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Yanfei Chen, Yan Zhang, Kaijin Xu, Xiaowei Xu, Jifang Sheng, Yunqing Qiu and Lanjuan Li*

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine,
Zhejiang University, Hangzhou, China

Since the December 2019 outbreak of coronavirus disease 2019 (COVID-19) in Wuhan,
the infection has spread locally and globally resulting in a pandemic. As the numbers of
confirmed diagnoses and deaths continue to rise, COVID-19 has become the focus of
international public health. COVID-19 is highly contagious, and there is no effective
treatment yet. New treatment strategies are urgently needed to improve the treatment
success rate of severe and critically ill patients. Increasing evidence has shown that a
cytokine storm plays an important role in the progression of COVID-19. The artificial-liver
blood-purification system (ALS) is expected to improve the outcome of the cytokine
storm. In the present study, the levels of cytokines were detected in 12 COVID-19 patients
pre- and post-ALS with promising results. The present study shows promising evidence
that ALS can block the cytokine storm, rapidly remove the inflammatory mediators, and
hopefully, suppress the progression of the disease, thereby providing a new strategy for
the clinical treatment of COVID-19.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) is caused by the new severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The outbreak of COVID-19 was reported in Wuhan, China, in
December 2019. Since then, the infection spread rapidly worldwide. According to the World Health
Organization (WHO) report, there have been 25,118,689 confirmed cases of COVID-19, including
844,312 deaths, up to August 31, 2020. At present, the overall mortality of COVID-19 is about
1.36%–15% (1, 2). According to recent reports, humans can be infected by the SARS-CoV-2 for a
second time. So far, there are no effective treatments available for COVID-19, and the development
of a COVID-19 vaccine is underway.

Mounting evidence suggests that a hyper-inflammatory immune response in critically ill patients
is responsible for acute respiratory distress syndrome (ARDS) and multiorgan failure (3, 4). A
cytokine storm, also called hypercytokinemia, is also an important cause of death in SARS, MERS,
H5N1, and H7N9 infections (3–5). Hence, the timely control of cytokine storms and reduction in
inflammatory cell infiltration in the lungs are key to reducing COVID-19-related deaths (6).
Multiple therapeutic strategies, such as antibody therapies with tocilizumab, sarilumab, and
siltuximab and blood-purification techniques (BPT), including therapeutic plasma exchange
org December 2020 | Volume 11 | Article 5860731
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(TPE), absorption, perfusion, and blood plasma filtration, among
others, might potentially be effective for COVID-19 treatment
(7–10).

The present agents used to modulate the immune response
mainly include glucocorticoids, intravenous immunoglobulin, and
cytokine antagonists (6).However, a largenumberof clinical studies
have shown that corticosteroids exhibit no efficacy in reducing
mortality in the treatment of SARS and MERS. On the
contrary, these delayed virus clearance and resulted in various
complications (11, 12). Furthermore, the intravenous injection of
immunoglobulin or IL-6R-related antibodies also requires further
evaluation (13). Systemic corticosteroid administration has also
been proven ineffective for the treatment of COVID-19. It has been
clearly recognized that immunosuppressionmaybe a double-edged
sword in the treatment of COVID-19 (14). Thus far, only a limited
number of studies have been reported on the use of BPT in the
treatment of COVID-19 patients; although the effectiveness of BPT
hasbeendemonstrated ina few studies, it remains controversial (10,
15–20). TPE was performed in patients with severe COVID-19
infection in three small studies (9, 21, 22). After treatment,
sequential organ failure assessment (SOFA) score; oxygenation
index; lymphocyte count; and serum levels of total bilirubin,
lactate dehydrogenase, ferritin, C-reactive protein, and
interleukin-6 (IL-6) were all decreased, and no adverse reactions
were detected. Due to limited study funding, evaluation of cytokine
clearancewasmostly focused on IL-6 inmost studies. These studies
reported higher fatality rates, and some reported no improvement
in patient mortality rates (23, 24).

The artificial-liver blood-purification system (ALS) consists of
modules for plasma replacement, plasma adsorption, and blood/
plasma filtration, and can effectively remove cytokines from the
blood. This mainly has been used for the treatment of liver failure
and has significantly reduced the mortality of these patients (25).
Investigators have also successfully used ALS to remove cytokines
in the treatment of critically ill H7N9-infected patients (26). Based
on the similar pathological mechanism, it is expected that ALS may
also be useful in the treatment of severe and critically ill COVID-19
patients. Hence, we aimed to verify the therapeutic effect of ALS in
12 COVID-19 patients in this study.
METHODS

The present study included 12 critically ill COVID-19 patients, who
received treatment with ALS from January 15, 2020, to March 31,
Frontiers in Immunology | www.frontiersin.org 2
2020. Each patient’s sex, age, symptoms, complications, and disease
severity were recorded in detail. Written informed consent was
obtained from each patient or a legally authorized representative.
The present study was approved by the institutional review board of
the FirstAffiliatedHospital, School ofMedicine, ZhejiangUniversity.

Each patient underwent three consecutive courses of ALS, and
peripheral blood was collected before and after each course (pre-1st
ALS, post-1st ALS, pre-2nd ALS, post-2nd ALS, pre-3rd ALS, and
post-3rd ALS). The mode we adopted here is mainly plasma
exchange and hemoperfusion. Each hemoperfusion lasted for 3 h,
and theamountofplasmaexchangevolumewasabout2000±50mL.
The details are shown inTable 1. The venous blood was centrifuged
at 3000 rpm for 5 min and then stored at -80°C until assayed.

The magnetic bead–based multiplex immunoassays were
developed using the Bio-Plex Pro™ Human 48-plex Cytokine
Screening Panel, according to the manufacturer’s instructions,
using the Bio-Plex 200 suspension array system (Bio-Rad,
Hercules, CA, USA) in a BSL-2 laboratory. The primary data
were analyzed using the Bio-Plex Manager Software, version
6.1.1 (Bio-Rad, Hercules, CA, USA).

Statistical Analysis
All statistical analyses were performed using GraphPad Prism 5
software (GraphPad Software, SanDiego,CA,USA), SPSS20.0 (IBM,
Armonk, NY, USA), and R-3.6.3 (available from: http://www.r-
project.org/). The results of the cytokines were expressed as
medians. The paired serum cytokine results generated at different
time points for the same patient were analyzed using the Wilcoxon
signed rank test. Other continuous variables were expressed as the
mean and standard deviation (SD) or were transformed as grade
variables for clinical scale estimation. The data between groups were
compared by two-sample t-test or two-paired sample t-test. Grade
variables were expressed as the mean rank. For nonparametric data,
the Friedman and Nemenyi rank sum tests (From R package
PMCMR, Pohlert T, 2014) were used for analyses of Acute
Physiology and Chronic Health Evaluation (APACHE) II,
pneumonia severity index (PSI), and SOFA scores. P<0.05 was
considered to indicate statistical significance.
RESULTS

Patient Information
Clinical data on the 12 patients are presented in Table 2. There
were 10 men and 2 women with a mean age of 62 years (range:
TABLE 1 | ALS therapy mode for 3 consecutive courses.

Group Therapy mode of each ALS Number Duration of each course Interval between each course

1st ALS/2nd ALS/3rd ALS 1st ALS/2nd ALS/3rd ALS 1st ALS-2nd ALS/2nd ALS-3rd ALS

HP group HP/HP/HP 6 3 h/3 h/3 h 21 ± 0.5h/21 ± 0.5h
PE+HP group PE+HP/PE+HP/PE+HP 4 3.5 ± 0.2h/3.5 ± 0.2h/3.5 ± 0.2h 20.5 ± 0.5h/20.5 ± 0.5h
PE group PE/PE/PE 1 1.5 ± 0.2h/1.5 ± 0.2h/1.5 ± 0.2h 22.5 ± 0.5h/22.5 ± 0.5h
PE+HP/HP/HP PE+HP/HP/HP 1 3.5 ± 0.2h/3 h/3 h 20.5 ± 0.5h/21 ± 0.5h
Decemb
PE, plasma exchange; HP, hemoperfusion.
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36–90 years). The patients’ coexisting diseases included
hypertension (9/12), diabetes (3/12), coronary heart disease (1/
12), and arrhythmia (2/12). The incidence of ARDS and renal
dysfunction was 12/12 and 4/12, respectively. All 12 patients
were admitted to the ICU; of these, seven received mechanical
ventilation, and three received extracorporeal membrane
oxygenation (ECMO) treatment.

Cytokine Changes in Serum
Three courses of ALS over three consecutive days were
formulated for each patient. Three pairs of blood samples were
collected before and after ALS from each patient (pre-ALS:
within 1 h before each course of ALS; post-ALS: within 1 h
after each course of ALS); 36 pairs of samples were collected in
total from all 12 patients. To obtain an overall impression of the
therapeutic effect after ALS treatment, we matched data from
COVID-19 patients before and after the 36 courses of ALS for a
paired analysis. The levels of 34 cytokines exhibited significant
changes by paired analysis. Thirty-two cytokines, including IL-6
and TNF-a, were significantly decreased after ALS treatment.
The remaining two cytokines—including HGF and IL-12
(p40)—were significantly upregulated (Figure 1).

To further investigate the trend of cytokines in COVID-19
patients with ALS intervention in detail, we show cytokine levels
at 6 time points (pre-1st ALS vs. post-1st ALS, pre-2nd ALS vs.
post-2nd ALS, pre-3rd ALS vs. post-3rd ALS) in Figure 2. The
three sets of data before and after 3 courses of ALS were analyzed
using paired analysis. Thirty-three of the cytokines exhibited
Frontiers in Immunology | www.frontiersin.org 3
significant changes in response to ALS, which included 31 that
were significantly decreased and two [HGF and IL-12 (p40)] that
were significantly upregulated. The results also confirmed the
therapeutic effect of ALS on removing cytokines. Notably, HGF
was significantly upregulated after each treatment.

By pairing analysis, 15 cytokines were found to be significantly
decreased after the first course of ALS (pre-1st ALS vs. post-1st ALS,
Figure 2), including IL-1b and IFN-g. Among these 15, the levels of
five remained low before the second course (post-1st ALS vs. pre-
2nd ALS). A total of 16 cytokines significantly decreased after the
second course of ALS (pre-2nd ALS vs. post-2nd ALS). In all, the
levels of 20 cytokines, including IL-6 and TNF-a, significantly
decreased after three courses of treatment (pre-1st ALS vs. post-
3rd ALS). These data indicate that ALS treatment significantly
alleviated the cytokine storm.

Clinical Index
Clinical data was recorded at three time points (pre-1st ALS,
post-3rd ALS, 1 week post-3rd ALS) for COVID-19 patients. The
APACHE II, PSI, and SOFA scores were calculated pre-1st ALS
and post-3rd ALS. As shown in Table 3, the APACHE II
(p=0.0031), PSI, and SOFA scores were significantly decreased
after three consecutive days’ treatment with ALS. The APACHE
II (p=0.0015), PSI (p=0.0044), and SOFA (p=0.001) scores were
also decreased significantly 1 week post-3rd ALS.

As shown in Table 4, after three consecutive days’ treatment
with ALS, the patients’ PaO2 (p=0.0263), PaO2/FiO2 (p=0.0003)
increased, and alveolar-arterial oxygen gradient (A-aDO2)
(p=0.0014) decreased, and the difference was statistically
significant. In addition, the patients’ eGFR (mL/min)
(p=0.0350) was elevated. The above results show that ALS
treatment can improve both lung and kidney function.

RBC (p=1.10E-05) and hemoglobin levels (p=3.16E-05)
dropped significantly after three consecutive days’ treatment
with ALS (1012/L). The platelet levels significantly decreased
(p=0.0088), and the D-dimer levels (p=1.23E-03) increased.
DISCUSSION

ARDS is considered to be the leading cause of death in COVID-19
(27). Imbalance between coagulation and inflammation is a
predominant characteristic of ARDS, leading to extreme
inflammatory response and diffuse fibrin deposition in vascular
capillary beds and alveoli (28). Cytokine storms triggered by viral
infections can cause endothelial damage/dysfunction and
dysregulation of coagulation, which consequently alters
microvascular permeability to induce tissue edema and shock,
ultimately resulting in acute lung injury (ALI) and ARDS (29,
30). Therefore, controlling the cytokine storm is critical for
successful COVID-19 treatment (6). In a previous study, we used
ALS to treat H7N9-infected patients and found that ALS can
significantly alleviate the cytokine storm. Hence, we attempted to
use ALS in the treatment of the cytokine storm in critically ill
COVID-19 patients in this study. A total of 32 cytokines were found
to be significantly decreased. ALS treatment could significantly
TABLE 2 | Characteristics of patients treated by ALS.

Characteristics* Patients (n=12)

Age years 62 ± 14.27
Male n% 10(87%)
BMI (kg/m2) 23.90 ± 2.62
Selected presenting signs and symptoms
Fever 10(87%)
Cough 8(66%)
Diarrhea 4(33%)
Shortness of breath 9(75%)
Myalgia 5(42%)
Headache 3(25%)
Bacterial/Fungi infection 3(25%)

Comorbidites
Coronary heart disease 1(8%)
Chronic liver disease 1(8%)
Arrhythmia 2(17%)
Hypertension 9(75%)
Renal dysfunction 4(33%)
Diabetes mellitus 3(25%)

Requiring MV 7(58%)
Requiring ECMO 3(25%)
Drug treated
Ambroxol 10(87%)
Vasopressor 5(42%)
(Adr, NE, Dopamine, Dobutamine)
Antibiotic 11(92%)
Immunogloblin 10(87%)
Glucocorticoids 12(100%)
*Data was collected at the first admission hospital.
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A

B

FIGURE 1 | Serum cytokine levels in COVID-19 patients pre- and post-ALS analyzed through a paired study. Pre-ALS represents the cytokine levels before the
three courses of ALS in the 12 critically ill COVID-19 patients. Post-ALS represents cytokine levels after three courses of ALS in the 12 patients. The changes of
cytokine levels pre- and post-ALS were analyzed by a paired study. In all, 34 of 48 cytokines exhibited significant changes post-ALS. (A) The levels of 32 cytokines
decreased post-ALS by paired studies. (B) The levels of two cytokines increased post-ALS by paired studies. The middle line in the figure is presented as median
values. *P < 0.05, **P < 0.01, ***P < 0.001.
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A

B

FIGURE 2 | Serum cytokine levels in the COVID-19 patients before and after each course of ALS. Six groups representing the cytokine levels pre-1st, post-1st, pre-
2nd, post-2nd, pre-3rd, and post-3rd course of ALS were analyzed. (A) The levels of 31 cytokines decreased post-ALS. (B) The levels of two cytokines increased
post-ALS. The middle line in the figure is presented as median values. *P < 0.05, **P < 0.01.
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alleviate the cytokine storm. The coronavirus infection is primarily
attacked by immune cells, including mast cells (MCs). Activation of
MCs secretes IL-1 familymembers (IL-1, IL-33, IL-6) and TNF (31).
IL-1, IL-6, and TNF are the major cytokines that cause the cytokine
storm, which further aggravates the inflammatory state (31–34). In
our study, we found that the levels of TNF-a and IL-6 significantly
Frontiers in Immunology | www.frontiersin.org 6
decreased after three courses of ALS. The IL-1b level was also
decreased after the first course of ALS.

IP-10 plays an important role in inflammation by recruiting a
variety of cells to the inflammatory site and interacting with the
CXCR3 receptor (35). In animal model studies, the monoclonal
antibody against CXCL-10/IP-10 can improve ALI induced by the
TABLE 3 | Statistical tests and comparison between groups.

Mean Rank Friedman Rank Sum test p-Value of Nemenyi test

Pre-ALS Post-ALS 1 Week Post-ALS Chi-square df p-Value Pre-ALS vs.
Post-ALS

Pre-ALS vs. 1 Week
Post-ALS

Post-ALS vs. 1 Week
Post-ALS

APACHII 2.92 1.58 1.5 15.826 2 3.66E-04 0.0031 0.0015 0.9773
PSI 2.67 1.96 1.38 11.476 2 3.22E-03 0.1921 0.0044 0.326
SOFA 2.79 1.88 1.33 15.268 2 4.84E-04 0.064 0.001 0.38
December 2020 | Volu
Pre-ALS: Data not earlier than 3 days before the first treatment with ALS were selected.
Post-ALS: Data not later than 3 days after the last treatment with ALS were selected.
1 Week Post-ALS: Data 1 week after the last treatment with ALS were selected.
P-values <0.05 are indicated in bold.
TABLE 4 | Clinical characteristics of 12 severe COVID-19 patients pre- and post-ALS.

Pre-ALS(n=12)* Std.(Pre-ALS) Post-ALS(n=12)** Std.(Post-ALS) p(a<0.05)

Respiratory Function
MAP (mmHg) 95.61 10.07 90.60 14.07 0.0701
PaO2 (mmHg) 59.23 10.25 74.76 14.91 0.0263
PaCO2 (mmHg) 33.44 4.20 37.62 3.78 0.0037
FiO2 0.56 0.20 0.42 0.12 –

PaO2/FiO2 (mmHg) 197.27 51.04 229.81 88.32 0.0003
A-aDO2 (mmHg) 390.65 125.81 189.53 59.64 0.0014
Lactin acid (mmol/L) 1.50 0.57 1.98 0.42 0.1362

Blood Rt
WBC (109/L) 9.80 5.15 10.75 3.17 0.2460
RBC (1012/L) 4.20 0.60 3.22 0.66 1.10E-05
Hemoglobin (g/L) 127.92 18.32 97.33 19.62 3.16E-05
Platelet (109/L) 174.00 49.26 115.58 55.21 0.0088
Neurtophil (109/L) 8.73 5.01 9.85 3.14 0.2420
Lymphocyte (109/L) 0.68 0.26 0.82 1.08 0.5314

Coagulation Function
D-Dimer (ug/L FEU) 618.08 470.11 2662.42 1654.97 1.23E-03
INR 1.02 0.07 1.00 0.11 0.8558
PT (s) 12.28 0.82 12.01 1.27 0.8900
APTT (s) 34.01 5.91 31.44 12.80 0.4265
Fibrinogen (g/L) 5.25 0.76 2.70 1.45 0.0012

Biochemical Examination
ALB (g/L) 32.53 4.17 33.11 2.09 0.4357
GLB (g/L) 33.07 10.74 24.40 7.48 0.0372
ALT (U/L) 22.08 9.00 37.25 24.72 0.1042
AST (U/L) 31.25 18.94 29.08 14.14 0.7329
GGT (U/L) 114.92 262.10 64.17 65.30 0.4286
ALP (U/L) 102.83 179.63 52.00 25.65 0.3160
LDH (U/L) 323.42 80.95 312.82 55.23 0.5543
hDBH (U/L) 261.25 63.11 259.36 46.92 0.3222
CK (U/L) 137.75 129.72 135.00 106.79 0.7745
CK-MB (U/L) 21.48 10.88 20.91 4.23 0.4174
Cr (umol/L) 110.08 72.69 81.83 30.04 0.1405
TB (umol/L) 16.06 16.91 25.93 33.11 0.0854
DB (umol/L) 9.68 13.49 20.00 33.28 0.1310
eGFR (ml/min) 72.80 28.31 84.69 29.52 0.0350
me 11 | Artic
*Pre-ALS: Data not earlier than 3 days before the first treatment with ALS were selected.
**Post-ALS: Data not later than 3 days after the last treatment with ALS were selected.
P-values <0.05 are indicated in bold.
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influenza A (H1N1) virus (35). In the present study, it was found
that ALS can significantly reduce the level of chemokine IP-10.
Macrophage colony-stimulating factor (M-CSF) is a chemokine that
can regulate the survival, proliferation, and differentiation of
mononuclear macrophage lines, which is derived from activated
macrophages and endothelial cells (36). Treatment with ALS can
also significantly reduce the levels of M-CSF. Stem cell growth factor
beta (SCGF-b) is an endogenous growth factor that can inhibit bone
marrow inflammation, enhance hematopoietic recovery after bone
marrow suppression, and reverse inflammation (37). The
exhaustion of lymphocytes likely promotes the generation of
SCGF-b. After ALS treatment, the level of SCGF-b significantly
decreased. Hence, it may be necessary to supplement SCGF-b after
ALS treatment, which may increase the level of peripheral blood
lymphocytes and improve the patient’s condition.

To our knowledge, this is first report to show that hepatocyte
growth factor (HGF) can be significantly increased after ALS
treatment. HGF is an interstromal-source pleiotropic growth
factor that can promote cell mitosis, growth, maturation, and
movement and the tissue formation process and induce
angiogenesis when combined with hepatocyte growth factor
receptor. Furthermore, HGF can improve vascular endothelial
permeability and inflammation, protect endothelial cells (38),
and improve the ischemia-reperfusion injury in ALI (39, 40).
Furthermore, ALS treatment can increase HGF levels and may
play a protective role against lung and liver function damage.

In this study, the APACHE II, PSI, and SOFA scores decreased
after three consecutive days’ treatment with ALS. This directly
indicates that ALS treatment can indeed improve the condition
for COVID-19 patients. After 1 week, the above scores continued to
decline. Finally, after three consecutive days’ ALS treatment, the
patients’ PaO2 and PaO2/FiO2 increased and A-aDO2 decreased. In
addition, the patients’ estimated glomerular filtration rate (eGFR)
also improved. The above results showed that treatment with ALS
mainly improved both lung and kidney function.

Although the present study showed that therapeutic strategies
with ALS can significantly reduce a patient’s cytokine levels, the
present study is a nonrandomized clinical trial. Hence, it is difficult
to provide clear evidence to determine whether ALS could reduce
the mortality rate. The immune status of patients of different age
and sex was different (41, 42). Owing to the limited sample size,
further research in the form of large sample, multicenter,
randomized controlled trials is required to clarify the above
problems. In conclusion, the present study provides preliminary
data to support the application of ALS for the treatment of critically
ill COVID-19 patients. We recommend early assessment of
Frontiers in Immunology | www.frontiersin.org 7
COVID-19 patients and timely intervention with ALS to
improve the prognosis.
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