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Abstract

Background: One-dimensional 1H-NMR spectroscopy is widely used for high-throughput characterization of
metabolites in complex biological mixtures. However, the accurate identification of individual compounds is still a
challenging task, particularly in spectral regions with higher peak densities. The need for automatic tools to
facilitate and further improve the accuracy of such tasks, while using increasingly larger reference spectral libraries
becomes a priority of current metabolomics research.

Results: We introduce a web server application, called MetaboHunter, which can be used for automatic
assignment of 1H-NMR spectra of metabolites. MetaboHunter provides methods for automatic metabolite
identification based on spectra or peak lists with three different search methods and with possibility for peak drift
in a user defined spectral range. The assignment is performed using as reference libraries manually curated data
from two major publicly available databases of NMR metabolite standard measurements (HMDB and MMCD). Tests
using a variety of synthetic and experimental spectra of single and multi metabolite mixtures show that
MetaboHunter is able to identify, in average, more than 80% of detectable metabolites from spectra of synthetic
mixtures and more than 50% from spectra corresponding to experimental mixtures. This work also suggests that
better scoring functions improve by more than 30% the performance of MetaboHunter’s metabolite identification
methods.

Conclusions: MetaboHunter is a freely accessible, easy to use and user friendly 1H-NMR-based web server
application that provides efficient data input and pre-processing, flexible parameter settings, fast and automatic
metabolite fingerprinting and results visualization via intuitive plotting and compound peak hit maps. Compared to
other published and freely accessible metabolomics tools, MetaboHunter implements three efficient methods to
search for metabolites in manually curated data from two reference libraries.

Availability: http://www.nrcbioinformatics.ca/metabohunter/

Background
High throughput metabolic profiling has been per-
formed for over 40 years [1] on tissue extracts and bio-
fluids. However, due to recent analytical and
computational advances, metabolomics, as is now
known, is an increasingly popular approach for monitor-
ing multi-parametric responses in complex biological
systems with applications ranging from the analysis of
unicellular samples all the way to the analysis of

complex systems such as plants and mammals. By defi-
nition, metabolomics is a comprehensive qualitative and
quantitative study of small molecules composition of
organisms [2]. NMR spectroscopy is one of the most
widely used methods for analytical measurement of
metabolic profiles in systems particularly because of its
reliability, reproducibility, speed and low cost [3,4].
One of the major challenges in NMR analysis of meta-

bolic profiles is the automatic metabolite assignment
from spectra. Current approaches include manual
assignment based on user experience and the assign-
ment based on binning, curve-fitting and direct compar-
ison of 1D and 2D NMR measurements [5-7] with and
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without reference library support. Although the two
approaches have their merit, the manual assignment is
highly biased towards user knowledge and expectations
and 2D methods can be time consuming and yet still
insufficient for direct assignment [7]. At the same time,
unlike the classical NMR applications in molecular
structure identification, in metabolomic applications,
molecular structures of common metabolites are already
known and thus assignment of spectra can be done by
direct comparison with reference libraries, when these
become available.
Various approaches were described in previous publi-

cations, including: (i) binning approaches [8,9] where a
spectrum is typically divided into equally or variable
sized bins and the intensities in each bin are qualified
and quantified via integration techniques; (ii) curve fit-
ting without reference library support, where de-convo-
luting highly overlapped linearly mixed individual
metabolite spectra is achieved via various methodologies
ranging from Bayesian decompositions [10,11] and least
squares-based non-negative matrix factorization [12] to
shape fitting techniques [13-17]; (iii) curve fitting with
reference library support, where least squares strategies
[18-20], Bayesian model selection [21], and genetic algo-
rithms [22,23] are employed, and (iv) direct comparison
methods that calculate the overlap of known peaks with
peaks from query spectra [22]. More comprehensive
descriptions of methods and practical aspects of applied
metabolomics are described in a number of recent pub-
lications [24-27].
Two large collections of 1H-NMR spectra of known

metabolites are already available as part of the Human
Metabolome Database - HMDB [28] and Madison
Metabolomics Consortium Database - MMCD [29].
Thus, for experiments performed under similar condi-
tions as the ones used for creating the reference library,
a necessary step for automatic assignment is the devel-
opment of an efficient bioinformatic tool for compari-
son, identification and assignment directly from the
spectra.
In this paper we introduce MetaboHunter - an effi-

cient automatic metabolite identification approach that
provides three distinct methods and two reference
libraries wrapped up in an intuitive, flexible and user
friendly web server application. The three methods
include: (i) a novel scoring function that outperforms
the simpler peaks match percentages employed by other
tools such as HMDB NMR Search [28] and MetaboMi-
ner [6], (ii) an iterative greedy selective approach that
minimizes the number of false positives at the expense
of slightly increasing the number of false negatives and,
(iii) selection approaches with a user adjustable chemical
peak drift parameter that allows the identification of
mixture metabolites in spectra obtained under slightly

different conditions than the ones used for the measure-
ment of reference library compounds. In addition to
what other metabolite selection strategies have to offer,
our approach includes a simple and intuitive graphical
user interface, two manually curated reference libraries
of metabolite spectra, a better metabolite scoring func-
tion and a set of three selection strategies that, in aver-
age, outperform existing methods provided by other
publicly available metabolite identification software.

Results and Discussion
System Architecture
MetaboHunter is a web-server application for identifica-
tion of metabolites in 1H-NMR spectra of complex mix-
tures based on two manually curated reference libraries.
The individual spectra of metabolites from the reference
libraries and the additional metabolite information are
stored in plain text files and are also indexed based on
their peak locations and original IDs for faster access.
The user interaction is performed via an intuitive and
user-friendly graphical interface powered by PHP and
JavaScript routines. MetaboHunter takes as input a full
spectrum or a list of peaks and their corresponding
measured amplitudes, which can be either provided as
text files or pasted directly into a text box. Once the
input is provided, a session is created for each user and
the index files are uploaded. The full spectrum input
files are pre-screened based on the noise threshold
using custom-built Perl scripts and one of the three
metabolite selection methods are executed. All three
methods are also implemented in Perl. The output con-
sisting of a list of potential metabolite matches is pre-
sented to the user and further functionality is provided
to visualize, compare and download the results. More
details regarding the pre-screening process, the metabo-
lite selection methods and the reference libraries are
presented in the Methods Section.

MetaboHunter Testing
Different NMR spectra, combinations of molecular spec-
tra as well as spectra of a chemical mixture were used
for testing the methods provided as part of MetaboHun-
ter. Validation was performed in all cases by analyzing
results of searches using complete, not binned spectra
as well as externally determined peak lists. Peaks from
FID files were determined using MNova software by
Mestrelab Research http://www.mestrec.com. The
Human Metabolomics Database (HMDB) contains dif-
ferent information about many metabolites including
their NMR chemical shifts and these were used for the
majority of tests presented here. In the test examples
shown below we have included metabolites with large
and small number of spectral peaks where some peaks
were non-unique. Results of the search for spectra of
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several individual metabolites (SYN1 - SYN4) are shown
in Additional file 1, Table 1S. For the analysis of Meta-
boHunter’s ability to assign metabolites from the spectra
of mixtures we have combined free induction decay
(FID) measurements of 13 metabolites provided by
HMDB into one NMR spectrum. Assuming that there
are no chemical interactions between molecules, the
NMR spectrum of a mixture is a direct sum of spectra
of the components. For this test we have selected 13
water soluble, i.e. hydrophilic metabolites that were con-
sistently observed in standard 1D 1H-NMR of human
cell lines [30-34]. The results of assignments for this
spectrum are presented in Additional file 1, Table 2S.
Finally, MetaboHunters’s assignment power was investi-
gated against the NMR experimental measurements of a
spiked-in urine sample (EXP1) measured on a 500 MHz
Bruker Avance NMR spectrometer and a mixture of 5
metabolites (EXP2) performed in house on a 270 MHz
JEOL JNM-GSX Nuclear Magnetic Resonance Spectro-
meter (Mount Allison University). The peak databases
used by MetaboHunter include measurements from 400
MHz, 500 MHz and 600 MHz instruments. Thus valida-
tion with spectra from the 500 MHz and the 270 MHz
shows the possibility of using methods provided under
MetaboHunter platform for assignment of data coming
from different NMR field strength measurements. The
results of this analysis are shown in Additional file 1,
Tables 3S and 5S. The results reported in Additional file
1, Table 5S show prediction accuracy for the spiked
metabolites and also include a list of 10 additional meta-
bolites, such as Creatinine, Glycine and Lysine, com-
monly found in urine [35], that were correctly identified
with our methods.

Analysis of metabolite recovery for MH1_HMDB,
MH1_MMCD, MH3_HMDB and MH3_MMCD from
simulated mixtures of randomly selected library
metabolites
A test of the metabolite fingerprinting engine employed
in MetaboHunter for the analysis of NMR peak infor-
mation was performed first by automatic search of peak
list mixtures for n metabolites, where n = 1:10. Each
result was averaged over 100 runs, each run consisting
of randomly selecting and mixing the peaks for n meta-
bolites from HMDB and MMCD. This controlled
approach can evaluate the ability of the MH1 and MH3
methods to efficiently recover randomly selected meta-
bolites from the supporting HMDB and MMCD
libraries present in various mixtures.
The accuracy of this search, i.e. its ability to return

metabolites present in the mixtures, is automatically
determined from investigating whether the metabolites
are included: a) in the complete list and b) in the top n
listed metabolites (Figures 1 and 2). When the complete

lists of proposed assignments are analyzed, 100%
(MH1_HMDB) and respectively 98% (MH3_HMDB) of
metabolites (n = 1) in the single component mixture are
found, while for mixtures with more than one metabo-
lite (n > 1, Figures 1 and 2) the decrease in the average
percentage of correctly identified metabolites is insignifi-
cant for MH1_HMDB (98.8% for n = 10) but becomes
more drastic for MH3_HMDB (76.7% for n = 10). The
same effect is observed for MH1_MMCD and
MH3_MMCD. The lower percentage obtained with
MH3_HMDB for increasingly large numbers of metabo-
lites in mixtures is caused by the high overlaps in shared
peaks among library metabolites and the mechanism for
selecting metabolites with disjoint peaks adopted in
MH3 (details in Methods). The same analysis reveals
that HMDB NMR Search is able to identify only 35% of
the metabolites for n = 1 and only 26% for n = 10.
If only the top n scored assignments are included, we

observe a minor decrease in accuracy of MH1 and MH3
with the increase of the number of metabolites in the
mixture. In this case, over 98% of the time
(MH1_HMDB and MH3_HMDB), the top metabolite
corresponds to the peak list for n = 1 and the accuracy
decreases to 75.3% (MH1_HMDB) and 77.9%
(MH3_HMDB) for mixtures of n = 10 metabolites. For
the same type of analysis and the same benchmark data,
HMDB NMR Search is able to retrieve 18% of the meta-
bolites for n = 1 and only 5.4% when n = 10.

The effects of spectral noise originated from partial peak
information and chemical shift variations on metabolite
identification
We estimated the performance of the proposed methods
using data from both spectral libraries under two types
of noise - missing peaks (MH1, MH3) and chemically
shifted peaks (MH1, MH2, MH3). Following the metho-
dology described by Xia et al. [6], we simulated missing
peaks by removing from each spectral compound uni-
formly at random between 0% and 50% of the peaks.
The chemical shift variations were simulated by adding
random values of ± 0.01, ± 0.02, ± 0.03, ± 0.04 and ±
0.05 ppm to each 1H chemical shift. As a first step
towards the evaluation of our methods, we applied an
exhaustive approach where peaks for each individual
metabolite from both reference libraries (HMDB,
MMCD) were subject to noise adjustments as described
above. We repeated the process 5 times per metabolite
and reported the average value. When peaks were
removed at random from each metabolite (Figure 3), on
average, no major loss of performance is observed (per-
formance is around 95%) for up to 20% of peaks
removed. The percentage of correctly identified metabo-
lites decreases with removing more peaks, down to
approximately 60% assignment accuracy when half of
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Figure 1 Results of metabolite searches for mixtures of HMDB peaks corresponding to n metabolites, where n = 1:10. The curves
labelled “MHX_DB ALL”, where X = {1,3} and DB = {HMDB, MMCD}, represent average percentages of correctly matched metabolites over 100
runs using MH1 and MH3, when all matches regardless of their position are considered, whereas the curves labelled “MHX_DB TOPN” represent
average percentages of correctly matched metabolites over 100 runs using MH1 and MH3, when only top n matches were selected, where n =
1:10. The “HMDB NMR Search ALL” and “HMDB NMR Search TOPN” curves represent average percentages of correctly matched metabolites over
100 runs using the HMDB NMR Search option available online. These curves are not present in the MMCD plot since metabolites have different
names and the database does not have a 100% overlap with HMDB.
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Figure 2 Results of metabolite searches for mixtures of MMCD peaks corresponding to n metabolites, where n = 1:10. The curves
labelled “MHX_DB ALL”, where X = {1,3} and DB = {HMDB, MMCD}, represent average percentages of correctly matched metabolites over 100
runs using MH1 and MH3, when all matches regardless of their position are considered, whereas the curves labelled “MHX_DB TOPN” represent
average percentages of correctly matched metabolites over 100 runs using MH1 and MH3, when only top n matches were selected, where n =
1:10.

Tulpan et al. BMC Bioinformatics 2011, 12:400
http://www.biomedcentral.com/1471-2105/12/400

Page 4 of 22



the peaks are removed from each metabolite spectrum.
We also notice that both, MH1 and MH3 methods
using HMDB and MMCD reference libraries fare
equally well in this case.
Nevertheless, the performance of MH1 and MH3

methods is clearly affected by noise originated from che-
mical shift variations (Figure 4). For a chemical shift
variation of ± 0.01 ppm, MH1 with HMDB and MMCD
reference libraries suffers a performance drop from
above 90% (no shift) to below 40% (34% for
MH1_HMDB, 16% for MH1_MMCD). When the che-
mical shift variation increases up to ± 0.05 ppm, the
performance of MH1 (HMDB and MMCD) drops below
5% (1% and respectively 2%). A similar but not so dra-
matic drop in performance is also noticed for the MH3
method with HMDB and MMCD reference libraries.
For a ± 0.05 ppm chemical shift variation, MH3’s per-
formance drops down to 6% (HMDB) and respectively
14% (MMCD).
Figure 4 shows that a large proportion of the perfor-

mance loss due to chemical shift changes could be
recovered if MH2 method is used instead of MH1.
Assuming that the chemical shift variation parameter
approximates well the true chemical shift change, MH2
recovers the performance lost by MH1 on average up to
30.2% of the time when HMDB is used as reference
library and up to 41% when MMCD is the reference
library.

As a second evaluation step, we applied the random
pooling technique described in [6], where we generated
synthetic mixtures by pooling uniformly at random 50
metabolites from each of the two metabolite reference
libraries (HMDB and MMCD). After injecting chemical
noise in each metabolite spectrum via chemical shift
alterations and random peaks removal, the mixtures
were searched against the reference libraries using MH1,
MH2 and MH3 and a successful match is recorded if
the mixture metabolite was reported within the first 50
results produced by each method. Here, our reporting
procedure is more stringent and differs from [6], since
they adopted a threshold based approach (75%) for their
perfect match method, which in turn does not set a
limit on the total number of reported matches. The pro-
cess was repeated 50 times for each chemical shift varia-
tion and peak removal percentage and the average value
was reported (Figures 5 and 6). Since the MH2 method
was proposed to alleviate the insufficiencies of MH1
caused by chemical shift variations, MH2 was only
applied to data that suffered chemical shift
modifications.
Figure 5 depicts the same performance decreasing

trend of the proposed methods with the increase of the
percentage of removed peaks, as it was observed when
single metabolites with noisy peak values were searched
against reference libraries. In contrast with the results
obtained by Xia et al. [6], whose percentage match
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Figure 3 Comparative performance of metabolite matching strategies applied on individual metabolite spectra with removed peaks.
Each experimental metabolite spectrum from both reference libraries was altered by removing from 0% to 50% of the peaks and then searched
against both libraries. The percentage of matched metabolites was averaged over 5 iterations.
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Figure 5 Comparative performance of metabolite matching strategies applied on synthetic mixtures with removed peaks. Synthetic
mixture spectra were obtained by pooling peaks from 50 randomly selected metabolites from the two reference libraries (HMDB and MMCD).
Spectral noise was introduced by removing from 0% to 50% of the peaks. The percentage of correctly identified metabolites was averaged over
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method using complex and more complete 2D spectral
information exhibited a sharp decrease in performance
(70%), when the percentage of removed peaks varies
from 0% to 50%, we notice an average performance
decrease of less than 20% for both MH1 and MH3
methods regardless of the reference library being used.
As clearly shown in Figure 5, the performance decrease
is less stringent for MH1 and MH3 using HMDB spec-
tral data; although the initial performance (35% for 0%
peaks removal) is 25% lower compared to the perfor-
mance when using MMCD spectral data (64% for 0%
peaks removal).
Similarly as for the case of single metabolite identifica-

tion against reference libraries, the noise introduced by
chemical shift variations affects the performance of the
proposed methods more. Figure 6 shows that 47% per-
formance loss (from 63% to 16%) is recorded for
MH1_MMCD, while only 20% performance loss (from
28% to 8%) was recorded for MH3_HMDB. The best
performing method overall is MH2_MMCD, which
improves the performance of MH1_MMCD with up to
10% (for ± 0.01 chemical shift variation). When com-
pared to the results obtained with MetaboMiner [6], our
percentage match - based method, MH1, seems to be
affected earlier by smaller chemical shift changes (± 0.01
ppm). Nevertheless its performance does not deteriorate
almost at all when larger deviations are applied on the

peak locations. This is in stark contrast to the PM
method implemented in MetaboMiner, which loses only
20% in performance for deviations in chemical shift of ±
0.02 ppm, but drops by more than 70% down to 10%
performance for chemical shift changes of ± 0.04 ppm
and ± 0.05 ppm.
Compared to the performance of our methods when

single metabolite spectra (noise adjusted) are searched
against reference libraries, the relatively large size (50
metabolites) of the mixture combined with the large size
of the reference spectral libraries, adds complexity and
difficulty to the metabolite identification problem.

The selection of optimal cut-offs
When a mixture with an unknown number of metabo-
lites is analyzed, the selection of an optimal cut-off
point for the metabolite list that will balance specificity
and sensitivity and optimize accuracy is important. Here
we use Receiver Operating Characteristic (ROC) curves
to shed light on cut-offs that seem reasonable for both,
synthetic and experimental data.
Each cut-off corresponds to a point on a ROC curve.

The ROC curve has the sensitivity plotted vertically and
the reversed scale of the specificity on the horizontal
axis. The scale of the horizontal axis is also called the
false positive rate. The sensitivity and specificity, and
therefore the performance of the system, vary with the
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Figure 6 Comparative performance of metabolite matching strategies applied on synthetic mixtures with chemical shift variations.
Synthetic mixture spectra were obtained by pooling peaks from 50 randomly selected metabolites from the two reference libraries (HMDB and
MMCD). Spectral noise was introduced by adding/subtracting a chemical shift variation from 0 ppm to ± 0.05 ppm in equal increments of 0.01.
The percentage of correctly identified metabolites was averaged over 50 iterations.

Tulpan et al. BMC Bioinformatics 2011, 12:400
http://www.biomedcentral.com/1471-2105/12/400

Page 7 of 22



cut-off. When comparing ROC curves of different meth-
ods, good curves lie closer to the top left corner with
the diagonal line representing the random solution.
When synthetic data sets containing mixtures of 13

metabolites are considered (SYN5_s, SYN5_f, SYN5_p),
the highest accuracies (0.99) are obtained with
MH1_HMDB (see Table 1 and Additional file 2, Figures
1S and 2S) with different cut-offs ranging from 8 to 13.
The second best results were obtained with
MH3_HMDB, while the metabolite identification
method employed by HMDB NMR Search ranks third
(0.98). When the cut-off is set to be equal with the
number of metabolites in the mixture (13), the same
method (MH1_HMDB) marginally outperforms the
other four (see Additional file 1, Table 6S).
For experimental data sets EXP1 and EXP2, HMDB

NMR Search, MH1_HMDB and MH3_HMDB perform
equally well with accuracies above 0.98, although in this
case, the optimal cut-off is uniformly low (cut-off = 1)
except for MH1_MMCD (cut-off = 2).
The AUC values for synthetic data sets (Table 2) are

highest for the MH1_HMDB method (between 0.83 and
0.89), and they decrease to 0.51 and 0.48 for HMDB
NMR Search and MH3_MMCD. The AUC values for
experimental data sets drop dramatically below 0.5 (see
Additional file 2, Figures 3S and 4S), given that the num-
ber of false positives is much higher due to unknown
exact metabolite content (EXP1) and partially due to
measurement of spectra using NMR spectrometers oper-
ating at much lower frequencies (270 MHz for EXP2)
and thus lower resolution than the instruments used to
acquire reference metabolite spectra (400-600 MHz).

Metabolite identification and results ranking
The practical utility of a metabolite identification
method ultimately resides in its ability to identify as
many metabolites as possible in a given mixture with as
many valid matches as possible ranked closer to the top

of the results list. In an ideal world, we would like to
see the first 13 matches for data set SYN5_s as being
the exact 13 metabolites from the mixture.
Here we investigate and compare the ability of the

proposed methods (Tables 3 and 4) to find highly
ranked correctly identified metabolites using two
metrics, namely the percentage of correctly identified
metabolites in top 100 results and the average rank of
the identified metabolites. The first metric will quantify
the solution while the second will qualify each result.
For experimental mixture EXP1, the highest percen-

tage of metabolites out of top 100 was obtained with
MH1_HMDB with an average rank of 58.5, while the
best average rank (12.50) was obtained with
MH3_MMCD. For this data set, the HMDB NMR
Search identified only 25% (1 out of 4) of the metabo-
lites with an average rank of 91. The NMR search tools
employed by BMRB [36] and MMCD also identify up to
2 metabolites with lower average ranks compared to
HMDB NMR Search.
For experimental mixture EXP2, the highest percen-

tage of correctly identified metabolites (100%) was
obtained with two methods, namely MH1_MMCD and
MH2_HMDB with a chemical shift variation of ± 0.01
ppm, the latter having the lowest average ranking
(18.00). Nevertheless, the best two average rankings
were obtained with MH3_MMCD (2.00) and
MH3_HMDB (5.67). HMDB NMR Search identified 4
out of 5 (80%) metabolites with an average ranking of
15.5, while the search tools of BMRB and MMCD iden-
tified only 1 out of 5 metabolites.
For synthetic mixtures (SYN5_s, SYN5_f, SYN5_p),

the MH1_HMDB method consistently outperforms all
the other methods, with match percentages of above
92% and average ranking below 13. For the same data
sets, the HMDB NMR Search method correctly identi-
fies up to 11 out of 13 metabolites (84.62%) for 2 out of
three data sets with the best ranking of 21.17. For the

Table 1 Optimal cut-offs corresponding to maximal accuracies (in parentheses) for all 5 methods.

Data set MH1_HMDB MH1_MMCD MH3_HMDB MH3_MMCD HMDB NMR Search

SYN5_s 8 4 8 1 1

(0.994) (0.971) (0.992) (0.969) (0.985)

SYN5_f 9 1 5 1 1

(0.995) (0.973) (0.991) (0.973) (0.985)

SYN5_p 13 14 7 7 1

(0.998) (0.984) (0.993) (0.982) (0.987)

EXP1 1 1 1 1 1

(0.984) (0.969) (0.984) (0.969) (0.985)

EXP2 1 2 1 1 1

(0.986) (0.973) (0.987) (0.973) (0.985)

Data sets SYN5_s, SYN5_f and SYN5_p are synthetic mixtures and EXP1 and EXP2 are experimental mixtures. Each table cell contains the optimal K cut-off value
(top K) and the corresponding maximal accuracy value (in parentheses).
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third data set (SYN5_f), the same method is not able to
identify any of the 13 metabolites, while the other meth-
ods seem to perform relatively well. When spectra of
single metabolites are queried against the reference
libraries (see Additional file 1, Table 1S), all of our
methods clearly outperform HMDB NMR Search,
BMRB, MMCD and Chenomx Profiler, both in terms of
percentage of correctly identified metabolites and aver-
age ranking.
Overall, we notice that MH3_HMDB and

MH3_MMCD produce the lowest average rankings
regardless of the data set, at the expense of increasing
the number of false negatives, while MH1_HMDB and
MH1_MMCD typically identify a higher percentage of
metabolites, but with slightly lower rankings.

The effect of scoring functions on metabolite
identification
Our modified scoring function (Equation 1) for metabo-
lite identification was developed to insure that

metabolites with larger numbers of peaks that have
identical percentages of matched peaks as those with
smaller number of peaks, should score higher. We prove
that our novel scoring function was valid by performing
an exhaustive search of single metabolites queried
against the corresponding reference libraries (HMDB
and MMCD). Figure 7 shows that MetaboHunter’s
metabolite identification accuracy averages 95% when
the new scoring function (f2) is used, compared to 59%
when the simpler percentage-based function used in
HMDB NMR Search and other NMR metabolite finger-
printing tools is used.

Conclusions
MetaboHunter provides an excellent tool for spectral
assignment from 1H-NMR data with a novel and effi-
cient scoring function and several different search meth-
ods. In the outlined examples MetaboHunter’s search
methods found metabolites included in the spectra with
good accuracy. In many cases metabolites in question

Table 2 Area Under Curves (AUCs) for all 5 methods.

Data set MH1_HMDB MH1_MMCD MH3_HMDB MH3_MMCD HMDB NMR Search

SYN5_s 0.835 0.636 0.653 0.484 0.516

SYN5_f 0.839 0.689 0.701 0.551 0

SYN5_p 0.890 0.849 0.663 0.589 0.739

EXP1 0.065 0.054 0.067 0.137 0.007

EXP2 0.170 0.171 0.221 0.153 0.264

Data sets SYN5_s, SYN5_f and SYN5_p are synthetic mixtures and EXP1 and EXP2 are experimental mixtures. Each table cell contains the Area Under Curve (AUC)
value calculated using the trapezoid rule [37].

Table 3 Metabolite identification and results ranking for experimental mixtures.

Method Sample Total # metabolites # Correctly identified (top 100) % AVG_Rank

MH1_HMDB EXP1 4 2 50.00 58.50

MH2_HMDB (0.01 ppm) EXP1 4 0 0.00 100.00

MH3_HMDB EXP1 4 1 25.00 14.00

MH1_MMCD EXP1 5 2 40.00 65.50

MH2_MMCD EXP1 5 2 40.00 82.00

MH3_MMCD EXP1 5 2 40.00 12.50

HMDB NMR Search EXP1 4 1 25.00 91.00

BMRB EXP1 5 1 20.00 26.00

MMCD EXP1 5 2 40.00 20.50

MH1_HMDB EXP2 5 3 60.00 27.33

MH2_HMDB (0.01 ppm) EXP2 5 5 100.00 18.00

MH3_HMDB EXP2 5 3 60.00 5.67

MH1_MMCD EXP2 3 3 100.00 27.00

MH2_MMCD EXP2 3 2 66.67 40.50

MH3_MMCD EXP2 3 2 66.67 2.00

HMDB NMR Search EXP2 5 4 80.00 15.50

BMRB EXP2 5 1 20.00 22.00

MMCD EXP2 5 1 20.00 54.00

BMRB and MMCD results were obtained using the following parameter settings: MMCD (method: NMR_based Search, H_tol = 0.05 ppm, Results to be shown:
100, Sample condition: D2O pD7.4 (273)), BMRB (method: NMR Peaks Query, Database to search: 1 H, H Range: 0.005).
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were obtained with the top, highest score, in the list,
however, in some cases they were still listed but with
lower scores.
Due to the large peak overlaps between different

metabolites and the relatively large number of spectra
present in the reference libraries, this can be expected
and can only be dealt with either by doing multidimen-
sional NMR or by utilizing a spectrum modelling from a
more accurate and more focused metabolite database.
We expect that the accuracy of our methods will

increase once metabolite spectral libraries obtained with
higher resolution spectrometers (≥800 MHz) will
become available. Such spectra typically contain more
detailed peak resolutions, thus reducing the peak over-
laps and increasing the ability of selection methods to
choose among potential metabolite candidates present
in a mixture.
We also acknowledge that, while MetaboHunter typi-

cally provides high quality results for synthetic and
experimental input spectra of 1H-NMR metabolite mix-
tures with up to 13 components, more testing using

spectra of mixtures with more components are
necessary.

Availability and Requirements
Project name: MetaboHunter
Project home page: http://www.nrcbioinformatics.ca/

metabohunter
Application type: web server (browser independent)

Methods
Data collection, curation and pre-processing
The reference libraries information used in this study was
collected from two publicly available resources, namely
876 metabolite peak lists (experimental) from the Human
Metabolome Database, version 2.5 [28], and 448 metabo-
lite peak lists from Madison Metabolomics Consortium
Database [29]. The data was curated and re-formatted.
The curation process consisted of manually adjusting the
formatting inconsistencies (mostly found in the NMR
Peaklist HMDB data files), that were further automatically
processed and summarized into indexed tables for fast

Table 4 Metabolite identification and results ranking for synthetic mixtures.

Method Sample Total # metabolites # Correctly identified (top 100) % AVG Rank

MH1_HMDB SYN5_s 13 12 92.31 10.92

MH2_HMDB (0.01 ppm) SYN5_s 13 12 92.31 34.50

MH3_HMDB SYN5_s 13 9 69.23 7.00

MH1_MMCD SYN5_s 13 11 84.62 26.09

MH2_MMCD SYN5_s 13 10 76.92 18.20

MH3_MMCD SYN5_s 13 7 53.85 11.43

HMDB NMR Search SYN5_s 13 11 84.62 40.09

BMRB SYN5_s 13 3 23.08 50.00

MMCD SYN5_s 13 6 46.15 64.50

MH1_HMDB SYN5_f 13 12 92.31 10.50

MH2_HMDB (0.01 ppm) SYN5_f 13 12 92.31 34.25

MH3_HMDB SYN5_f 13 10 76.92 10.20

MH1_MMCD SYN5_f 13 11 84.62 19.82

MH2_MMCD SYN5_f 13 11 84.62 28.64

MH3_MMCD SYN5_f 13 8 61.54 11.88

HMDB NMR Search SYN5_f 13 0 0.00 100.00

BMRB SYN5_f 13 5 38.46 54.00

MMCD SYN5_f 13 7 53.85 54.71

MH1_HMDB SYN5_p 13 13 100.00 12.31

MH2_HMDB (0.01 ppm) SYN5_p 13 13 100.00 19.31

MH3_HMDB SYN5_p 13 9 69.23 5.67

MH1_MMCD SYN5_p 13 12 92.31 9.42

MH2_MMCD SYN5_p 13 12 92.31 20.08

MH3_MMCD SYN5_p 13 8 61.54 5.75

HMDB NMR Search SYN5_p 13 11 84.62 21.17

BMRB SYN5_p 13 10 76.92 36.40

MMCD SYN5_p 13 4 30.77 56.75

BMRB and MMCD results were obtained using the following parameter settings: MMCD (method: NMR_based Search, H_tol = 0.05 ppm, Results to be shown:
100, Sample condition: D2O pD7.4 (273)), BMRB (method: NMR Peaks Query, Database to search: 1 H, H Range: 0.005).
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access. Specific metabolite data extracted from HMDB
metabocard files was also re-organized and indexed to
further facilitate its usage on the web server.
The data has been re-formatted as follows: (i) a set of

peaks (ppm and height pairs) has been re-formatted
with a 0.01 ppm precision and assigned to each metabo-
lite. These pieces of information are subsequently used
for metabolite identification and, (ii) each metabolite has
been assigned a source of provenience (HMDB,
MMCD), a type (drug, food additive, mammalian,
microbial, plant, synthetic/industrial chemical), the pH
of the sample in which it was measured (3.00 - 10.00),
the solvent (water, CDCl3, CD3OD, 5% DMSO), and
the frequency of the NMR machine (400 MHz, 500
MHz, 600 MHz).
Figures 8, 9, 10 and 11 show the frequencies of meta-

bolites from HMDB and MMCD data that share the
same peak coordinates and the distribution of the num-
ber of peaks for all metabolites. The number of metabo-
lites sharing the same peak coordinate is much higher
for HMDB reference metabolites than for the ones in
MMCD, while the number of metabolites in HMDB is
roughly only about two times higher than MMCD.

Datasets
The datasets used in this study consist of both, synthetic
and experimental data. The synthetic data can be cate-
gorized as: 1H-NMR spectra (_s), list of peaks extracted
externally (with MNova) from spectra (_f) and mixtures

of peaks obtained directly from HMDB peak lists (_p).
The following synthetic data sets are considered:

Single metabolites
- SYN1_s: Acetylcholine HMDB spectrum,
- SYN1_f: Acetylcholine HMDB spectral peaks,
- SYN1_p: Acetylcholine HMDB database peaks,
- SYN2_s: 17a-Estradiol HMDB spectrum,
- SYN2_f: 17a-Estradiol HMDB spectral peaks,
- SYN2_p: 17a-Estradiol HMDB database peaks,
- SYN3_s: Cholesterol HMDB spectrum,
- SYN3_f: Cholesterol HMDB spectral peaks,
- SYN3_p: Cholesterol HMDB database peaks,
- SYN4_s: D-Glucose HMDB spectrum,
- SYN4_f: D-Glucose HMDB spectral peaks,
- SYN4_p: D-Glucose HMDB database peaks.

Multiple metabolites
- SYN5_s: Mixture of 13 metabolites spectrum,
- SYN5_f: Mixture of FIDs for 13 metabolites from
HMDB spectral peaks,
- SYN5_p: Mixture of 13 metabolites HMDB peaks.

The 13 metabolites included in SYN5 are: Choline,
Glutathione, L-Alanine, L-Glutamic Acid, L-Glutamine,
L-Leucine, L-Valine, L-Asparagine, L-Isoleucine, L-Lac-
tic acid, L-Proline, Succinic acid and Taurine.
The experimental data includes:

Figure 7 Evaluation of MetaboHunter on individual metabolite spectra with methods that use different scoring functions. Each
individual metabolite spectrum was queried against the original reference libraries (HMDB and MMCD) using methods MH1 and MH3 that
applied the scoring functions f1 (simple percentage calculations) and f2 (Equation 1) for ranking the metabolites. The top metabolite hit in
MetaboHunter’s output was reported as a match if it was identical with the query metabolite. The process was repeated for all metabolites in
the reference libraries. MM = number of matched metabolites; TM = total number of metabolites.
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- EXP1: 1H-NMR spectrum of a spiked-in urine
sample from a healthy individual obtained from
Zheng et al. [21]. The spectrum was measured on a
500 MHz Bruker Avance NMR spectrometer. The

five spiked-in metabolites in this sample are: Taur-
ine, Hippuric acid, Nicotinate, Malic acid and Oxo-
glutaric acid. The remaining metabolites in the
mixture are not known.
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Figure 9 Distribution of the number of peak coordinates per metabolite in the HMDB reference library. The number of peak coordinates
for HMDB metabolites varies between 1 and 181.
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Figure 8 Frequency of metabolites that share the same peak coordinate in the HMDB reference library. The x-axis contains the locations
of the peaks (ppm) and the y-axis marks the number of metabolites that have peaks at given locations.
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- EXP2: An experimental mixture of 5 metabolites
measured on a 270 MHz Jeol spectrometer at 25°C.
Mixture was prepared under N2 atmosphere, in
99.8% D2O with reference substance (3-

(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt,
98% atom% D, TMSP, at 0.6 mM). The five metabo-
lites included in this sample are: Creatine, D-Glu-
cose, Citric acid, Phosphocholine and Accetylcholine.
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Figure 11 Distribution of the number of peak coordinates per metabolite in the MMCD reference library. The number of peak
coordinates for HMDB metabolites varies between 1 and 66.
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Peak identification and noise removal
The user input for MetaboHunter consists of a complete
spectrum in ASCII format structured on two columns,
first one representing the spectral point position (ppm)
and the second column representing the corresponding
intensity of the signal. Based on a user-provided thresh-
old for noise level, i.e. the minimum intensity level
above which peaks should be considered, the data is
pre-processed so that data points with intensity below
the threshold are removed and the peaks are automati-
cally identified (see Figure 12).

Exact and variable peaks matching
In MetaboHunter, a metabolite is considered to be pre-
sent if at least one of its peaks matches a peak in the
test sample and the computed significance score is
greater than a user-set threshold (default is 0.5).
While the significance score proposed in [6] computes

the ratio between the number of matched peaks and the
total number of peaks for each metabolite, here we pro-
pose a metabolite significance score that is able to dif-
ferentiate between matches of metabolites with low
number of peaks as opposed to those with greater num-
ber of peaks. The significance score is computed as the
ratio between: (i) the number of matched metabolite
peaks and (ii) one plus the total number of metabolite
peaks (Equation 1). For example, one metabolite with 2
out of 4 peaks matching a sample gets a score of 0.4,
while another metabolite with 5 out of 10 peaks

matching the same sample will get a higher score of
0.45, thus being ranked higher.
Equation 1. A novel scoring function used by all

three methods implemented in MetaboHunter.

significance score =
total number of matched peaks

1 + total number of peaks

Exact matches for metabolite peak locations can be
considered when chemical shifts of metabolites in the
sample are assumed to be the same as in the reference
database. Thus we provide an implementation of this
approach based on the significance score described
above. Methods MH2 and MH3 allow variations in che-
mical shifts and take as input a user-set parameter τ
representing the maximal range allowed. Each metabo-
lite peak is matched against all sample peaks p that fall
within the interval [p-τ, p+τ] and the corresponding sig-
nificance score is calculated and reported.

Metabolite fingerprinting methods
For the detection of metabolites using 1H-NMR spectra
of sample mixtures, we use three methods.
The first method (MH1) relies on exact matching of

peaks from the mixture with reference metabolite spec-
trum peaks collected and carefully curated from two
publicly available databases (HMDB and MMCD). The
method starts by computing and sorting initial scores
using Equation 1 based on peak matches between the

Figure 12 De-noising and peaks identification in an NMR spectrum. The spectrum data points lie on the red curve while the vertical dotted
blue segments represent peak locations whose heights are above the noise threshold (horizontal black line).
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test spectrum and all the library spectra. Next, the
matched metabolites are then screened based on the
desired user features, such as metabolite type, sample
pH, solvent, and NMR frequency and only those with
scores larger than the desired confidence threshold are
displayed. The method is more accurate if the spectral
measurements of the mixture and of the metabolites in
the database are performed under the same NMR and
sample conditions, otherwise, peak position changes can
lead to false metabolite identifications.
Pseudo-code for MH1
Input: A spectrum (or set of peaks) S of a mixture of
metabolites M = {m1, m2,..., mn}, a library L with k
metabolites {l1, l2,..., lk}, a noise threshold h, a ranking
threshold r, and a set of metabolite features F.
Output: A set of metabolites predicted to be in the

mixture.
Method:
1. Pre-process S: remove all peaks in S, whose ampli-

tudes are below h.
2. for i = 1:k
3. Compute significance score Si for each library

metabolite li without horizontal peak drift
4. Output metabolite li if Si ≥ r and li features obey

F.
5. end for
To partially alleviate this inconvenience, a second

method (MH2) was proposed that allows inexact one
dimensional match of peak chemical shifts (measured in
parts per million - ppm) via horizontal peak drifts by a
not constrained user-defined margin (e.g. a small chemi-
cal shift variation of ± 0.005 ppm or no variation at all).
This feature offers more flexibility than HMDB NMR
Search [28] and MetaboMiner [6] towards counter-act-
ing the effects of measurement and pre-processing varia-
bility introduced by factors such as: different
instruments, pH values and solvents. In this case, the
number of matches typically increases with increased
tolerance level around a given peak location, thus
increasing also the number of false positives. The main
difference in functionality between MH2 and MH1
resides in an adjusted matching criterion for computing
the scores obtained with Equation 1. Two peaks are
considered to match if their shift position is within the
given “shift tolerance” parameter value, and thus the
scores obtained with MH2 are typically higher than
those computed with MH1.
Pseudo-code for MH2
Input: A spectrum (or set of peaks) S of a mixture of
metabolites M = {m1,m2,...,mn}, a library L with k meta-
bolites {l1,l2,...,lk}, a noise threshold h, a ranking thresh-
old r, a user-set peak drift margin δ, and a set of
metabolite features F.

Output: A set of metabolites predicted to be in the
mixture.
Method:
1. Pre-process S: remove all peaks in S, whose ampli-

tudes are below h.
2. for i = 1:k
3. Compute significance score Si for each library

metabolite li with δ horizontal peak drift
4. Output metabolite li if Si ≥ r and li features obey

F.
5. end for
The third method (MH3) consists of a greedy selec-

tion approach that enforces mutual exclusion of peaks
via an iterative coordinate removal for each selected
peak. In the same fashion as for MH1, MH3 starts by
computing and sorting initial scores using Equation 1
based on peak matches between the test spectrum and
all the library spectra. Next, it proceeds in an iterative
manner by selecting the library metabolite with the
highest score and highest number of peaks (in case of a
tie) and then removing the corresponding peaks for the
selected metabolite from the remaining pool of unas-
signed peaks. The method stops when no spectral peaks
remain to be assigned. This approach favours the early
selection of metabolites with higher scores and higher
number of peaks, thus decreasing the number of false
positives (through iterative removal of remaining peak
coordinates) at the cost of increasing the number of
false negatives. False negatives typically happen in this
method for metabolites in the mixture with a high
degree of overlapping peak coordinates. MH3 also
allows a user-defined shift tolerance around peak loca-
tions (not evaluated here and thus experimental). We
also note that MH3 could be further improved so that
to better mimic the processing of human experts, if
after iteratively removing the corresponding spectrum of
one metabolite, the remaining spectrum will be further
adjusted to take into account the effect of the removed
components on the mixture spectrum. Nevertheless,
supporting information that could help with this step is
not available at this time.
Pseudo-code for MH3
Input: A spectrum (or set of peaks) S of a mixture of
metabolites M = {m1,m2,...,mn}, a library L with k meta-
bolites {l1,l2,...,lk}, a noise threshold h, a ranking thresh-
old r, a user-set peak drift margin δ, and a set of
metabolite features F.
Output: A set of metabolites predicted to be in the

mixture.
Method:
1. Pre-process S: remove all peaks in S, whose ampli-

tudes are below h.
2. for i = 1:k
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3. Compute significance score Si for each library
metabolite li with δ horizontal peak drift
4. end for
5. Sort metabolites in reverse order based on their sig-

nificance scores
6. while (number of peaks in S ≠ 0)
7. for i = 1:k
8. Select metabolite li with highest significance

score with/without δ horizontal peak drift
9. Output metabolite li if Si ≥ r and li features

obey F.
10. Remove all peaks from S corresponding to

metabolite li
11. end for
12. Re-sort metabolites in reverse order based on

their updated significance scores
13. end while
Given the two reference libraries used as support for

the proposed methods, we append the suffixes
“_HMDB” and “_MMCD” to the corresponding method
names.

Results evaluation
Similarly to the methodology described in [6], we per-
form our analysis by defining the confusion matrix (Fig-
ure 13), which includes:

-True Positives (TP): The number of metabolites
correctly identified as being present in the mixture.
-True Negatives (TN): The number of metabolites
correctly identified as not being present in the mix-
ture. This includes the total number of metabolites
in the library minus TP, FP and FN.
-False Positives (FP): The number of metabolites
incorrectly identified as being part of the mixture.
-False Negatives (FN): The number of metabolites
being present in the mixture but unidentified by the
method.

Each of the measures defined above requires a cut-off
threshold defined as the first N metabolites predicted to
be in the mixture. The size of the metabolite libraries,
upon which the TN is defined, is 876 for our HMDB
library, 448 for our MMCD library and 916 for the
online HMDB NMR Search DB.

The following statistics are used for performance eva-
luation of the peak identification methods proposed in
this article:

Specificity :
TN

TN + FP

Sensitivity :
TP

TP + FN

Accuracy :
TP + TN

TP + TN + FP + FN

Unless otherwise specified, all results obtained with
MetaboHunter and reported in this article were
obtained using water as solvent and zero shift tolerance.

Run times and computational settings
The absolute CPU time for each method was measured
on a PC with one 2.8 GHz Intel Pentium 4 CPU, 512
KB cache and 1 GB RAM running Mandriva Linux
release 2010.2 (kernel 2.6.33.7). The obtained run time
values for MH3_HMDB range from 2.1 seconds for
input peak list files with 5 metabolites to 7 seconds for
files with 100 metabolites, while for MH1_HMDB the
run times range from 3.4 seconds to 5.7 seconds for the
same input files. The run time estimates were averaged
over 10 runs for each method and for each input peak
list file. When MMCD is used as reference library, the
average run times decrease in average with 3.5 seconds
for input files with peak lists corresponding to mixtures
of 100 metabolites. The decrease in run time is caused
by the reduced size of the MMCD reference library (448
spectra) compared to HMDB (867 spectra).
Throughout the paper we used default settings for all

publicly available software, such as HMDB NMR Search,
BMRB, and Chenomx Profiler, when not specified other-
wise. In the case of the free evaluation copy of Chenomx
Profiler, we could only test it on data sets where FID
files were accessible (SYN1-SYN4), since the software
does not accept lists of peaks as input.

Web user interface
MetaboHunter was implemented in Perl and its graphi-
cal user interface was developed in PHP, thus being
browser independent. There are 4 functional views in
MetaboHunter: (i) a Processing View, (ii) a Search
Results View, (iii) a Plot View and, (iv) a Peaks Hit Map

TN    Metabolites library 

TP FN FP 

Figure 13 Confusion matrix. The number of true negatives (TN) is calculated as the difference between the number of metabolites in the
reference library minus the total number of true positives (TP), false positives (FP) and false negatives (FN).
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view. When the user accesses MetaboHunter web site,
the Processing View (Figure 14) is the default view. The
user can provide its input as a 2 column full spectrum
or list of peaks, which can be uploaded as a text file or
be copied and pasted in a text box.
MetaboHunter has a comprehensive output for identi-

fied metabolites in input spectra or lists of peaks. The
output is depicted in the Search Results View (Figure
15), which includes a ranked list of metabolite IDs,
names and taxonomic origin, direct links to their

descriptive original web pages, scoring information, and
links to spectral plots and peaks hit map visualization of
selected results. The results displayed in the Search
Results View can be downloaded as text.
The Plot and Peaks Hit Map Views depicted in Fig-

ures 16 and 17 permit users to visualize the overlap
between selected peaks corresponding to specific meta-
bolites and the input data, as well as, the shared and
disjoint peak locations for selected metabolites in the
output. The plots are automatically generated using the

Figure 14 MetaboHunter screenshot for the Processing View. The figure shows the Processing View for MetaboHunter, which includes
drop-down selection lists for input type, reference library (database), metabolite type, pH, solvent, NMR frequency, matching method, noise
threshold, confidence threshold and shift tolerance.
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Figure 15 MetaboHunter screenshot for the Search Results View. The figure depicts MetaboHunter’s Search Results View, which consists of
metabolite ranking, plot selection field, metabolite ID, metabolite name, matching score and ratio of identified versus total number of peaks,
origin of reference metabolite, pH, solvent and the experimental NMR frequency. Three action buttons are placed at the bottom of the list of
results, which allow users to further select, download and explore the identified metabolites using graphical means.
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Figure 16 MetaboHunter screenshot for the Plot View. The figure shows MetaboHunter’s Plot View, which lists on the left the selected
metabolites, while the plot on the right shows the location of the selected metabolite peaks with respect to the sample peaks. The “Export
chart” button at the bottom of the plot allows users to save the plot as a PDF file.
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Figure 17 MetaboHunter screenshot for the Peaks Hit Map View. The figure shows MetaboHunter’s Peaks Hit Map View, which displays in a
tabular fashion the identity of the identified metabolite peaks relative to the location (ppm) of all the peaks in the sample.
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Highcharts interactive JavaScript library and can be
exported as PDF files.

Additional material

Additional file 1: Supplemental information. The file contains tables
with detailed performance results for all experimental (EXP1, EXP2) and
synthetic data sets (SYN1 - SYN5).

Additional file 2: Supplemental information. The file contains
additional pictures representing ROC curves and accuracy variability
depending on result list cut-offs for experimental data sets EXP1 and
EXP2 and for synthetic data sets SYN5_s, SYN5_f and SYN5_p.
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