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Abstract

Motivation: Genomic islands (GIs) are clusters of genes of probable horizontal origin that play a

major role in bacterial and archaeal genome evolution and microbial adaptability. They are of high

medical and industrial interest, due to their enrichment in virulence factors, some antimicrobial re-

sistance genes and adaptive metabolic pathways. The development of more sensitive but precise

prediction tools, using either sequence composition-based methods or comparative genomics, is

needed as large-scale analyses of microbial genomes increase.

Results: IslandPath-DIMOB, a leading GI prediction tool in the IslandViewer webserver, has now been

significantly improved by modifying both the decision algorithm to determine sequence composition

biases, and the underlying database of HMM profiles for associated mobility genes. The accuracy of

IslandPath-DIMOB and other major software has been assessed using a reference GI dataset predicted

by comparative genomics, plus a manually curated dataset from literature review. Compared to the

previous version (v0.2.0), this IslandPath-DIMOB v1.0.0 achieves 11.7% and 5.3% increase in recall

and precision, respectively. IslandPath-DIMOB has the highest Matthews correlation coefficient

among individual prediction methods tested, combining one of the highest recall measures (46.9%)

at high precision (87.4%). The only method with higher recall had notably lower precision (55.1%).

This new IslandPath-DIMOB v1.0.0 will facilitate more accurate studies of GIs, including their key roles

in microbial adaptability of medical, environmental and industrial interest.

Availability and implementation: IslandPath-DIMOB v1.0.0 is freely available through the

IslandViewer webserver {{http://www.pathogenomics.sfu.ca/islandviewer/}} and as standalone soft-

ware {{https://github.com/brinkmanlab/islandpath/}} under the GNU-GPLv3.

Contact: brinkman@sfu.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Horizontal gene transfer (HGT) is widely recognized as a major

force that drives microbial genome evolution. HGT enables bacteria

and archaea to acquire foreign genetic material using various mech-

anisms, primarily conjugation, transduction and transformation

(Dobrindt et al., 2004; Soucy et al., 2015). HGT disseminates bene-

ficial, neutral and nearly neutral genes in integration hotspots, often

tRNAs and tmRNAs, or interspersed within the core genome

(Rodriguez-Valera et al., 2016). The core genome of bacteria gener-

ally only represents on average 50% of the total genome size

(Rodriguez-Valera et al., 2016). Clusters of genes known or pre-

dicted to be acquired by HGT are called genomic islands (GIs), and

were historically classified into different subtypes depending on the

functions they encoded: symbiotic islands, metabolic islands, fitness

islands, pathogenicity islands or antibiotic resistance islands

(Hacker et al., 1990; Juhas et al., 2007, 2009; Sullivan and Ronson,

1998). GIs were shown to disproportionally encode virulence factors

(Ho Sui et al., 2009) and to be an important source of novel genes

(Hsiao et al., 2005), antimicrobial resistance genes (von

Wintersdorff et al., 2016), and metabolic genes (Juhas et al., 2009)
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that essentially provide a selective or adaptive advantage to their

hosts. The mobilization and transfer of GIs among a bacterial popu-

lation is promoted by mobile selfish elements such as integrases,

transposases and insertion sequences (Soucy et al., 2015).

Given the growing appreciation of the importance of GIs for

both environmental microorganisms and pathogens, the past decade

has seen the development of numerous GI visualization and pre-

diction software that are traditionally divided into sequence

composition-based methods or comparative genomics methods.

Most composition-based methods rely on the identification of nu-

cleotide composition biases, including both measures of hetero-

geneity and homogeneity, in some cases combined with the

identification of GI hallmarks (mobility and phage-related genes,

tRNAs, direct repeats) (Che et al., 2014; Langille et al., 2010; Lu

and Leong, 2016). Although most HGTs occur between closely

related organisms and are difficult to identify owing to the similarity

between the donor and the recipient genome, composition-based

methods perform well in identifying recent transfers between more

distantly related microorganisms or mobile element gene pools.

They have an advantage of not requiring related genomes for com-

parison to detect GI regions. However, now that more genomes suit-

able for comparison exist, methods based on comparative genomics

such as IslandPick (Langille et al., 2008), MOSAIC (Chiapello et al.,

2005) and Gipsy (Soares et al., 2016) may now be used further. The

most widely used comparative genomics tool, IslandPick, uses com-

parative genomics with monophyletic groups of strains to identify

regions unique to closely related bacteria that are absent from more

distantly related bacteria. However, these latter methods still do

require that enough genome sequences of sufficiently related iso-

lates are available, and cannot detect islands shared between gen-

omes compared, which may still be of medical and environmental

interest.

Among standalone tools based on sequence composition ana-

lysis, SIGI-HMM (Merkl, 2004) and IslandPath-DIMOB (Hsiao

et al., 2003) were previously shown to have the highest overall preci-

sion and accuracy to predict GIs based on a test set built by com-

parative genomics using IslandPick (Langille et al., 2008). SIGI-

HMM predictions are based on the detection of biased codon usage

using a hidden Markov model for each gene (Waack et al., 2006),

whereas IslandPath-DIMOB identifies genomic regions with biased

dinucleotide composition encoding at least eight genes, of which at

least one is a mobility gene (transposase, integrase, etc.), reflecting

previously published and accepted criteria (Langille et al., 2008,

2010). Within the past year, several new window-based methods

identifying biases in sequence composition have been developed,

often claiming higher recall and precision than previously existing

tools. MSGIP (de Brito et al., 2016), a standalone tool based on a

mean shift clustering algorithm using single nucleotide composition,

was shown to successfully identify known GIs from six bacterial

genomes. Zisland Explorer (Wei et al., 2016) uses cumulative GC

profile to identify regions harboring a heterogeneous GC compos-

ition compared to the core genome and a homogenous GC compos-

ition within the region. When assessed using a dataset of 11

genomes using curated GIs from the literature, or GIs from a com-

parative genomics approach, Zisland Explorer exhibited at least

10% higher recall than IslandPath-DIMOB v0.2.0 and SIGI-HMM

leading to a 4.9% higher overall accuracy. Finally, MTGIpick (Dai

et al., 2016) uses a t-test to identify regions with biased tetranucleo-

tide composition before refining putative GI boundaries with a GC

segmentation method and the Markovian Jensen–Shannon diver-

gence (MJSD), as proposed by Arvey et al (2009). While these new

methods provide essential novel approaches to GI prediction, their

accuracy was determined using different datasets preventing the

comparison of their respective capabilities.

Although it was developed over a decade ago, IslandPath-

DIMOB has remained one of the methods with highest recall and

overall accuracy. To integrate the latest knowledge gathered from

comparative genomics and refine the prediction of GIs, we have de-

veloped a new version of IslandPath-DIMOB, part of the

IslandViewer suite of GI analysis tools (Bertelli et al., 2017), by im-

plementing (i) a better score of dinucleotide bias to increase sensitiv-

ity, (ii) new extended HMM profiles to search for mobility genes,

(iii) a better handling of pseudogenes and (iv) the concept of regions

of GIs by considering closely positioned GIs as a single region.

Furthermore, to provide a standardized base for GI prediction tool

comparison, we created an improved GI dataset (derived from

Langille et al., 2008), identified by comparative genomics in 104

genomes, as well as a set of GIs retrieved from literature review. The

prediction accuracy of the most popular and most recent tools,

including IslandPath DIMOB v1.0.0, was then assessed using both

datasets, allowing all of these methods to be compared with each

other.

2 Materials and methods

2.1 IslandPath-DIMOB v1.0.0 implementation
IslandPath-DIMOB predicts GIs based on both the detection of di-

nucleotide bias in eight genes or more, and the identification of a

mobility gene in the same region (Hsiao et al., 2005, 2003). The de-

tection of dinucleotide bias is much more sensitive than conven-

tional GC content analysis to identify putative GIs. Furthermore,

the required presence of a mobility gene reduces false positive pre-

dictions such as highly expressed genes that also exhibit abnormal

sequence composition. To improve GI predictions, key modifica-

tions were implemented in the algorithm that identifies regions har-

boring dinucleotide biases, and the identification of mobility genes.

2.1.1 Algorithmic modifications

The algorithm to score biases in dinucleotide composition has been

preserved, as previously described (Hsiao et al., 2003). Briefly, a

score S is calculated as the average absolute dinucleotide relative

abundance difference using a sliding window of six consecutive

genes, shifting by one gene at a time. To improve the global sensitiv-

ity of the method and avoid decreased sensitivity in genomes with

large numbers of recent gene acquisition, the median score MedS ra-

ther than the mean is calculated over all the windows in the genome.

All regions scoring higher than the MedSþ2*SD(S) are entirely re-

tained, whereas in regions scoring between MedSþ SD(S) and

MedSþ2*SD(S) only the first half of the genes are retained for fur-

ther steps. Regions with dinucleotide biases spanning eight genes or

more are conserved. Decreasing the required region length between

three and five genes significantly increases the recall but also de-

creases the precision to a lesser extent. However, to conserve the

desired high precision of IslandPath-DIMOB, the requirement for at

least eight consecutive genes harboring dinucleotide biases was kept.

They are merged into one single region if separated by five genes or

less in order to correct for the observed tendency of IslandPath-

DIMOB to split large GIs into small predicted regions.

2.1.2 Mobility gene identification

The identification of mobility genes is performed in two independent

parallel steps: Based on the identification of (i) known Pfam (Finn

et al., 2016) domains in proteins and (ii) keywords in protein
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functional annotation. First, a manually curated database of recent

Pfam domains associated with integrase, transposase, resolvase and

recombinase was created to replace the old outdated database of

mobility genes. Domains specific to eukaryotic proteins were dis-

carded. Domains of unknown function (DUF) shown to be associ-

ated to mobility genes were conserved as these could facilitate the

identification of new GIs in novel poorly studied organisms that are

not represented in the reference dataset (see below). To avoid false

positives, a lower e-value cutoff, 10�7, was used for domain identifi-

cation by HMMER3 v3.1b2 (Eddy, 2011). Second, an improved list

of keywords was integrated, to search for mobility genes in the cod-

ing sequence product annotation, including IstB, insertion element,

recombinase, insertion sequence, resolvase, integrase, phage, trans-

posase, transposon, transposable element and excisionase.

2.1.3 Ease of use and standalone version

To facilitate and standardize the use of IslandPath-DIMOB v1.0.0

as a standalone software, a new perl module has been added to ac-

cept as input a single genbank or embl flatfile. Other file formats

previously required (ffn, faa and ptt) are now generated automatic-

ally and temporarily from the input flatfile. Furthermore, the soft-

ware has been adapted to correctly process genomes with redundant

protein gi identifiers, given that identical proteins in a genome now

harbor identical gi and protein accession numbers since the change

in NCBI’s RefSeq annotation policy in 2014. The standalone version

of IslandPath-DIMOB v1.0.0 is freely available at https://github.

com/brinkmanlab/islandpath/releases/. Furthermore, a version of

IslandPath-DIMOB v1.0.0 is now integrated in the webserver

IslandViewer 4: http://www.pathogenomics.sfu.ca/islandviewer/

(Bertelli et al., 2017). Finally, to facilitate the use of IslandPath-

DIMOB in cloud environment and remove the need to install the

software and its dependencies, a docker image is also available at

https://hub.docker.com/r/brinkmanlab/islandpath/.

2.2 Reference dataset of genomic islands
2.2.1 Old genome files

To assess the improvement of IslandPath-DIMOB v1.0.0 compared

to IslandPath-DIMOB v0.2.0 (Hsiao et al., 2005), genome files from

RefSeq were used as available before July 2014, that is before

NCBI’s reannotation initiative. Indeed, the reannotation initiative

introduced non-redundant protein accession numbers that are not

supported by the old IslandPath-DIMOB v0.2.0 version, preventing

us from assessing its accuracy with newer files.

2.2.2 New genome files

To assess the accuracy of IslandPath-DIMOB v1.0.0 and other re-

cent GI prediction methods, genome files were retrieved from

RefSeq by MicrobeDBv2 (Langille et al., 2012) on Feb 09, 2017.

Accession and version numbers, and thus genome sequence, for the

old genome files and the new genome files are strictly identical and

available along with the organism name in Supplementary Table S1.

The annotation of genomes may differ between the old and the new

genome files.

2.2.3 Comparative genomics-based dataset (C-dataset)

To obtain a reliable and independent reference dataset of GIs identi-

fied by methods not relying on nucleotide bias/compositions, we

first retrieved the dataset obtained by using the comparative gen-

omics approach of IslandPick (Langille et al., 2008). Among the 118

genomes in the original dataset, 14 were discarded because new gen-

ome sequence versions were released since the initial analyses, which

could have led to possible inaccuracies in genomic coordinates for

subsequent analyses. We then created an improved dataset of GIs,

benefitting from the considerable increase in genome sequences

available for comparative genomics approaches since 2008. The ori-

ginal dataset was combined with current GI predictions by

IslandPick available as pre-computed results in IslandViewer 3

(Dhillon et al., 2015) and IslandViewer 4 (Bertelli et al., 2017) for

the same 104 genome sequences to form a reference positive dataset

(Supplementary Table S1). Each of the 104 genome in the reference

positive dataset harbored between 1 and 77 GIs larger than 4 kb, for

a total of 1845 GIs encompassing over 21 Mbp.

As the result of new genomes being available for the IslandPick

comparative approach, the negative dataset of core genomic regions

inferred by Langille et al. (2008) was adapted in four Burkholderia gen-

omes (NC_008390.1, NC_008061.1, NC_010515.1, NC_010084.1)

to remove a few regions now predicted as horizontally transferred by

IslandPick (Supplementary Table S2). The negative dataset comprises

3266 regions, ranging in size between 7 and 82 kb, for a total of over

45 Mbp. These core regions are conserved in each reference genome

and its related genomes selected for comparison by IslandPick at vary-

ing genomic distance (Bertelli et al., 2017; Dhillon et al., 2015; Langille

et al., 2008).

2.2.4 Curated literature-based dataset (L-dataset)

To evaluate the ability of different software to predict well-defined

GIs obtained by other groups using independent methods, a litera-

ture dataset was created by reviewing articles describing GIs in some

well characterized organisms. The literature dataset from Langille

et al. (Langille et al., 2008) was used and extended to include six

genomes: Escherichia coli O157: H7 str. Sakai (NC_002695.1),

Escherichia coli CFT073 (NC_004431.1), Salmonella enterica

subsp. enterica serovar Typhi str. CT18 (NC_003198.1),

Streptococcus pyogenes str. MGAS315 (NC_004070.1), Vibrio par-

ahaemolyticus RIMD 2210633 (NC_004603.1) and Staphylococcus

aureus str. MW2 (NC_003923.1). Two genomes from the litera-

ture dataset of Langille et al. were discarded due to changes in

accession version number (NC_002655.2: Escherichia coli O157:

H7 EDL933, NC_003197.1: Salmonella typhimurium LT2)

that could have impacted the accuracy of GI coordinates. Overall,

the literature dataset comprises 80 GIs ranging in size from 3

to 133 kb, encompassing over 3 Mbp in total (Supplementary

Table S3).

Both the C-dataset and the L-dataset are available in tabular for-

mat as Supplementary table in this contribution. Tabular as well as

fasta formats are also available on IslandViewer 4 website (http://

www.pathogenomics.sfu.ca/islandviewer/download/).

2.3 Software accuracy assessment
The most recently published tools Zisland Explorer (Wei et al.,

2016), MTGIpick (Dai et al., 2016), MSGIP (de Brito et al., 2016)

as well as older highly accurate tools SIGI-HMM (Waack et al.,

2006), IslandPath-DIMOB v0.2.0 (Hsiao et al., 2005) and

Islander (Hudson et al., 2015) were used to predict GIs on the

reference dataset of 104 genomes (Supplementary Table S1). Each

software or webserver was run using default parameters.

For SIGI-HMM, any region with at least two consecutive

genes identified as putative horizontal transfers was counted as a

predicted GI. MTGIpick was run without the boundary refine-

ment option as the selection of the option would result in an error

message on the webserver (and it is not set as a default

parameter).
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Since accuracy metrics vary largely depending on the bacterial

genome considered, we calculated here the following metrics per

genome for each tool:

Recall ¼ TPR ¼ TP

TPþ FN

Precision ¼ PPV ¼ TP

TPþ FP

Overall accuracy ¼ ACC ¼ TPþ TN

TPþ FPþ FN þ TN

F1 score ¼ F1 ¼ 2TP

2TPþ FPþ FN

MCC ¼ TPxTN � FPxFN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p

Where TP, FP, FN and TN are true positives, false positives, false

negatives and true negatives, respectively. All bases included in both

the reference positive dataset and the predicted GIs were counted as

true positives (TP) while bases only in the reference positive dataset

were counted as false negatives (FN). The negative dataset of core

genomic regions was used to assess the true negatives (TN) counted

as all bases in the negative dataset that were not predicted as GIs,

and false positives (FP) counted as all bases in the negative dataset

that were predicted as GIs. In the edge case where TP and FP were

equal to 0, the precision was counted as equal to 1, since the soft-

ware is being conservative making no prediction. The Matthews cor-

relation coefficient (MCC) was used as a measure of the correlation

between the reference datasets and the observed predictions. MCC

values vary between �1 and 1, with 1 representing a perfect predic-

tion, 0 no better than random prediction and �1 a complete dis-

agreement between the prediction and the reference dataset. MCC

was considered as 0 when the denominator was equal to 0.

3 Results and Discussion

3.1 Validation of the new reference C-set
Since the first determination of the reference comparative dataset in

2008 (Langille et al., 2008), numerous genomes have been released

in public databases, enabling finer genome comparison. Therefore,

pre-computed IslandPick predictions available in IslandViewer 3

(Dhillon et al., 2015) as well as IslandViewer 4 (Bertelli et al., 2017)

were retrieved for the 104 genomes with matching accession and

version numbers. Since IslandPick predictions depend on the gen-

omes selected for comparison, the Langille’s reference dataset,

IslandPick predictions in IslandViewer 3 and IslandPick predictions

in IslandViewer 4 only partially overlap. Indeed, only between 3 and

6 genomes at varying phylogenetic distance are used for comparison

in IslandViewer 3 and 4, whereas more extensive comparison were

performed by Langille et al. to build the original reference dataset.

For example, IslandPick predictions from IslandViewer 3 and

IslandViewer 4 only include, respectively, 28% and 25% of the

bases from the Langille’s dataset, whereas the Langille’s dataset in-

cludes 45% and 57% of the bases in IslandPick GI dataset of

IslandViewer 3 and IslandViewer 4, respectively. It is expected that

the first reference dataset contains more predicted GIs given the

more extensive comparison performed by Langille et al. (Langille

et al., 2008). The three datasets were combined to form an updated

reference positive dataset (Supplementary Table S1) that better rep-

resents the GIs encoded in the 104 reference genomes for the evalu-

ation of GI prediction tools.

Most importantly, none of the novel GIs predicted by IslandPick

in IslandViewer 3 overlap regions of the previously established nega-

tive dataset containing the core genomes. IslandPick predictions

from IslandViewer 4 showed that regions previously considered as

core genome in only four Burkholderia genomes where in fact prob-

ably horizontally acquired, leading to the modification of the nega-

tive reference dataset (Supplementary Table S2). The overall very

limited overlap confirms the accuracy of the past negative dataset

and new IslandPick predictions. Moreover, we investigated the over-

lap between the C-dataset and the L-dataset in the six genomes com-

mon to both datasets (Table 1, “literature dataset” and Table 2,

“comparative dataset”). The L-dataset comprising curated GIs

encompasses over 89% of the bases in the C-dataset and does not

overlap with the core genomic regions of the negative dataset (preci-

sion equals 1), thus helping to confirm the validity of this new refer-

ence dataset (Table 1). The C-set only partly covers the L-dataset

(37%) (Table 2), which suggests that the C-dataset is an underesti-

mate but representative sample of the GIs present in these genomes.

3.2 Improvements of IslandPath-DIMOB
To assess the improvement of IslandPath-DIMOB, we compared the

performance of the releases v0.2.0 and v1.0.0 on the updated refer-

ence comparative dataset (Supplementary Table S1) using the old

genome files. IslandPath-DIMOB v0.2.0 showed a recall, precision

Table 1. Mean GI prediction accuracy assessed using the 104 genomes of the reference C-dataset and overlap with the literature dataset in

six genomes

Method MCC F-score Accuracy Precision Recall

Old genome filesa IslandPath-DIMOB v1.0.0 0.51 0.55 0.77 0.88 0.46

IslandPath-DIMOB v0.2.0 0.39 0.44 0.73 0.83 0.34

New genome filesb IslandViewer 4 0.70 0.78 0.89 0.90 0.73

IslandPath-DIMOB v1.0.0 0.49 0.55 0.77 0.87 0.47

SIGI-HMM 0.35 0.37 0.73 0.92 0.26

MTGIpick 0.32 0.56 0.70 0.55 0.68

Zisland Explorer 0.20 0.23 0.69 0.85 0.18

Islander 0.19 0.20 0.70 0.97 0.14

MSGIP 0.15 0.20 0.68 0.87 0.16

Literature dataset Literature 0.89 0.94 0.94 1 0.89

aOld genome files for the reference dataset as available in RefSeq before July 2014.
bNew genome files for the reference dataset downloaded from RefSeq on February 9, 2017.
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and accuracy of 34.4%, 83.1% and 72.7%, respectively (Table 1).

In addition to the different positive C-dataset used here, several

other reasons explain the difference in the accuracy reported here

for IslandPath-DIMOB v0.2.0 compared to the original assessment

(Langille et al., 2008) that showed a 35.6% recall, 85.8% precision

and 86.2% accuracy. First, although the version of the genome ac-

cession number and thus the genome sequence itself is identical to

that used in the analysis by Langille et al., the genome annotation

may have changed, which may impact the detection of mobility

genes. Furthermore, the use of a newer version of HMMER3, in-

stead of HMMER2, to identify mobility genes influences the results.

Finally, to better reflect the variation in the ability to predict GIs in

a variety of genomes, we calculated here the average of the recall,

precision and accuracy for each genome rather than an overall value

as performed previously (Langille et al., 2008). The new IslandPath-

DIMOB v1.0.0 has a recall, precision and accuracy of 46.1.8%,

88.4% and 77.1%, respectively. This represents a 11.7% increase in

recall and a 5.3% increase in precision for IslandPath-DIMOB

v1.0.0 compared to the previous release.

3.3 Assessment of prediction accuracy
To compare the performance of IslandPath-DIMOB v1.0.0 to the

latest and the most accurate tools for GI prediction, we used both a

reference dataset identified by comparative genomics (C-dataset)

and a dataset from the literature (L-dataset).

3.3.1 Prediction accuracy using the C-dataset

The software assessed vary greatly in their mean ability to predict

GIs, generally with a tradeoff between recall and precision

(Table 1). Islander has the highest precision (97.1%) but a low recall

rate (14%), as can be expected since it only predicts canonic GIs in-

serted into tRNAs or tmRNAs, with both attachment sites con-

served and encoding an integrase (Hudson et al., 2015). SIGI-HMM

follows closely with 91.9% precision, also with an intermediate re-

call of 26.4%. ZislandExplorer and MSGIP additionally have low

recall (17.7% and 16.3%, respectively) with good precision above

85%. On the other hand, MTGIpick has the highest recall (67.5%)

but a low precision (55.1%). IslandPath-DIMOB v1.0.0 has the se-

cond highest recall (46.9%) while retaining a high precision

(87.4%). This is reflected in the overall accuracy as well as the F-

score that factors both the recall and the precision. Among individ-

ual methods tested here, IslandPath-DIMOB v1.0.0 also obtains the

highest Matthews correlation coefficient that is considered a bal-

anced measure of the correlation between observed and predicted

binary classification independent of class sizes. Due to its high recall,

MTGIpick also obtains a high F-score but a markedly lower

Matthews correlation coefficient. Finally, to show the value of using

multiple GI predictors, we have included in the comparison

IslandViewer 4, that integrates three methods (SIGI-HMM,

IslandPath-DIMOB v1.0.0 and IslandPick that all have relatively

high precision). It outperforms all the single-method predictors with

an MCC score over 0.7 and a high recall (70.3%) while maintaining

a high precision (>90%).

Although widely used in the assessment of GI prediction tools,

the mean of accuracy metrics might not represent well the overall

performance of a software. Indeed, our analysis shows that, in most

cases, a broad distribution of values is obtained by each software for

the different genomes in the reference dataset (Fig. 1). For example,

the mean precision is highly influenced by some genomes with very

low values. More robust to outliers, the median precision of

Islander, SIGI-HMM, MSGIP and ZislandExplorer is 100%, but

IslandPath-DIMOB v1.0.0 follows closely with a median precision

of 99%. This shows that, in most genomes, the latter tools do not

predict GIs in highly conserved genomic regions. Most importantly,

the variation of metrics depending on the genome highlights the

need for large datasets to benchmark GI prediction tools, as a small

number of genomes can easily lead to biased accuracy metrics.

Furthermore, the use of similar datasets such as that from Langille

et al. (2008) to train or develop methods and test these methods

may bias the assessment of GI prediction software. As for

IslandPath-DIMOB, other methods also have incorporated such is-

lands in their training dataset and are affected by this issue.

Therefore, it is essential to also assess GIs using an independent

dataset such as well characterized GIs from literature reviews.

3.3.2 Prediction accuracy using the L-dataset

GI predictions were also compared to GIs in six genomes that were

precisely described in the literature. Most individual GI prediction

tools show similar recall when using the L-dataset and the C-dataset.

However, due to the small number of genomes in the L-dataset, the

assessment is much more sensitive to the set of genomes used. In

fact, most methods, except Zisland Explorer show a higher recall

(betweenþ3% for SIGI-HMM andþ13% for MSGIP) than the

average presented in Table 1 in these six genomes when assessed

against the C-dataset. Three methods—Islander, SIGI-HMM and

IslandPath-DIMOB—see a decrease in recall between �1% and

�6% with the assessment against the L-dataset for these six gen-

omes, and three methods—MTGIpick, Zisland Explorer and

MSGIP—show an increase in recall of 0.5%, 3.3% and 5.4%, re-

spectively. Also, large variations can be observed in the precision of

the GI prediction tools. Since the negative dataset and thus the num-

ber of false positives remains identical in the C-dataset and L-dataset

comparisons, the improvement in precision is due to the increased

recall of most prediction methods as well as the limited number of

genomes represented in the L-dataset. As mentioned above, small

number of genomes might yield incorrect mean values due to a

biased genome representation, thus stressing the importance to

Table 2. Mean GI prediction accuracy and overlap with the C-dataset assessed using the reference L-dataset comprising six genomes

Method MCC F-score Accuracy Precision Recall

Multiple predictors IslandViewer 4 0.64 0.75 0.79 0.998 0.62

Single predictors IslandPath-DIMOB v1.0.0 0.54 0.67 0.72 0.979 0.52

MTGIpick 0.50 0.78 0.75 0.82 0.74

SIGI-HMM 0.36 0.42 0.60 0.998 0.29

Islander 0.32 0.35 0.56 1 0.23

MSGIP 0.31 0.44 0.62 0.95 0.35

Zisland Explorer 0.18 0.26 0.52 0.83 0.17

Comparative dataset C-dataset 0.43 0.51 0.65 1 0.37
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develop larger standardized dataset with manually curated GIs from

the literature, or other analyses, to accurately assess GI predictors.

The recall of IslandViewer 4 is significantly decreased (to

61.9%) by the accuracy assessment using the L-dataset (Table 2).

This is expected given that IslandPick predictions from IslandViewer

4 were all included in the reference C-dataset, thereby artificially

increasing the recall of IslandViewer 4 in the C-dataset accuracy as-

sessment. The true recall of IslandViewer 4 is therefore likely more

correct in the case of the L-dataset. Nevertheless, IslandViewer 4 ex-

hibits high recall and precision leading to the highest MCC score

among predictors, which is considered a less-biased measure of cor-

relation between the reference dataset and the predictions. It is fol-

lowed by IslandPath-DIMOB v1.0.0, that still conserves the highest

score among single prediction methods. Overall, these data confirm

the very good accuracy of both the comparative genomics dataset,

and this new IslandPath-DIMOB release, for the prediction of GIs in

microbial genomes.

4 Conclusion

We report here a new version of IslandPath-DIMOB that signifi-

cantly improves the identification of GIs in microbial genomes. We

have improved and expanded the reference GI dataset (positive data-

set) predicted by IslandPick that can be used for GI predictor evalu-

ation, as well as a corrected negative dataset of non-GI regions

derived from Langille et al. (2008). Given the large variation in

accuracy observed for all the GI prediction tools among the differ-

ent genomes within and across bacterial species, we strongly

recommend the use of such large datasets to assess past and new GI

prediction tools. Although the present dataset is not optimal because

it only partly covers GIs based on curated literature review, it repre-

sents a good resource and a standardized reference to benchmark GI

prediction tools, similar to the past dataset which was used to com-

pare predictive methods. The accuracy assessment has confirmed

that IslandPath-DIMOB remains a method of choice compared

to other tools, and now provides higher recall at high precision.

Its use in combination with other methods, in particular in the

IslandViewer 4 webserver (Bertelli et al., 2017), provides researchers

with highly improved GI predictions for both pre-computed genome

analysis based on the collection of NCBI genomes, plus more custom

bacterial and archaeal genome analysis submitted by users to such a

webserver. The standalone IslandPath-DIMOB version will also be

useful for users with large-scale/local analyses needs, and those

wishing to implement this method in their own pipelines. In the era

of whole genome sequencing for environmental strains with

enhanced adaptability (Juhas et al., 2009) as well as for pathogen

outbreak investigation (Bertelli and Greub, 2013; Fricke and Rasko,

2014), such GI prediction methods will remain key in identifying

important genomic regions that can encode metabolic genes, viru-

lence factors or antimicrobial resistance genes of particular environ-

mental and medical relevance.
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