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Abstract: Optical remote sensing systems (RSSs) for monitoring vehicle emissions can be installed on
any road and provide non-contact on-road measurements, that allow law enforcement departments
to monitor emissions of a large number of on-road vehicles. Although many studies in different
research fields have been performed using RSSs, there has been little research on the automatic
recognition of on-road high-emitting vehicles. In general, high-emitting vehicles and low-emitting
vehicles are classified by fixed emission concentration cut-points, that lack a strict scientific basis,
and the actual cut-points are sensitive to environmental factors, such as wind speed and direction,
outdoor temperature, relative humidity, atmospheric pressure, and so on. Besides this issue, single
instantaneous monitoring results from RSSs are easily affected by systematic and random errors,
leading to unreliable results. This paper proposes a method to solve the above problems. The automatic
and fast-recognition method for on-road high-emitting vehicles (AFR-OHV) is the first application
of machine learning, combined with big data analysis for remote sensing monitoring of on-road
high-emitting vehicles. The method constructs adaptively updates a clustering database using
real-time collections of emission datasets from an RSS. Then, new vehicles, that pass through the
RSS, are recognized rapidly by the nearest neighbor classifier, which is guided by a real-time updated
clustering database. Experimental results, based on real data, including the Davies-Bouldin Index
(DBI) and Dunn Validity Index (DVI), show that AFR-OHV provides faster convergence speed and
better performance. Furthermore, it is not easily disturbed by outliers. Our classifier obtains high
scores for Precision (PRE), Recall (REC), the Receiver Operator Characteristic (ROC), and the Area
Under the Curve (AUC). The rates of different classifications of excessive emissions and self-adaptive
cut-points are calculated automatically in order to provide references for law enforcement departments
to establish evaluation criterion for on-road high-emitting vehicles, detected by the RSS.

Keywords: optical remote sensing system; emission data analysis; self-adaptive clustering database;
automatic high-emitting recognition

1. Introduction

Vehicle emission are a major factor in urban air pollution, and car ownership continuously increases
every year [1]. Thus, it is essential that we use available measures to monitor and control vehicle
emissions. Generally, these measures consist of chassis and engine dynamometer tests, road-tunnel
measurements, portable emission measurement systems (PEMS), plume chasing measurements,
and optical remote sensing systems (RSSs). Chassis and engine dynamometer testing cannot reflect
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the real emission levels in on-road driving conditions [2], and road-tunnel methods are subject to
geographical and environmental conditions [3]. PEMS and plume chasing measurement can precisely
determine vehicle emissions, but PEMS take considerable time to install and uninstall these systems
to transfer them between vehicles, and plume chasing measurements limit the speed and minimum
distance for safety; these approaches are not suitable for monitoring a large number of vehicles.
Further, their high price must be taken into consideration [4,5]. RSSs adopt non-dispersive infrared
technology to detect CO, CO2, HC, and they use middle-infrared laser spectrum technology to detect
NO; thus, RSSs can be used to perform non-contact on-road measurements [6]. An RSS can be installed
on any road, rendering it a feasible and real-time measurement system for law enforcement departments
to detect on-road high-emitting vehicles, where it is not viable to use the other three methods.

Many researchers have conducted studies with RSSs. Stedman and Bishop, who invented and
developed it for a series of studies, were the pioneers of the RSS [7]. Kang et al. proposed a two-step
location strategy using both, depth-first searching and greedy strategy, to find the minimum set of
roads with traffic emission monitors, based on the digraph modeled from the traffic network [8].
Huang et al. researched the mechanism, applications, as well as a case study of RSS from Hong Kong.
Their studies showed that the accuracy and number of vehicles affected by remote sensing screening
programs were highly dependent on the cut-points, and that using fixed conservative cut-points in
absolute concentrations (% or ppm) may be inappropriate [9]. Bernard et al. carried out a lot of research
on RSS in Europe, and they used a laboratory limit to distinguish high-emitting vehicles [10,11].
Zhang et al. used a long short-term memory (LSTM) network to forecast vehicle emissions using
multi-day observations by an RSS [12]. Even though many studies have been performed in different
research fields using RSSs [13], little research has been carried out to automatically detect on-road
high-emitting vehicles using this technology.

Usually, high-emitting vehicles and low-emitting vehicles are classified by the fixed cut-off

concentrations of CO, HC, and NO. However, the set values for these cut-points lack a scientific
basis [14]. RSS measurements are highly sensitive to multiple environmental factors, such as
geographical conditions, meteorological conditions, air quality, wind, humidity, temperature, and so
on, so the cut-off points between high-emitting and low-emitting vehicles are variable among different
sites, times, and RSS equipment. To solve the above problem, we propose a novel adaptive method
in this paper to establish cut-points and recognize high-emitting vehicles quickly and automatically.
The system combines data analysis with clustering and classification methods from machine learning,
and attempt to apply these methods to remote sensing monitoring of on-road high-emitting vehicles.

Firstly, 192,097 vehicle emission datasets, comprising CO, HC, and NO concentrations were
collected by RSSs for 8 days. Secondly, we used three-dimensional and histogram statistics to analyze
emission relationships. Secondly, an adaptive clustering algorithm was developed to rapidly label and
rapidly divide the most recent 10,000 emission datasets into different high-emitting or low-emitting
zones. Finally, new vehicles passing through the RSS were automatically and quickly classified into
the corresponding zone, using a cluster database and nearest-neighbor classifier.

The core idea of our proposed algorithm is adaptive clustering. In general, there are five types of
clustering methods in unsupervised learning: hierarchical-based clustering, density-based clustering,
grid-based clustering, model-based clustering, and partition-based clustering. Hierarchical-based
clustering generally includes Balanced Iterative Reducing and Clustering using Hierarchies
(BIRCH) [15], Clustering Using REpresentatives (CURE) [16], RObust Clustering using linKs
(ROCK) [17], and Chameleon [18]. The datasets are aggregated (bottom-up) or divided (up-bottom) into
a series of nested subsets to form a tree structure. The hierarchical method has two major drawbacks;
one is its high time-complexity. The second is that, once a mistake is made in one step, all subsequent
steps will fail because of the inner greedy algorithm. Density-based clustering, which includes
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [19], Ordering Points To
Identify the Clustering Structure (OPTICS) [20], Distribution-Based Clustering of Large Spatial
Databases (DBCLASD) [21], and DENsity-based CLUstEring (DENCLUE) [22], can divide datasets into
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arbitrary shapes by their regions of density, connectivity, and boundary, but it is extremely sensitive
to the two initial parameters. Grid-based clustering divides the data space into grids and computes
the density of each grid in order to identify high-density grids, and then adjacent high-density grids
are integrated to become a cluster. Wave-Cluster [23] and STtatistical INfromation Grid (STING) [24]
are typical examples of this clustering method. Model-based clustering optimizes the fit between the
given data and the assumed model, which is based on statistics or neural network. The Gaussian
Mixture Model (GMM) [25] and Self-Organizing Maps (SOM) [26] are representative of these two types
of models. Partition-based clustering iteratively relocates datasets with a heuristic algorithm until
optimization is achieved. There are many partitioning algorithms, such as K-Means, K-Means++ [27],
kernel K-Means [28], K-Medoids [29], K-Modes [30], and Fuzzy C-means (FCM) [31]. K-Means++ and
K-Medoids are used to restrain the sensitivity of the initial K values and outliers. K-modes and kernel
K-means can be used in categorical or non-convex data, which traditional K-means are unable to do.
FCM is a soft-threshold clustering method, compared with the hard-threshold of K-means.

The RSS in this study includes, fast and real-time features, as well as a large number of measured
concentrations. Given the above advantages and disadvantages of the methods, our proposed approach
applies a partition-based method. The most typical partition-based method, called K-means, is efficient
for large datasets and has low time and space demands. However, K-means is sensitive to outliers
and the selection of the initial K values. The adaptive method, called AFR-OHV was proposed in this
paper to solve these two problems.

The remaining content in this paper is organized as follows. In Section 2, the emission datasets of
the RSS are analyzed and our proposed method is introduced in detail. The experimental results and
discussion are provided in Section 3. The paper is concluded in the last section.

2. Preliminaries

2.1. Emission Data Collection

The emission data were collected by an Optical Remote Sensing System (RSS) for 8 days from
December 2018 to January 2019 on Xueyuan Road, Shijiazhuang City, Hopei Prov, China, Yangqiao
Road, Hefei City, Anhui Prov, China, and Xincun Road, Zibo City, Shandong Prov, China respectively.
The Optical Remote Sensing System, shown in Figure 1, consists of vertical remote sensing hosts,
a velocity-measuring part, a vehicle license plate recognition part, an environmental monitoring part,
an industrial personal computer (IPC), an LED display, and retroreflective sheeting. The advantage
of a vertical RSS, compared with a road-side RSS, is that the monitoring of vehicles in a single lane
is not disturbed by other vehicles simultaneously passing through other lanes, which can block the
measurement light path when using road-side RSSs. Non-dispersion infrared technology is used to
detect the concentration of CO, CO2, HC, and middle-infrared laser spectrum technology is used to
detect the concentration of NO by a vertical remote sensing host. When a vehicle passes through the
vertical remote sensing host, the concentration of each emission gas in the exhaust plume is measured
by the attenuation of light intensity, as defined by the Beer-Lambert Law [32],

I(λ) = I0(λ) exp(−δcL) (1)

where I0(λ) and I(λ) are the initial and received light intensity, δ is the molecular absorption coefficient,
c is the concentration of a particular gas, L is the absorption beam path and λ is the wavelength.

In the velocity-measuring part, the radar and laser detection technology measure the vehicle
speed, and acceleration, respectively. A camera, a video capture card, and license plate automatic
recognition software are integrated into the vehicle license plate recognition part. The temperature,
relative humidity, wind speed, wind direction, atmospheric pressure, and gradient are obtained by
the environmental monitoring part. The data collected by all sensors are uploaded to an industrial
personal computer (IPC) for processing, so that on-road high-emitting vehicles can be recognized
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automatically. In addition, the license plate number, vehicle speed, and emission detection results are
shown by the LED display in real time.
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Figure 1. The optical remote sensing system for detecting on-road high-emitting vehicles.

2.2. Collected Data Analysis

The 192,097 emission datasets, which were collected by the IPC in the RSS, include the percentage
concentration of CO, CO2, HC, and NO, as well as the vehicle speed, acceleration, and the gradient.
Since the detection of on-road high-emitting vehicles is related to the percentage concentration of
CO, HC, NO and vehicle specific power (VSP), three-dimensional and histogram statistics were adopted
to analyze the relationships between these four parameters, as shown in Figures 2 and 3. VSP is
calculated by the IPCs by the follow Equation [33],

VSP = v× [a× (1.1 + 9.8× θ)+0.132]+0.000302× v3 (2)

where v is vehicle speed, a is vehicle acceleration and θ is the gradient.
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Figure 3. The histogram of vehicle specific power (VSP) and three main types of emissions collected in
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Analysis of the data distribution in Figures 2 and 3, reveals several emission relationships:

1. Few points fall into the zone in which the concentrations of all three emission gases are very high,
as shown in Figure 2.

2. According to the U.S National Environmental Protection Agency (EPA), remote sensing data are
valid for VSP ranges of 0–20 kW/t [34]; otherwise, the concentrations of CO and HC are likely to
have abnormally high values. Figure 3a shows the VSP values in our remote sensing datasets are
mostly within the valid range, and the data out of this range were eliminated and deemed invalid.

3. The probability density function that fits the emission datasets is represented by the solid red
line in Figure 3b–d. This fit indicates that the NO and HC emission data do not follow a normal
distribution, while the CO emission data approximately fit an exponential distribution.

4. Most of the emission datasets are located in a concentration zone, that is marked between two
boundaries denoted by the red dashed lines in Figure 3b–d. At both ends of this concentration
zone, the number of vehicles has a very significant downward trend.

The purpose of our data analysis is to identify the relationships in the emission data collected by the
RSS, so that we can improve the method, and quickly and adaptively recognize high-emitting vehicles.
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2.3. Data Quality Consideration

To ensure real-time detection of a high emitting vehicle has been performed correctly, the assessment
of data quality is based on a comprehensive reference to EPA [34], Hong Kong Transient Emission Test
(HKTET) [35], and local standards in Anhui Prov, China, including the following:

1. Monitoring interval: The interval between each vehicle passing the RSS is not less than 1 s, and the
monitoring results of the two vehicles passing the RSS time less than 1 s are regarded as invalid.

2. Environmental conditions: The wind speed of the monitoring site shall not exceed 5 m/s;
the ambient temperature of the monitoring site shall be in the range of 0–45◦; and the relative
humidity of the monitoring site shall be less than 80%.

3. Vehicle condition: The VSP, speed and acceleration of the monitored vehicle must be in the range
of 0–20 kW/t, 0–90 km/s, and −5~3 km/s/h respectively.

4. CO2 concentration: The CO2 concentration of monitored vehicle should be maintained at 12–16%.

If any of the above conditions are not met, the corresponding monitoring data in our RSS is
considered invalid.

3. Methods

This paper proposes an automatic and fast recognition method that detects on-road high-emitting
vehicles, by using the above emission relationships. The proposed method is described in Figure 4.
The training dataset X ⊂ Rn×d is loaded and updated for every n new data from the sampling dataset
D ⊂ Rm×d, using the automatic boundary detection (ABD) and initial K-center determination (IKD)
methods, in order to determine the initial positions of the K-points. After that, the training dataset
is normalized to maintain the same weights of different emission gases and clustered by K-medoids.
Then, different clusters are labeled and defined. Also, the dataset, label “1”, is extracted to update
the cut-points between high-emitting and low-emitting zones of different emission gases. The above
processes construct the cluster database in our method, and the outputs, Xtrain and Ltrain, are inputs
to the nearest-neighbor classifier to complete automatic and fast recognition of the testing dataset.
The specific sub-algorithms are described in the next subsection.
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3.1. Automatic Boundary Detection

Firstly, automatic boundary detection (ABD) is proposed in this paper, in order to improve the
adaptability of the high-emitting recognition algorithm. ABD is detailed in Algorithm 1. It loads the
most recent n datasets into the database of the IPC. The choice of the n value, and tests to optimize the
clustering speed, are discussed in the experimental section.
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Because the concentrations of NO, HC, and CO emissions are the focus of this paper,
the characteristic dimension of the datasets is 3. Our method is also suitable for datasets with high
feature dimensions owing to the advantages of partition-based clustering. In Algorithm 1, the ceil(x),
max(X), and histogram(X, δ) call library functions that round up the value x, take the maximum
of the array X, and calculate the histogram of the array X and divide it into δ equal intervals, respectively.

Algorithm 1. ABD Algorithm

Input: D= {x1, x2, . . . , xm}: m 3-dimensional emission datasets; xi1, xi2, xi3: the concentrations of NO, HC, CO
n: the number of datasets that can be loaded in the main memory
Output: {δ1, δ2, δ3}: the max concentration of NO, HC, CO;
{Xmax1, Xmax2, Xmax3}: the upper boundary values of NO, HC, CO;
{Xmin1, Xmin2, Xmin3}: the lower boundary values of NO, HC, CO;
1: load X= {xm−n+1, xm−n+2, . . . , xm

}
from D= {x1, x2, . . . , xm}

2: for j = 1 to 3 do
3: for i =1 to n do
4: δ j= ceil(max(Xi j))

5: Y j = histogram
(
Xi j, δ j

)
6: end for
7: for i = 1 to δ j−1 do
8: Zi j = Yi j −Y(i+1) j
9: end for
10: if j ≤ 2, then
11: Xmax( j) = argmax

1≤i≤δ j−1
Zi j(Xi j)

12: Xmin( j) = argmin
1≤i≤δ j−1

Zi j(Xi j)

13: else
14: Xmax( j) = argmax

100≤i≤δ j−1
Zi j(Xi j)

15: Xmin( j) = 0
16: end if
17: end for

Figure 3b–d show an example of the results computed by Algorithm 1, with n representing
the maximum number of samples. The automatic detection boundaries are indicated by the red
dotted lines.

3.2. Initial K-Center Determination

After the maximum and boundary concentrations of each emission gas are established,
the proposed method applies the initial K-center determination algorithm, which is detailed in i
Algorithm 2.

The IKD algorithm first calculates the center values of the high- and low-emission zones of
each gas, and then it forms matrix A, which contains all the center values. At the end of IKD, the
function bitget(i, 1 : 3) is adopted to return a binary value of i from low to high, to automatically
generate the initial k center points. Since the ABD and IKD methods are continuous calculation
processes, we combined them into a single process termed automatic detection of initial k-center (ADIK).
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Algorithm 2. IKD Algorithm

Input: δ1, δ2, δ3: the max concentration of NO, HC, CO
Xmax1, Xmax2, Xmax3: the upper-boundary values of NO, HC, CO
Xmin1, Xmin2, Xmin3: the lower-boundary values of NO, HC, CO.
Output: K = {u1, u2, . . . , uk}: k 3-dimensional initial points
1: for j = 1 to 3 do

2: Xlow( j) =
Xmax( j)+Xmin( j)

2

3: Xhigh( j) =
Xmax( j)+δ j

2
4: end for

5: define matrix A =

[
Xlow1 Xlow2 Xlow3
Xhigh1 Xhigh2 Xhigh3

]
6: for i = 1 to k do
7: ε = bitget(i− 1, 1 : 3) + 1
8: ui = (A(ε(1), 1), A(ε(2), 2), A(ε(3), 3))
9: end for

3.3. Normalization K-Medoids

By running the ADIK algorithms, we acquire the initial positions of k center points. To maintain the
same weighting of the NO, HC, and CO emission data, a normalization method is adopted as follows,

Xnorm(i j) =
δnorm

δ j
Xi j (3)

Knorm(oj) =
δnorm

δ j
Koj (4)

where i = 1, 2, . . . , n, j = 1, 2, 3, and o = 1, 2, . . . , k.
Then K-medoids are used to cluster the emission datasets, as described in this subsection.

The difference between K-means and K-medoids is that the central point uk is selected in different ways,

uk−means =
1

Nk

∑
xi∈Dk

xi (5)

uk−mediods = argmin
xi∈Dk

∑
x j∈Dk

‖x j − xi‖2 (6)

where Dk is the dataset of class k. Compared with K-means, the advantage of using K-medoids to
select the central point is that it can effectively eliminate the influence of outliers on the clustering
results, and it also increases the total running time of the algorithm. The detailed calculation process of
K-medoids is shown in Algorithm 3.

The function repmat(A, n, m) returns an array containing n×m copies of A in the row and column
dimensions. The running time of Algorithm 3 largely depends on the size of the clustering datasets
and the initial positions of the k center points, which are shown in the experimental section.
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Algorithm 3. K-Medoids algorithm

Input: Xnorm= {x1, x2, . . . , xn}: n 3D normalized emission datasets extracted from the database D
Knorm = {u1, u2, . . . , uk}: k normalized initial points
ε- convergence threshold
Output: K′ =

{
u′1, u′2, . . . , u′k

}
: k 3-dimensional final K points

B = {b1, b2, . . . , bn}—indicates the class to which xn belongs;
Iter: iterations of algorithm
1: for Iter = 1 to 100 do
2: for i = 1 to n do
3: dist = ‖repmat(Xnorm(:, i), 1, k) −Knorm‖2
4: [ ∼, index] = min(dist)
5: B(i) = index
6: end for
7: for i =1 to k do
8: X = Xnorm(:, f ind(B == i))
9: N = size(X, 2)
10: for j =1 to N do
11: totaldist( j) = sum(‖X −X(:, j) ∗ ones(1, N)‖2)

12: end for
13: [ ∼, mindex] = min(totaldist)
14: K′(:, i) = X(:, minindex)
15: end for
16: if ‖K′ −Knorm‖ ≤ ε

17: break
18: end if
19: Knorm = K′

20: end for

3.4. Label and Definition

After clustering is finished, different clusters of emission datasets can be labeled by the formula,

Label = B× (1 : k)T (7)

where B = {b1k, b2k, . . . , bnk|bnk ∈ {0 , 1} } is as described in the above subsection.
The unlabeled samples in the training datasets are transformed into labeled samples by this

method. The labels and definitions of the results are shown in Table 1.

Table 1. The labels and definitions of different k categories.

ki
NO HC CO

Definition
High Low High Low High Low

k1 0 0 0 0 0 0 No Excessive Emissions

k2 1 0 0 0 0 0 Excessive NO

k3 0 0 1 0 0 0 Excessive HC

k4 1 0 1 0 0 0 Excessive NO and HC

k5 0 0 0 0 1 0 Excessive CO

k6 1 0 0 0 1 0 Excessive NO and CO

k7 0 0 1 0 1 0 Excessive HC and CO

k8 1 0 1 0 1 0 Excessive NO, HC, and CO
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3.5. Nearest Neighbor Classifier

Once the clustered datasets have been established and labeled, the K-NN algorithm, which is
shown in Algorithm 4, is applied to rapidly detect high-emitting vehicles.

Algorithm 4. K-NN algorithm

Input: Xtrain = Xnorm = {x1, x2, . . . , xn}—n 3-dimensional training emission datasets
Xtest= {t1, t2, . . . , tp

}
—m 3-dimensional testing emission datasets

Ltrain = {l1, l2, . . . , ln}—the labels of training emission datasets
k—initial parameters of K-NN
Output: Ltest =

{
c1, c2, . . . , cp

}
—the labels of testing emission datasets

1: for i = 1 to p do
2: di f f = repmat(Xtest(i), [n, 1]) −Xtrain

3: dist =

√
3∑

j=1
di f f ( j)2

4: [Xsort, IX] = sort(dist)
5: totallab = Ltrain(IX(1 : k))
6: Ltest(i) = mode(totallab)
7: end for

K-NN calculates the Euclidean distance between the testing sample and all training samples,
and then the k training samples, closest to the test sample, are selected. The value that appears
most frequently in the labels, corresponding to k training samples, is regarded as the label of the
testing sample.

3.6. Update Cut-Points of Excessive Emissions

As the dataset labeled “1” is defined as a “No Excessive Emissions” zone, it can be extracted to
update the cut-points that define high-emitting and low-emitting zones. In the approach proposed
in this paper, the maximum concentrations of different emissions gases, which are regarded as
the cut-points, are calculated in the dataset labeled “1”, and they are updated for every n newest
input dataset.

4. Experiments and Discussion

In order to verify the advantages of the proposed method, we performed several experiments,
which are described in this section. All experiments were conducted on a Windows10-64bit operation
system with an Inter I5-7300U 2.71 Hz CPU and 8 GB RAM.

4.1. Experiment to Compare Clustering Methods

The performance of our proposed method was tested in the first experiment, which entailed
the qualitative and quantitative analyses to compare K-means, K-medoids, and ADIK+K-means.
All clustering processes were performed 30 times, and the average results are reported in Table 2.
The clustering process, with the smallest total squared distance, was used as the sample for the
qualitative analysis, which is shown in Figure 5 (emissions data were normalized).
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Table 2. The performance test of different clustering algorithms.

Emission
Dataset Proposed Algorithm ADIK + K-Means K-Medoids K-Means

Magnitude Time (s) DBI DVI Time (s) DBI DVI Time (s) DBI DVI Time (s) DBI DVI

5000 2.62 ± 0.44 19.68 ± 3.14 0.0102 ± 0.0013 2.16 ± 0.51 27.05 ± 2.32 0.0054 ± 0.0009 2.97 ± 1.54 17.82 ± 9.84 0.0039 ± 0.0014 2.73 ± 1.54 21.84 ± 13.37 0.0028 ± 0.0009

8000 4.47± 0.40 29.51 ± 4.04 0.0027 ± 0.0005 2.50 ± 0.33 42.83 ± 3.47 0.0028 ± 0.0008 3.79 ± 1.78 37.68 ± 14.55 0.0028 ± 0.0004 3.09 ± 1.31 52.57 ± 17.38 0.0019 ± 0.0003

10,000 4.68 ± 1.39 32.96 ± 4.24 0.0045 ± 0.0011 2.66 ± 0.31 44.51 ± 4.26 0.0028 ± 0.0010 5.39 ± 1.93 44.38 ± 16.79 0.0031 ± 0.0006 4.07 ± 1.71 55.84 ± 20.77 0.0017 ± 0.0005

20,000 15.83 ± 2.45 34.30 ± 3.25 0.0025 ± 0.0006 3.30 ± 0.74 48.18 ± 4.96 0.0030 ± 0.0009 17.54 ± 3.18 52.94 ± 23.18 0.0039 ± 0.0007 5.67 ± 1.21 61.29 ± 21.23 0.0028 ± 0.0008

30,000 45.36 ± 7.32 36.95 ± 3.71 0.0028 ± 0.0009 3.93 ± 0.95 53.49 ± 5.84 0.0018 ± 0.0005 51.28 ± 6.49 60.17 ± 20.62 0.0027 ± 0.0005 6.29 ± 1.57 67.40 ± 19.83 0.0018 ± 0.0004

40,000 91.60 ± 12.03 41.85 ± 4.73 0.0029 ± 0.0007 5.49 ± 1.47 56.81 ± 5.07 0.0023 ± 0.0005 107.45 ± 10.39 64.73 ± 24.25 0.0022 ± 0.0004 6.98 ± 1.81 70.72 ± 18.46 0.0016 ± 0.0003

50,000 110.36 ± 19.88 49.61 ± 4.52 0.0038 ± 0.0010 7.41 ± 1.83 60.03 ± 5.92 0.0027 ± 0.0007 125.81 ± 14.84 68.35 ± 23.49 0.0028 ± 0.0006 8.47 ± 2.03 76.93 ± 20.32 0.0019 ± 0.0003
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By comparing the clustering results in Figure 5a–d, we found that our method effectively solved
the problem of selecting the initial center of clustering, and the 60,000 datasets were divided into our
defined emission zones. The outliers that influence K-means were eliminated by K-medoids, as shown
in Figure 5c,d, and the proposed method obtained the best clustering results of the four tested methods.

Then the effectiveness of the clustering algorithms was tested using three types of qualitative
indicators: The running time of the algorithm (TIME), the Davies Bouldin Index (DBI), and the Dunn
Validity Index (DVI) [36,37],

DBI =
1
k

k∑
i=1

max
j,i

(
avg(Ci) + avg(C j)

dcen(ui, u j)
) (8)

DVI = min
1≤i≤k

min
j,i

(
dmin(Ci, C j)

max
1≤l≤k

diam(Cl)
)

 (9)

in which:
avg(C) =

2
|C|(|C| − 1)

∑
1≤i< j≤|C|

dist(xi, x j) (10)

dcen(Ci, C j) = dist(ui, u j) (11)

dmin(Ci, C j) = minxi∈Ci,x j∈C jdist(xi, x j) (12)

diam(C) = max1≤i< j≤|C|dist(xi, x j) (13)
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where avg(C) is the mean distance between samples in cluster C; dcen(Ci, C j) is the distance between
the center points of cluster Ci and C j; u = 1

|C|
∑

1≤i≤|C|
xi, which is the center point of C; dmin(Ci, C j) is

the distance between the nearest samples of clusters, Ci and C j; and diam(C) is the longest distance
between samples in cluster C.

The smaller the TIME value, the higher the efficiency of the algorithm; the smaller the DBI and
the larger the DVI, the better the clustering performance. As shown in Table 2, the ADIK method was
adopted to rapidly determine the initial K-center, which was able to effectively reduce the convergence
speed of the clustering method, reduce the DBI, and increase the DVI. The K-medoids approach
eliminated the influence of outliers, and its DBI and DVI were better than those of the K-means method.

For the next step, the size of the clustering dataset and the clustering time were comprehensively
considered. We chose n = 10,000 as the newest input training dataset. This dataset sizes not only
ensured that the data characteristics were retained, but also allowed real-time updates of the RSS data.
The average running time was less than 5 s, which satisfied the requirements for adaptability and
real-time performance.

4.2. Performance Evaluation of the Nearest-Neighbor Classifier

After the clustering emission database was established, the performance of our classifier was
tested. The qualitative and quantitative analytical methods, from experiment A, were adopted for this
experiment as well.

The most recent 10,000 emission datasets, collected by the RSS were used as the training sets,
and the training labels were the emission recognition results of our clustering database. The testing
sets were accumulated by monitoring the emission dataset of each new vehicle that passed through
the RSS, and the recognition results of 10,000 testing sets were compared with the validation sets,
obtained by the clustering algorithm in the experiment, as shown in Figure 6.
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The results of the quantitative analysis in Figure 6 show that our classifier obtained a better
recognition result. Then, Precision (PRE) and Recall (REC) were used to test the performance of our
classifier (Table 3). The formulas for these two indicators are,

PRE =
TP

TP + FP
(14)

REC =
TP

TP + FN
(15)

where TP, FP, and FN denote true positive, false positive, and false negative, respectively.
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Table 3. The performance test results of our classifier.

Testing
Dataset Dataset of Day I Dataset of Day 2 Dataset of Day 3 Dataset of Day 4

Categories PRE REC AUC PRE REC AUC PRE REC AUC PRE REC AUC

k1 0.9980 0.9898 0.9929 0.9820 0.9979 0.9740 0.9994 0.9857 0.9919 0.9983 0.9816 0.9888

k2 0.9802 0.9682 0.9840 0.9688 0.9848 0.9914 0.9327 0.9945 0.9950 0.8982 0.9862 0.9861

k3 0.9688 0.9963 0.9360 0.9914 0.9851 0.9911 0.9430 0.9991 0.9852 0.9667 0.9937 0.9959

k4 0.9368 0.8750 0.9962 0.9395 0.9983 0.9994 0.9861 0.7634 0.9917 0.9707 0.7133 0.8740

k5 0.8965 0.9982 0.9958 0.9884 0.9440 0.9916 0.9088 0.9966 0.9964 0.8504 1.0000 0.9942

k6 1.0000 0.6667 0.9916 1.0000 0.7476 0.9457 1.0000 0.1667 0.9935 1.0000 0.6666 0.8868

k7 1.0000 0.5556 0.8837 0.9800 0.7147 0.9983 1.0000 0.6000 0.8536 1.0000 0.4000 0.9980

Because the number of categories in our classified samples was unbalanced, the true positive
rate (TPR) and false positive rate (FPR) were critical performance indicators. Therefore, the receiver
operator characteristic (ROC) [38] based on these two indicators was adopted as shown in Figure 7.
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Then, the area under the curve (AUC) [39] was calculated to test the final performance of the
classifier, and the results are shown in Table 3. By calculating the various performance indexes for the
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four sample datasets collected at different times and places, we found that our classifier achieved good
results. Here, we paid more attention to the evaluation indicators for category, k1 because k1 represents
vehicles that do not exceed the standard, while all other categories represent vehicles that exceed the
standard. The results of this quantitative experiment show that our classifier could accurately recognize
the non-exceeding category, k1 and the exceeding categories k2 ∼ k5, and it achieved an adequate
recognition rate for the emission-exceeding categories, k6 and k7. The reason for this difference in
classification performance might be the small sample size for k6 and k7. Additionally, the results of
tens of thousands of experiments show that the average recognition speed of our classifier was less
than 0.1 s per detected vehicle, which meets the requirements for fast and automatic recognition.

When a new vehicle passes through the RSS, the classifier in the system will automatically
distribute the detection result of the new vehicle into a category, according to the trained model,
and the LED display will rapidly display the detection results. At the same time, the system would
add count information to the database of monitoring results, and the information index is the license
plate number of the new recognized car. For example, if a new car were to be assigned to category k4,
then the counts of excessive NO and HC emissions will increase once they are added to the database of
detection results. If the total counts of this car exceed the limit, the system will blacklist the license
plate number of this car and upload its information to inform law enforcement authorities.

The advantage of this processing method is that it eliminates some of the factors that might affect
a single instantaneous monitoring system. The potential effects might include, noise from the optical
equipment and the external environment and sudden acceleration or deceleration of a vehicle.

4.3. The Experiment for Detection Vehicles Exceeding the Standard Rate

In the experiment reported in this sub-section, the automatic and fast recognition method for
detecting on-road high-emitting vehicles was tested for cases, in which the standard rate was exceeded.
Six experimental datasets, obtained from two different geographical locations, Shijiazhuang and Hefei,
were collected by the RSSs at different times, and each dataset contained 10,000 telemetric data points.
The results of the experiment are shown in Table 4, which shows that the average rates of standards
being exceeded and not exceeded were 27.69% and 72.31%, and the average rates of excessive NO, HC,
and CO emissions were 10.53%, 12.98%, and 7.03% respectively.

Table 4. The results of the experiment for detecting the rate of exceeded emissions.

Categories

Datasets
Loc. I 1 Loc. I 2 Loc. I 3 Loc. II 1 Loc. II 2 Loc. II 3 Avg

Excessive NO 7.92% 8.17% 7.25% 7.25% 7.87% 8.26% 7.79%

Excessive HC 10.37% 10.90% 9.39% 11.09% 8.94% 10.83% 10.25%

Excessive CO 7.70% 5.64% 8.07% 5.80% 7.50% 6.29% 6.83%

Excessive NO and HC 2.64% 2.88% 2.33% 2.79% 2.65% 2.47% 2.63%

Excessive NO and CO 0.15% 0.06% 0.14% 0.06% 0.11% 0.07% 0.10%

Excessive HC and CO 0.11% 0.08% 0.11% 0.05% 0.07% 0.12% 0.09%

Excessive NO, HC, and CO 0.00% 0.01% 0.00% 0.00% 0.02% 0.00% 0.01%

Excessive 28.89% 27.74% 27.29% 27.04% 27.16% 28.04% 27.69%

No Excessive 71.11% 72.26% 72.71% 72.96% 72.84% 71.96% 72.31%

4.4. The Experiment for Self-Adaptive Cut-Points

Experimental datasets were collected from three different geographical locations, which had
been described in Section 2.1, for three days. As the cut-off points in the system were updated every
10,000 new datasets, we took the average of the cut-points in a day. The experimental results for
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self-adaptive cut-off points are shown in Table 5. We can find that the cut-off points in the table change
with time and location, which proves that our proposed method has good adaptability.

Table 5. The performance test results of our classifier.

Locations

Cut-Points Dataset of Day I Dataset of Day 2 Dataset of Day 3

CO HC NO CO HC NO CO HC NO

Shijiazhuang, Hebei 1.2047% 240
ppm

203
ppm 1.2549% 246

ppm
205

ppm 1.2273% 242
ppm

202
ppm

Hefei, Anhui 1.5472% 258
ppm

222
ppm 1.5194% 253

ppm
215

ppm 1.5249% 255
ppm

220
ppm

Zibo, Shandong 1.1122% 211
ppm

193
ppm 1.2371% 216

ppm
190

ppm 1.1844% 214
ppm

193
ppm

It can be seen from the results in Table 5 that the cut-off points in our system do not change much
with time, but with the change in geographical locations, a more obvious change takes place. As this
experiment was done only verify to the adaptability of our proposed method, the relationships between
cut-points and time, locations, outside environment, and different equipment need to be evaluated
with more experimental datasets, which will be further demonstrated in future research work.

5. Conclusions

This paper proposes a method for the automatic and fast recognition of on-road high-emitting
vehicles, called AFR-OHV. The first step in the AFR-OHV method is to adaptively determine the
initial clustering center, according to the distribution characteristics of the most recently input RSS
datasets, and to counteract the effects of environmental change to some extent. The second step in
AFR-OHV is the normalization of the K-medoids clustering of the RSS datasets. After that, the RSS
datasets are labeled and divided into different defined emission zones to construct a clustering database,
and then the cut-points are updated automatically. The last step is to recognize high-emitting vehicles,
which pass through RSS by a nearest-neighbor classifier, and to update the clustering database.

As reported in the experimental section, the performance of the method was verified using real
data collected by RSS from December 2018 to January 2019 on Xueyuan Road, Shijiazhuang City,
Hopei Prov, China, and Yangqiao Road, Hefei City, Anhui Prov, China. Different clustering methods
were selected for comparison, and the experimental results show that the running time, DBI, and DVI
resulting from our method were superior to those obtained using three other methods, namely, ADIK
+ K-means, K-medoids and K-means. Our classifier also had better performance indexes, i.e., PRE,
REC, and AUC. In the last step, the rates of exceeded standards were calculated using multiple
emission datasets collected by the RSS in two different geographical locations. The calculated rates
provide reference values for law enforcement departments to establish evaluation criteria for on-road
high-emitting vehicles detected by remote sensing systems.

The limitation of this paper’s work is that, when optical remote sensing systems, that are developed
by different research institutions or companies, are used to detect on-road high-emitting vehicles,
the distribution of the emission datasets might be significantly different. In our future work, we will
research transfer learning and meta learning in an aim to improve our learning method. The objective
is to improve the model so that it can be effectively applied to other optical remote sensing systems
after training with a dataset from one set of optical remote sensing systems. In addition, we will
research multi-RSS networking on adjacent streets to further reduce the monitoring error and improve
the recognition accuracy.
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