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Review Article

Introduction

There is growing concern that biochemical or cell-based 
high-throughput screening (HTS) assays with only a single, 
simplistic, population-averaged readout may yield hits that 
are relatively poor quality (e.g., in terms of clinical efficacy 
and toxicity for chemical hits, and in terms of physiological 
relevance for genetic perturbations), as compared to pheno-
typic assays.1 In particular, high-content screening (HCS) by 
imaging cell populations has been predicted to offer tremen-
dous promise. HCS enables measuring complex phenotypic 
outcomes that are more closely linked to disease states while 
also providing preliminary, cell-level assessment of certain 
aspects of ADMET during a primary screen. Moreover, pro-
filing methods—measurement of multiple parameters inte-
grated at the level of single cells—can facilitate more 
complex tasks such as target prediction of a drug candidate2,3 
or precise identification of proteins involved in biological 
processes.4

Despite this promise, HCS is generally not used as the 
dominant primary screening modality in industry or aca-
demia. There may be many reasons for this, including long 
assay development times, low throughput of microscopy 

hardware, and the requirement of specialized expertise to 
carry out HCS, although improvements have been made in 
these areas in the past decade. In this article, we focus on the 
information content of HCS experiments; we find that 
although the number of HCS experiments published each 
year continues to grow steadily, the information content lags 
behind. We discuss possible explanations for this, focusing 
on the hypothesis that data analysis customs are to blame.
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Abstract
Target-based high-throughput screening (HTS) has recently been critiqued for its relatively poor yield compared to 
phenotypic screening approaches. One type of phenotypic screening, image-based high-content screening (HCS), has been 
seen as particularly promising.

In this article, we assess whether HCS is as high content as it can be. We analyze HCS publications and find that although 
the number of HCS experiments published each year continues to grow steadily, the information content lags behind. We 
find that a majority of high-content screens published so far (60−80%) made use of only one or two image-based features 
measured from each sample and disregarded the distribution of those features among each cell population. We discuss 
several potential explanations, focusing on the hypothesis that data analysis traditions are to blame. This includes practical 
problems related to managing large and multidimensional HCS data sets as well as the adoption of assay quality statistics 
from HTS to HCS. Both may have led to the simplification or systematic rejection of assays carrying complex and valuable 
phenotypic information.

We predict that advanced data analysis methods that enable full multiparametric data to be harvested for entire cell 
populations will enable HCS to finally reach its potential.
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The Rate of Discoveries Made Using 
HCS Is Increasing

We first wanted to observe the trend in discoveries made 
using HCS throughout time (here, HCS refers only to 
microscopy-based experiments). We used publication 
records as our source, which constrains our findings primar-
ily to academia. Recognizing that it is not feasible to 
exhaustively identify all papers that used HCS to obtain 
biological results, we sought representative samplings in 
three ways (see the “Notes” section for details). In the first 
approach (termed HCS-title here), we searched PubMed for 
“high-content screening” (including quotes) in the title. The 
term HCS is by no means used universally to describe high-
throughput, image-based experiments, and requiring it in 
the title is likely biased toward papers on the more simplis-
tic end of the spectrum. Therefore, our second approach 
(termed Top-tier here) searched PubMed with a much 
broader combination of words and then constrained the size 
of this set by limiting it to papers published in Science, 
Nature, Cell, and the Proceedings of the National Academy 
of Sciences (see “Notes” for details). Our third approach 
(termed CellProfiler citers here) was based on a set of 
papers curated by hand that cite our group’s open-source 
software for high-throughput image analysis. We expected 
this group to be somewhat biased toward laboratories will-
ing to use high-end informatics tools in their work. For all 
three approaches, we excluded book chapters, reviews, and 
comments, as well as papers in which presenting a method 
was the main focus (e.g., development of an assay) as 
opposed to presenting a biological discovery. We find that 
the number of papers meeting these criteria that are pub-
lished each year is increasing steadily (Fig. 1).

The Information Content of the 
Typical HCS Experiment Is Much 
Lower than Its Potential

In the resulting 118 papers33–150 based on the search above, 
we then read the relevant portions to identify the main 
readout(s) of each high-throughput image-based experi-
ment. Given the power of HCS to provide multiparametric 
readouts, we were surprised to find that roughly 60–80% of 
the papers used only one or two measured features of the 
cells (Fig. 2). Although measuring a single feature was by 
far the most common, those papers measuring two features 
typically used the main phenotype under study and cell 
count as a measure of toxicity. As we suspected, the HCS-
title search yielded the highest percentage (83%) of low-
content papers (1–2 features), whereas the CellProfiler 
citers search yielded the highest percentage (29%) of high-
content papers (6+ features). Examining the results of  
all three searches together throughout time, we find the  

percentage of papers using only 1–2 features has stayed 
relatively steady during the past decade (Fig. 3).

Certainly measurement of one or two features by micros-
copy can yield a valuable phenotypic readout, and clearly a 
complex experiment need not be performed when a simple 
one will do. Furthermore, researchers may have surveyed 
several potential features prior to selection, but in the end, 
only 1–2 features may have been used for the experiment 
and published in the report. We nonetheless conclude that 
there is a strong tendency for HCS assays to typically be, in 
truth, quite low content in terms of the number of different 
parameters used. Given the additional complexity and time 

Figure 1.  The number of papers in which a high-throughput, 
image-based experiment was used toward a discovery, by year 
of publication. Combined indicates the sum of all three searches. 
Note that the Combined trend line should not be considered 
as a total, because the literature searches are not at all 
comprehensive.

52

7 4

26

7 7

10

2

5

HCS−title Top−tier CellProfiler citers

0%

25%

50%

75%

1−2 3−5 6+ 1−2 3−5 6+ 1−2 3−5 6+
No. of features

%
 o

f 
pa

pe
rs

Figure 2.  Feature set sizes used in papers throughout the three 
searches. Numbers at the top of each bar indicate the actual 
number of papers. Between 60% and 80% of the papers used 
only one or two measured features of the cells.

Figure 3.  Percentage of papers that use only one or two 
measured features of the cells, by year of publication.
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involved in HCS and that the typical outcome is relatively 
low content, it is perhaps unsurprising that the use of HCS 
is not increasing more rapidly. In the remainder of this arti-
cle, we discuss some challenges that have likely driven at 
least part of this trend toward low-content HCS.

Insufficient Computational 
Infrastructure for Multidimensional, 
Single-Cell Data

The field of HTS has made tremendous progress in data 
handling, resulting in streamlined systems for handling the 
large amount of data produced in typical HTS screens as 
long as a small number of values are produced per replicate 
sample. Although image files are larger in size, a similar 
trend is true for HCS, because systems dedicated to han-
dling these files have become relatively reliable. In typical 
HCS, however, hundreds of features can be extracted for 
thousands of cells in each replicate sample. Storing and 
manipulating these data matrices requires significant refac-
toring and expansion of data management systems, and ana-
lyzing the large amounts of data from HCS requires alternate 
multidimensional methods and, often, significant comput-
ing power. These challenges have usually been avoided 
rather than addressed; HCS results are typically collapsed 
to a single value per replicate sample to avoid having to 
modify existing HTS data storage and handling systems to 
cope with the large amount and high dimensionality of 
HCS.

Workflow Hurdles

Further pressure to reduce rich HCS data has come at other 
stages of the workflow. For example, hits from a screen are 
often iteratively improved by chemists once the screen is 
complete in a process called lead optimization, particularly in 
a drug-discovery environment. There is no commonly 
adopted method to handle multiple readouts at this stage; 
generally, a single readout is preferred to easily fit dose–
response curves and discern structure–activity relationships.

Even when lead optimization is not an issue, pressure has 
come from assay quality requirements that may not be appro-
priate for truly high-content experiments. Screening centers, 
in both pharmaceutical and academic settings, typically 
require that any high-throughput assay meet a minimum 
value of the Z′-factor5 (see Suppl. Fig. 1 for a definition) 
prior to being accepted for screening. The Z′-factor is suited 
to most HTS readouts and is an improvement over prior 
assay-quality statistics such as signal-to-noise ratios. The 
measure indicates the extent of separation between positive 
and negative controls. It assumes a Gaussian distribution of 
the controls’ values—an assumption met (in theory) for most 
HTS readouts due to the central limit theorem. For example, 

whole-well fluorescence measurements involve the sum of 
the light emitted by each independent and identically distrib-
uted molecular interaction. In practice, effects like spatial 
biases across the plate can corrupt that Gaussianity, but the 
Z′-factor is generally used regardless.

Interestingly, the screening community has adopted the 
Z′-factor as a quality control statistic for HCS as well. Of 
the 118 papers identified above, 40% used the Z′-factor 
(Fig. 4); the majority of these came from the HCS-title 
group (Suppl. Fig. 2). Many of the remainder also used a 
Gaussian assumption of univariate controls, for example in 
t tests.

There are several problems with using the Z′-factor in 
HCS (Fig. 5). First, the statistic requires that the readout be 
univariate, so typically only a single cellular feature is 
retained. Second, although multivariate extensions to the 
Z′-factor have been proposed,6,7 they still require that the 
per-cell readouts be summarized into a single value per rep-
licate sample. By doing so, the rich information captured 
from single-cell measurements is effectively discarded. 
Together, these two transformations coerce a matrix of 
readouts into a single value per sample, thereby losing 
many of the benefits of HCS.

Third, it is usually the mean that is used to summarize 
per-cell readouts into a single value. This generally results 
in the transformed data having a Gaussian distribution, 
meeting the assumptions of the Z′-factor, but it obscures 
changes that are present only within certain subpopulations 
of cells. When the per-cell readouts are summarized in other 
ways (e.g., counting the percentage of cells with a particular 
phenotype), the summaries may be distributed in a non-
Gaussian8 way, and this generally leads to lower Z′-factors.

The Z′-factor is therefore often not ideal for HCS because 
there is a mismatch between the purpose of the metric (dis-
tinguishing a positive control from a negative control based 
on a single population-averaged readout that follows a nor-
mal distribution) and more sophisticated usage of HCS (see 
the “Hope for the Future” section). Although advanced data 
techniques could certainly be used after the Z′-factor hurdle 

Figure 4.  The percentage of papers throughout all three 
searches that use the Z′-factor, plotted by year of publication. 
The fractions indicate the number of papers that use the 
Z′-factor divided by the total number of papers in each year. 
Overall, 40% use the Z′-factor (dotted line).
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has been crossed, it is possible for an assay to fail to meet a 
Z′-factor threshold for a single averaged assay readout and 
nonetheless be of suitable quality for more advanced meth-
ods that are based on dozens or hundreds of features on a 
single-cell level. Conversely, it is possible for an assay to 
pass the Z′-factor >0.5 threshold for a single population-
merged assay readout and nonetheless be poorly suited to 
further multivariate analyses.

Together, these issues inadvertently nudge scientists 
toward HCS assays that show a significant shift in the mean 
of the population and thus yield an acceptable Z′-factor 
value. In the process, we suspect that complex assays, in 
which one or more biological processes of interest manifest 
as changes in the distributions of cellular subpopulations, 
are often abandoned.

Hope for the Future: Multiparametric 
Methods for HCS

Overall, we suspect that there has been a trend to choose 
simpler HCS assays to pass through the bottleneck of exist-
ing data infrastructures and approval processes at screening 
centers and that this has likely had dramatic and largely 
silent consequences on scientific discovery.

Still, there is hope on the horizon because some pioneer-
ing work in this area has begun to carve out use cases for 
HCS that are more complex and valuable. Laboratories 
have been working to establish high-dimensional data anal-
ysis methods suited specifically to HCS assays and to 
address the data-handling and infrastructure challenges we 
have described above. In addition, in practice, HCS assays 
have also required closer attention to consistency because 

normalization can be more challenging among samples and 
experimental batches when working in high-dimensional 
spaces.

In the remainder of this section, we focus on reviewing 
the computational methods that have been used in success-
ful instances of multidimensional data analysis for HCS.

Scoring Cellular Phenotypes Using 
Multidimensional Classification

Machine learning methods to score phenotypes at the indi-
vidual cell level have been effective in a number of discov-
ery-oriented high-content screens.9–16 Several tools have 
been created to recognize and sort complex cell phenotypes 
automatically at high throughput using their high-dimen-
sional image-based cytological profiles and a hand-trained 
classifier. These include CellProfiler Analyst,17 CellClassifier,18 
Enhanced CellClassifier,19 and Advanced CellClassifier.20 
They all enable researchers to choose example cells that 
represent the phenotype of interest and train machine learn-
ing algorithms to distinguish them. They differ from each 
other in the particularities of their user interfaces and the 
machine learning algorithms used. CellProfiler Analyst 
uses GentleBoosting,21 a method that combines many rela-
tively weak and inaccurate yet simple rules to create a clas-
sifier with a significantly higher accuracy. CellClassifier 
uses support vector machines (SVMs), neural networks, or 
k-nearest neighbors for classification. Enhanced CellClassifier 
is a similar framework that also uses SVMs for classifica-
tion. Advanced CellClassifier interfaces with Weka,22 which 
provides a suite of classification algorithms. Finally, 
CellCognition23 enables the analysis of time-lapse images 
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Figure 5.  The necessary steps required to use the Z′-factor as a quality metric drastically simplify assay readout and analysis but 
typically also reduce the power and value of an HCS assay. (A) The Z′-factor is a univariate statistic, so assay developers typically 
select a single feature as a readout, ignoring a large part of other available information; (B) the per-cell measurements need to be 
aggregated into a single value per replicate sample, and assays presenting heterogeneous cell responses detectable only via subtleties 
in their population distributions will often fail to yield acceptable Z′-factor values and be discarded; and (C) the Z′-factor requires 
that the distributions of controls’ values are Gaussian—a condition that is met by choosing the method of aggregation to be the mean 
throughout the cell population—but this biases the selection of assays considerably, as discussed in the text.
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to monitor the progression of cells through different func-
tional states using hidden Markov modeling.

Multidimensional Profiling of Samples

More exploratory are methods that can be described as phe-
notypic profiling—creating signatures or profiles from mul-
tiparametric, feature-based analysis of cellular phenotypes 
of each sample so that the biological similarities among 
samples are reflected in the similarities among profiles. 
Mathematically, a profile is simply a set of numerical val-
ues that represent a given treatment condition. In this sec-
tion, we review five phenotypic profiling approaches that 
have been shown to be effective in previously reported 
experiments.

Approach 1: Summary of Feature Distributions.  Each compo-
nent of the phenotypic profile for a sample is a simple 
summary statistic, such as the mean, computed across all 
the cells in the sample for each feature. Adams et al.24 used 
this method to compute profiles for identifying the mecha-
nisms of action of compounds by similarity to those with 
known mechanisms. Genovesio et al.4 used it to select hits 
from a genome-wide loss-of-function screen. Gustafsdot-
tir et al.25 used it to cluster compounds by similarity. The 
advantage of this method is its simplicity and ease of 
implementation. It does not, however, capture heterogene-
ity in cell populations, and that may prevent it from detect-
ing effects of perturbations when a small fraction of cells 
are affected.

Approach 2: Summary of Feature Differences between Treat-
ment and Control Distributions.  The phenotypic profile is 
given by the differences in distributions in each cellular fea-
ture between the treatment sample and control samples. 
Perlman et al.2 use the Kolmogorov–Smirnov statistic, a 
nonparametric measure of difference between distributions, 
to construct profiles for identifying the mechanism of action 
of compounds. By measuring distributional differences in 
each feature, treatment effects can be detected even when 
the cellular response is heterogeneous, albeit ignoring 
changes that are only seen when considering two or more 
features simultaneously. This approach is very sensitive to 
the choice of control distribution, because all samples are 
compared against it, with different controls potentially lead-
ing to vastly different signatures for a treatment.

Approach 3: Multivariate Classifier Separating Treatment and 
Control.  The phenotypic profile is constructed by training a 
multivariate classifier to distinguish samples of treatment 
and control cells. Using this approach, Loo et al.3 identified 
the mechanism of action of compounds by training an SVM 
and using the normal vector of the classifier’s separating 
hyperplane as the treatment’s phenotypic profile. This 

method has the advantage of combining information among 
all the features in a true multivariate manner. It may, how-
ever, emphasize features that distinguish a treatment from 
control, rather than from other compounds or known com-
pound groups, making the profiles less effective on tasks 
such as grouping compounds into mechanisms of action.26 
Further, subpopulation information may be lost as all cells 
from a sample are grouped into a single class when training 
the classifier.

Approach 4: Normalized Frequency of Cells from Each Subpopu-
lation.  It is well known that cellular subpopulations within a 
sample may respond differently to treatments,27,28 a phenom-
enon that is unaccounted for in profiling methods that assume 
homogeneous responses to perturbations. Although Approach 
2 partially addresses this problem by measuring population 
differences per feature, a more comprehensive solution is to 
model all the subpopulations in the experiment explicitly and 
to then represent a treatment by the relative frequency of cells 
that belong to each subpopulation. An example of this 
approach is presented by Slack et al.,29 in which a clustering 
algorithm (Gaussian mixture models, or GMMs) is used to 
identify cellular subpopulations, and the profile is constructed 
as the percentage of the sample’s cells that fall into each sub-
population. Although considering cells as falling into discrete 
subpopulations is an imperfect representation of the variation 
seen among different cells and different features, Slack et al. 
successfully used this method to identify the mechanism of 
action of drugs. A potential shortcoming is that GMMs, simi-
lar to most clustering algorithms, can fail to give meaningful 
clusters in high dimensions due to the redundancy of fea-
tures, the sparseness of data, or the existence of clusters in 
different subspaces.30

Approach 5: Data-Driven Feature Reduction.  When several 
hundreds of image-based measurements are extracted per 
cell, many features tend to be highly correlated with each 
other. This leads to the redundant features being weighted 
higher than less redundant features when computing simi-
larities. In such scenarios, feature reduction techniques may 
help tackle this problem either by selecting a subset of fea-
tures or by linearly combining features so that correlated 
features group together. As an example, Young et al.31 esti-
mate a latent factor model from the data for a certain, small 
number of factors, resulting in a lower-dimensional repre-
sentation of the data. A profile for the sample is then con-
structed by averaging the factor values among all cells. This 
method can be used as a preprocessing step in combination 
with the approaches described above. In cases in which the 
features are highly redundant, profiles thus generated are 
likely to be more discriminative than those generated from 
the original, high-dimensional feature set—a phenomenon 
we have previously observed on the task of identifying 
mechanisms of action of compounds.26
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Many avenues remain to be explored; a routine method 
of profiling does not yet exist. For example, for all the 
methods discussed above to generate profiles, a choice must 
be made in how to measure profile similarity. It is still 
actively debated which metrics are best in which contexts, 
with Reisen et al.32 recently providing a comparison of sev-
eral that indicates that Kendall’s τ and Spearman’s ρ per-
form well in most evaluation scenarios. The comparison of 
the profiling methods themselves has been addressed only 
recently;26 further comparisons are needed to test methods 
against each other in other contexts, such as with different 
cell lines, assays and stains, and experimental goals.

What about Quality Control?.  The profiling methods described 
above cannot be reduced to simply aiming at distinguishing 
positive and negative controls using a single feature, for 
which quality control (QC) metrics like the Z′-factor were 
designed. Instead, the methods have various goals, and thus 
the QC metrics should be appropriate to those goals. Clas-
sification accuracy is a reasonable quality metric for experi-
ments in which similarity and difference among samples are 
the goals—however, calculating this requires a large num-
ber of positive controls and in many replicates. This is prob-
lematic because these are frequently not available: often, 
positive controls are not known in advance, or they do not 
reflect the subtlety expected from samples to be tested in 
the actual experiment. Replicate reproducibility could theo-
retically be used as a metric indicating assay quality; this, 
however, requires defining an appropriate null distribution 
for the metric and has not been used in practice, to our 
knowledge.

Conclusion

There are clearly important applications involving high-
content screening that require sophisticated data analysis 
methods. It is encouraging to see emerging research aimed 
at developing suitable approaches. Perhaps most exciting is 
the prospect that large data sets from past publications have 
typically been safely archived and might be reanalyzed with 
some of these new methods to generate new discoveries. As 
data analysis approaches for these more complex types of 
HCS experiments become well developed and incorporated 
into easy-to-use software, we anticipate more powerful 
applications of HCS to blossom, the value of a typical 
experiment to increase, and ultimately the technology to be 
more widely adopted.
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Notes

For the HCS-title search, we searched PubMed in March 2013 for 
the exact wording “high-content screening” (including quotes). 
This yielded 473 papers, a large portion of which only mentioned 
HCS but did not use it. We refined the search by requiring “high-
content screening” in the title, yielding a list of 214 papers. We 
categorized the papers by type and found that of the 214 papers we 
identified, 67 were book chapters, reviews, or comments; 84 pre-
sented methods (most often, assay development); and 63 presented 
the discovery of a molecule or a mechanism by HCS.

For the Top-tier search, we searched PubMed in August 2013 
for a set of terms that we found captured a broad range of papers 
that used image-based high-throughput experiments to make a dis-
covery (Search = ((automat* OR throughput OR screen) AND 
(visual OR microscop* OR (image AND analysis) OR morpho-
log*) AND (cell OR cells OR cellular)) NOT “review”[Publication 
Type]). Because this search captured 13,111 papers, we limited the 
list to only those published in Science, Nature, Cell, and 
Proceedings of the National Academy of Sciences, yielding 232 
papers. We filtered this set by reading the abstracts and excluding 
papers that were clearly not using imaging as a high-throughput 
assay leading to the major discovery in the paper. We then read the 
relevant parts of the remaining papers and identified 40 that pre-
sented the discovery of a molecule or a mechanism by HCS.

For the CellProfiler citers search, we used a manually curated 
collection of papers as follows. We routinely manually identify 
papers citing CellProfiler (whether by name, website, or citation 
of publications describing CellProfiler) and maintain a list (http://
cellprofiler.org/citations.shtml). For each paper, we record 
whether CellProfiler was used (or just mentioned), whether it was 
used to make a discovery (rather than as proof-of-principle or 
assay development), and whether it was used in high throughput 
(defined as >100 images). Out of more than 800 CellProfiler citers 
as of August 2013, there were 17 in which CellProfiler was used 
in high-throughput mode in a publication in which the discovery 
(rather than the methodology) was the main point of the paper.

For each of the searches, we noted the number of image-based fea-
tures that were used in the experiments, recognizing that this is some-
what subjective (e.g., we counted a feature that is normalized to cell 
count as two features, but it could be argued that the resulting feature 
should be considered a single feature). For all the searches, we also 
documented whether the Z´-factor was used in the screen.

Supplementary Table 1 provides the detail and annotation of 
the literature searches. In all, 118 papers were included in the 
study. Among all three searches, only two of these papers50,114 
were found in more than one search: these two were present in 
both the Top-tier and CellProfiler citers searches.
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