between them
is misguided because multivariable modeling already accounts
for any correlations among predictors. While the individual
associations of correlated predictors with the dependent
variable cannot be resolved, such correlations do not affect
predictive model performance (Harrell, 2001). Martín-Blázquez
and Bakkali’s (2017) misconception about how predictors are
weighted in multivariable model fits is apparent from their
statement,

“To detect highly correlated variables that might reinforce or

bias the model toward a particular trait, we carried out pairwise

correlations [. . . ]” (Martín-Blázquez and Bakkali, 2017, p.14):

Correlated predictors may lead to problems with model
estimation, but they do not “reinforce” the model predictions
because their joint information enters the prediction only once.

If, on the other hand, one rejects the inclusion of
morphometric variables in the model on the grounds developed
in the previous section, then dividing behavioral variables by
femur length or any other measure of body size is misguided
because it re-introduces morphometric characters into the model
“through the back door.” Long-term solitarious locusts typically
have longer legs. After 4–24 h of crowding, their locomotor
characteristics will be virtually the same as those of long-term
gregarious locusts but the legs will obviously be no shorter
than before. If locomotor variables are divided by hind femur
length, freshly gregarised locusts (with long legs) will yield values
lower than those of gregarious locusts (with shorter legs) and
will therefore be assigned an erroneously lower Pgreg in what is
intended as an assessment of pure behavioral gregariousness.

Adjusting behavior by morphology is ill-advised even if one
considers only long-term solitarious and gregarious locusts.
In Martín-Blázquez and Bakkali’s (2017) unusual data, where
gregarious final instar nymphs have longer legs than their
solitarious counterparts, a clear phase difference in average speed
is obliterated after dividing by hind femur length (Figure S3
and Table S9 in Supplementary Material). This outcome is of
course purely coincidental in the sense that the phase difference
in average speed is not caused by the phase difference in leg
length. But the consequence is that, in Martín-Blázquez and
Bakkali’s (2017) data for final instar nymphs, raw average speed
is a reasonably useful predictor of phase in a univariate LR
model, whereas the corresponding model based on “normalized”
average speed is hardly better than random guessing (Table S10
in Supplementary Material). Rather than improving predictive
accuracy, as intended byMartín-Blázquez and Bakkali (2017), the

“normalization” annihilates the predictive power of average speed
in their data.

To prove that dividing speed-related variables by hind femur
length successfully “homogenizes” the variance, Martín-Blázquez
and Bakkali (2017) compared raw and “normalized” variances
using Bartlett’s tests, which are significant in all cases (Martín-
Blázquez and Bakkali, 2017, Table 3). These tests are meaningless,
however, because variance depends on the measurement scale,
and division by femur length changes the dimension and scale
for only the “normalized” dataset. Bartlett’s test is for comparing
variances between different groups of data measured on the same
scale, and will trivially give a significant result when applied to
two versions of the same set of data measured on two different
scales—dividing any set of values X by any factor s > 1
will reduce the variance. The authors draw further erroneous
conclusions from Bartlett’s K2:

“It should be noted that if the animals are of similar size (the

solitary samples used for this analysis), the normalization has a

significant but clearly weaker effect (Table 3).” (Martín-Blázquez

and Bakkali, 2017, p.14)

Scale-dependency aside, however, K2 also depends on the sample
size: the much lower values of K2 reported in their solitarious
locusts reflect the almost 6-fold smaller sample (adults and
final instar nymphs combined: N = 28 solitarious vs. N =

161 gregarious). An appropriate test would be comparing the
sample estimates of the coefficient of variation ĉv = sx/x̄, a
scale- and dimension-independent measure of relative dispersion
(Feltz and Miller, 1996). In the example of the average speeds
of solitarious and gregarious nymphs, division by femur length
does not appreciably reduce the dispersion in Martín-Blázquez
and Bakkali’s (2017) data (raw ĉv = 0.8227, “normalized” ĉv =

0.7774; N = 66 each for raw and “normalized,” Feltz-Miller
statistic = 0.0915, P = 0.762). While some locomotion-related
variables may conceivably correlate with body size, the evidence
presented inMartín-Blázquez and Bakkali (2017) is fallacious and
the proposed remedy creates a problem rather than solving one.

5. SAMPLE-SIZE REQUIREMENTS FOR
MULTIVARIABLE LR MODELS

The most critical methodological failing of Martín-Blázquez and
Bakkali (2017), however, concerns the specific LR models that
they put forward, which are based on a sample of 51 gregarious
and 15 solitarious S. gregaria nymphs. How many predictors
a LR model can reasonably accommodate is limited by the
number of observations in the smaller group (here, 15 solitarious
locusts; Harrell, 2001). The ratio of this “limiting sample size” to
the number of regression coefficients (excluding the intercept)
is known as “events per variable” (EPV; van Smeden et al.,
2016). If EPV is low, the model will be unreliable; that is,
it will not predict future observations as well as it appeared
to predict on the present sample. Furthermore, there is an
increased likelihood of “complete separation” of the two groups
(here, of the two phases), in which case the model estimation
fails altogether. The two models advocated in Martín-Blázquez
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and Bakkali (2017), “Sg_extended / Sg_extended_corrected” and
“Sg_non-morphometric,” have 13 and 10 predictors, respectively,
which with 15 solitarious locusts means less than 2 EPV. Between
10 and 20 EPV are widely considered a minimum (Harrell, 2001),
and while this is no hard and fast rule (van Smeden et al., 2016),
fewer than 2 EPV is clearly too low for obtaining a reliable
model fit.

This is demonstrated very instructively by inspection of the
model fitting results in Martín-Blázquez and Bakkali (2017).
Replicating the LR fits in the same software as used in the paper
(R, glm function) reproduces the numerical results with two-
digit accuracy or better (Tables S13, S15, S20 in Supplementary
Material). The slight discrepancies likely reflect platform
differences in floating point arithmetic that only manifest when
models are poorly estimable. Large apparent discrepancies are
resolved as manuscript errors in Martín-Blázquez and Bakkali
(2017): First, in their Table 5, some variable names are switched:
average acceleration should read stop ratio; stop ratio should read
turn ratio; and turn ratio should read average acceleration (cf.
their Table S5, where the labels are correct). Second, for models
“Sg_extended” and “Sg_non-morphometric,” all coefficients and
standard errors (SE) reported in the paper (Martín-Blázquez
and Bakkali, 2017, Table 5 and Table S5) are 103 too high
(Tables S13, S15 in Supplementary Material). This systematic
error nevertheless accounts only in part for the unreasonably
large coefficients and SEs reported for the two advocated
models. Another contributing factor is the extreme scaling of
the “normalized” speed-related variables (means between about
2×10−4 and 2×104; Table S4 in SupplementaryMaterial), which
makes it hard to spot conspicuously large SEs that are indicative
of collinearity problems.

After means-centring and scaling to sample standard
deviation s = 1, re-fitting “Sg_non-morphometric” flags up
pathologically large SE estimates for average speed (β̂as =

−3.25, SE = 75.9, z = −0.043, P = 0.966) and average
acceleration (β̂aa = 2.87, SE = 75.8, z = 0.038, P = 0.970;
Table S16 in Supplementary Material) that can be traced to near-
perfect collinearity between them (r = 0.9998; Figure S4 in
Supplementary Material). This must simply reflect a mistake
in the measurement or calculation of one or both variables.
More generally, however, the example highlights the importance
of examining whether the estimated coefficients that one has
obtained in the model fitting are sensible. At face value, β̂as =

−3.25 would mean locusts that have a higher average speed are
more likely to be solitarious, which would be very unexpected;
but since in Martín-Blázquez and Bakkali’s (2017) data average
acceleration is near-perfectly collinear with average speed and
β̂aa = 2.87, the two effectively cancel out. Furthermore, final
choice (the side of the arena where the locust was at the end
of the assay) encodes the sign of last coordinate in the arena,
which makes final choice redundant. This resulted in a model
fit where the coefficient is positive for final choice, but negative
for last coordinate (although not significantly different from zero;
Table S16 in Supplementary Material). It is thus important
to examine whether the directions (signs) of the estimated
coefficients are consistent both internally and with prior subject
knowledge; where they are not, the model may be ill-specified.

After removing average acceleration and final choice, the
fit and predictive performance of the “Sg_non-morphometric”
model can be validated by bootstrapping, although model fitting
still fails in about 15% of bootstrap samples due to divergence
or singularity (B = 1000 bootstrap samples; Table S19 in
Supplementary Material). The results indicate that the model’s
rank-discrimination is mediocre (bias-corrected Somers’s D =

0.66, where 0 is no predictive power, 1 is perfect), but more
importantly that the calibration is very poor: the bias-corrected
calibration line has an intercept of 0.49 (where 0 is perfect, 1
is worst) and a slope of 0.45 (where 1 is perfect, 0 is worst),
demonstrating the extreme overfitting that occurs with less than
2 EPV.

For the “Sg_extended”/“Sg_extended_corrected” model, all the
coefficients are extremely large even after rescaling the predictors
to s = 1, the SEs are astronomical and, consequently, all
associated P values exceed 0.99 (Tables S13, S14 in Supplementary
Material), as they do in Martín-Blázquez and Bakkali (2017;
Table S5 in their Supporting Information). These are diagnostic
symptoms of a failed model fit. Replicating exactly the analysis
in the paper shows that the glm function issues two warning
messages when fitting “Sg_extended”: “glm.fit: algorithm did
not converge” and “fitted probabilities numerically 0 or 1
occurred,” which together indicate that complete separation
has occurred (see p. 11 in Supplementary Material). Martín-
Blázquez and Bakkali (2017) misinterpreted complete separation
as excellent predictive accuracy—they describe their model
as highly accurate because it “detected all the 51 gregarious
nymphs as gregarious with 100% probabilities and attributed
0% gregariousness probability to all our 15 solitary nymphs.”
The authors also considered a five-predictor model (“Sg_low-
redundancy”) which, while still severely underpowered (3 EPV),
did not result in complete separation. Of the three models
in Martín-Blázquez and Bakkali (2017), “Sg_low-redundancy”
is the least deficient from a purely technical point of view.
It has reasonable rank-discrimination (bootstrap bias-corrected
Somers’ D = 0.85) and shows considerable but tolerable
overfitting (bootstrap bias-corrected linear calibration intercept
= 0.09, slope = 0.80)—although the model fit fails in about 20%
of bootstrap samples (Tables S20–S22). Because the authors did
not consider calibration or rank-discrimination, they wrongly
concluded that this model ‘is not as accurate in predicting
gregarious locusts as the “Sg_extended’ model,” and thus adopted
“Sg_extended.” In attempting to validate the “Sg_extended”model
on data from locusts reared at a range of intermediate population
densities, Martín-Blázquez and Bakkali (2017) found that it
predicted extremely dichotomized probabilities that did not
match the expected intermediate phase states. This inevitable
consequence of the failedmodel fit cannot be “fixed” by shrinking
the logit predictions ad hoc by an arbitrary “homogeneous
correction” factor, which is what Martín-Blázquez and Bakkali
(2017) did to arrive at their final “Sg_extended_corrected” model
that they recommended for uptake by the research community.
Shrinkage methods that are grounded in statistical theory such
as ridge and LASSO regression are available for handling the
“many predictors/few samples” problem (Hastie et al., 2009).
Alternatively, one may simply carry out a principal component
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analysis (PCA) on all candidate predictors, and then use the
first few principal component scores as predictors in a LR
model. This removes predictor redundancy and at the same
time helps with reducing the number of predictors without ad-
hoc or stepwise variable selection (Harrell, 2001). None of these
methods, however, can overcome the limitation inherent to a
sample size of 15, because nothing can generate information
beyond what is provided by the sample.

6. DIFFERENT STADIA, STRAINS AND
SPECIES NEED DIFFERENT MODELS

Previous studies have used LRmodels that were based on samples
from the same species, strain and developmental stage as those
locust that the model was used to predict on. Studies on first-
instar, final-instar or adult S. gregaria used models fitted to
first- or final-instar nymphs or adults, respectively, of the same
laboratory strain of that species (Roessingh et al., 1993; Islam
et al., 1994; Bouaïchi et al., 1995); studies on different instars
of L. migratoria used L. migratoria instar-specific models (Ma
et al., 2011). The ultimate aim of Martín-Blázquez and Bakkali
(2017) are “standardized” models that can be applied across
different laboratory strains, and ideally across different stadia
and species (in their study, final instar nymphs and adults of
S. gregaria and L. migratoria). Martín-Blázquez and Bakkali
(2017) gave explanations for why their efforts were only partially
successful by their own lights. The validity of these explanations is
limited by their small sample sizes and by fundamental statistical
misconceptions that I have discussed above. Here I consider the
broader question whether “standardized models” are a sound
proposition in principle.

There are two distinct, although connected, aspects of
“standardization” to Martín-Blázquez and Bakkali’s (2017)
models. First, they are intended as community standards;
second, they are based on behavioral predictors that have been
“standardized” for morphometric differences. This second aspect
was at least in part motivated by the hope that it would
increase the validity of the models across different developmental
stages, strains and species. Although Martín-Blázquez and
Bakkali (2017) concluded that their S. gregaria models did not
perform well in L. migratoria, they recommended their “Sg_non-
morphometric” model, which was fitted to final instars, for use in
adults:

“For testing adults or the same nymphs at different time points (if

they do not molt), we suggest using the “Sg_non-morphometric”

model (that does not include morphometric variables).” (p. 23).

I refer to my earlier argument for why this model, although
not containing overt morphometric variables, is nevertheless
contaminated with morphometric information. Above, I
have shown that “standardizing” behavior by morphology is
inappropriate if the locusts that the model is fitted to are of
the same developmental stage as those that the model is then
used to predict on. “Standardizing” behavior by morphology is
even more inappropriate if the model is then used to predict
on locusts of a different developmental stage. This is readily
seen when plotting Martín-Blázquez and Bakkali’s (2017) data

for average speed over hind femur length for gregarious nymphs
and adults: adults have distinctly longer hind femora (the
distributions barely overlap), but their average speeds are lower
in Martín-Blázquez and Bakkali’s (2017) data (Figure S5 and
Table S23 in Supplementary Material). Consequently, dividing
average speed by femur length increases, rather than reduces, the
(now no longer purely behavioral) difference in “standardized
average speed” between gregarious nymphs and adults (Figure S6
in Supplementary Material). Because behavioral differences
between developmental stages, strains and species are not merely
caused by morphology, they cannot be made disappear by
dividing behavioral variables by femur length, or by any other
morphometric.

Are standardized models without inappropriate
“morphometric standardization” of behavioral predictors a
valid proposition? Martín-Blázquez and Bakkali (2017) give
two motivations for their drive toward standardized models.
First, it would do away with the need for each research group
having to build their own model. This would save a great deal
of effort, because building a model requires observations from a
large number of “reference locusts” (certainly more than the 15
solitarious locusts used by Martín-Blázquez and Bakkali, 2017).
Second, the use of a common model would facilitate direct
comparisons between results from different research groups.

At first, these arguments may appear attractive or even
compelling. Their fallacy becomes apparent upon reflection on
what we ask a standard model to do. We ask it to spare us
the effort of collecting data for a different developmental stage,
strain or species of locust; but these are the very data that are
needed to ascertain the validity of the “standardized model”
in that developmental stage, strain or species. One does not
know a priori that a “standardized model” based on a sample
of locusts from, e.g., strain A will adequately predict on locusts
from a different strain B. Whether it does cannot be ascertained
by validating the model in just a handful of locusts from B.
To assess whether strain differences can be safely ignored, one
needs an adequate number of observations on both phases from
both strains under comparable laboratory conditions; fit a model
that includes strain as an additional predictor variable together
with all interactions between strain and the remaining predictors
(Model 1); and fit the alternative model that does not include
strain or any of its interactions (Model 2). In the symbolic form
used to specify models in R, the models for k predictors x1, . . . xk
would be:

Model 1 : phase ∼ (x1 + x2 . . . + xk) ∗ strain

Model 2 : phase ∼ x1 + x2 . . . + xk

One can then compare the two models based on, e.g., AIC or a
likelihood ratio test. Only if in an adequately powered analysis
AIC were lower for Model 2 or if the test came out decisively
“non-significant” (e.g., P > 0.15) would we accept Model 2
as likely to predict well in both strains. Key here is adequately
powered: to decide whether Model 2 is adequate, we need to
have adequate data on both strains in the first place. This reveals
the fallacy that a “standardized model” can save us the effort of
collecting an adequately large sample in the strain that we want to
predict on. The full model needs 2k+2 coefficients to be estimated
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(including the intercept), and by rule of thumb the minimum
sample size would be about 15(2k + 2) locusts of each phase,
balanced with respect to strain. A strain-specific model requires
k + 1 coefficients to be estimated, and the minimum sample size
would be about 15(k+1) locusts of each phase, of that strain. The
conclusion from this is that validating an existing model in a new
strain needs about as many locusts as building a new model.

Thus, a final and fundamental objection to the “standardized
models” suggested by Martín-Blázquez and Bakkali (2017)
concerns the very proposition that one and the same model
fit can be meaningfully generalized to different laboratory
strains, let alone different developmental stages or species. This
proposition fails to distinguish between a standardized assay and
a standardized fitted model. There is a case for standardizing
the assay conditions, although what aspects to standardize needs
discussion—a behavioral arena for adults needs to be larger than
one for first instar nymphs of the same species. The research
community should agree on a standard set of predictor variables
for LR models of behavioral phase state, and on transparent
algorithms that define these variables. But the fitted model
cannot be simply transplanted from one locust species, strain or
developmental stage to another.

7. CONCLUSIONS

Although I appreciate Martín-Blázquez and Bakkali’s (2017)
effort to promote open and transparent research, the
advocated statistical procedures and models are conceptually
and methodologically flawed and should not be adopted.
The premise of an overall “level of gregariousness” that
conflates morphological and behavioral phase characteristics
is conceptually misguided, and statistical models based on
this premise are of extremely limited use for the analysis of
phase transitions. Standardizing behavior by body size creates a
problem rather than solving one. Well-calibrated multivariable
regression models require adequately large samples of locusts
drawn from the population that one is working with, and the
proposition that “standardized” models offer a shortcut to
models that are valid across different developmental stages,
strains or species needs to be rejected.

A broader lesson from this case study is that the investigator
needs to clearly frame their question before embarking on the
business of model fitting. In some sense, the kinds of model
proposed by Martín-Blázquez and Bakkali (2017) intend to cover
all possible bases: with the ultimate goal maybe a model that
works not only across multiple developmental stages, strains
and species of locust, but also with all manner of traits—
behavior, morphology, body color, gene expression and beyond;
and thus necessarily across very different time scales, from hours
to generations. In principle, one could of course use more
complex and general models to describe plasticities in many
different traits with very different response times. For example,
one could conceive of models that predict whether a given adult
locust resembles one crowded for an hour, a day, a week, a
month or multiple generations; such models could, and indeed

would need to, combine predictors across multiple “domains”
(behavior, coloration, morphometrics, gene expression); but this
would require huge N and the model would still only work for
one developmental age at the time of observation (unless we
get even more ambitious), and one direction of transformation,
e.g., solitarious to gregarious. Before embarking on any such
endeavor, however, one should ask: What is our question, and
what do we want the model to do for us? If one is a priori interested
either only in behavior or only in morphology, there is little point
in specifying a model that includes “domain-extrinsic traits” that
one is not interested in, or that one knows cannot change (such
as morphology in adult locusts). Likewise, if one is interested in
effects on specific time scales, it is unnecessary to specify a model
that accommodates time scales from minutes to generations.
Most modeling efforts are data-limited. Therefore, to ensure that
the data gathering effort is spent on improving the accuracy of
answers we want, we need to carefully match the scope of our
models to our questions.
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