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ABSTRACT: With the global production of 150 million tons in
2016, ethylene is one of the most significant building blocks in
today’s chemical industry. Most ethylene is now produced in
cracking furnaces by thermal cracking of fossil feedstocks with
steam. This process consumes around 8% of the main energy used
in the petrochemical industry, making it the single most energy-
intensive process in the chemical industry. This paper studies a
tubular thermal cracking reactor fed by propane and the molecular
mechanism of the reaction within the reactor. After developing the
reaction model, the existing issues, such as the reaction, flow,
momentum, and energy, were resolved by applying heat to the
outer tube wall. After solving the entropy generation equations, the
entropy generation ratio of the sources was evaluated. The
temperature of the tube/reactor was tuned following the reference results, and processes were replicated for different states. The
verification of the modeling and simulation results was compared with the industrial case. The Genetic Programming (GP) machine
learning approach was employed to generate objective functions based on key decision variables to reduce the computational time of
the optimization algorithm. For the first time, this study has proposed a systematic approach for optimizing a thermal cracking
reactor based on a combination of Genetic Programming (GP), Water Cycle Algorithm (WCA), and Genetic Algorithm (GA). In
this regard, multiobjective optimization was performed based on the maximization of the products and entropy generation with the
generation of GP objective functions. The key decision variables in this study included inlet gas temperature, inlet gas pressure, air
mass flow rate, and wall temperature. The results showed that the weighted percentage of products after optimization increased to
61.13% and the entropy production rate of the system decreased to 899.80 J/s, displaying an improvement of 0.85 and 16.51%
compared with the base case, respectively, with the multiobjective GA algorithm. In addition, by applying the multiobjective WCA,
the weighted percentage of products increased to 61.81%. The entropy production rate of the system decreased to 882.72 J/s. So, an
improvement of 1.97% in weights of products and an improvement of 18.77% in entropy generation have been achieved compared
with the base case.

1. INTRODUCTION

The thermal cracking of hydrocarbons is themost common form
of olefin production. The thermal cracking of propane is
conducted using a radical mechanism that is highly studied and
researched by Zhou et al.,1 who conducted an entropy
generationminimization in a solid reactor based on construction
theory; their model consisted of 10 reactions. The molecular
model of reactions performs quickly and is broadly applied in ref
2 for the simulation of propane thermal cracking. An industrial
cracker was simulated in ref 2 using the presented scheme. They
developed a molecular model for nine reactions with nine
components. Masoumi et al.3 studied the thermal cracking
furnace and monitored its dynamic behavior. To this end, they
built a pilot plant controlled by a computer system. The steady-
state model had one dimension, 543 reactions, and 90 elements.

They intended to enhance the steady-state to gain maximum
advantage. Gao et al.2 modeled the tubular reactor in a naphtha
cracking furnace to optimize it using the HYSYS software
package. Their method also enhanced the operation profitability
considerably. Process assessment was conducted under steady-
state circumstances. However, the real-world coke formation is
time-dependent, affecting the efficiency; they did not consider
coke thickness in the heat transfer coefficient.
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Ghasemi et al.4 used a 3D model and computational fluid
dynamics to study the ethylene furnace. The temperatures of the
tube skin and heat flux profiles were measured by solving the
mass, momentum, and energy equations corresponding to
furnaces in Ansys Fluent. The results indicated that by
increasing the fuel rate, outlet propylene yield decreased, while
process gas temperature, pressure drop, propane conversion,
and ethylene yield were increased along the reactor tube. In
addition, increasing reactor feed flow rate increased the desired
product yields, despite the reduction in the coil outlet
temperature of the reactor.
Ghasghaee and Karimzadeh5 attempted to use a dynamic

model to explain why cracks show an unsteady-state behavior
during their start-up in furnaces. Their mathematical model, the
convection model, comprised four sub-models: cylindrical coil,
combustion chamber, and shell and tube. They captured a two-
dimensional zone to predict the factors at a start-up run using
these four sub-models. Zheng et al.6 calculated the heat flow and
temperature distribution using CFD 3Dmodeling in the thermal
cracking reactor and furnace and compared the results using
spectrometry. Barazandeh et al.7 investigated a liquid furnace
using a 1-D mathematical model to analyze the furnace
temperature profile and how it affects the feed-to-product
conversion percentage.
Heat transfer and its entropy generation have gained vast

attention in the research community. Entropy induction
limitations are variable in a closed system concerning the
applied law of heat transfer. Closed systems are important since
they are simple, depict the main principles, and investigate the
process. Nummedal and Kjelstrup8 employed the thermody-
namic equipartition of force (EOF) theory to study entropy
generation in a heat exchanger. They showed that the optimal
operation of one heat exchanger was the operation that was
known for long from experience, namely the one given by
specific counter-current flows. The result was aligned with the
EOF principle.
Sauar et al.9 and Kjelstrup and Island10 also used the EOF

principle for a chemical reactor. The EOF theory holds that the
entropy generated by a system is minimum when the
thermodynamic forces are constant in terms of time or space.
This theory applies to processes in which independent events do
not communicate. However, the theory of EOF fails to justify the
comparison between the real minimum entropy generated in a
chemical reactor and the law of mass conservation issues in the
distillation tower.11

Numerous research studies have addressed the entropy
generation problem using the governing equations,12−14

Nummedal and Kjelstrup8 examined the generation of entropy
and the process of heat transfer using EOF and EOEP methods.
Sauar et al.9 and Kjelstrup et al.10 applied EOF theory in
chemical reactors as an appropriate approach for analyzing
them. Wilhelmsen et al. investigated the energy-efficient reactor
design simplified with entropy analysis.15 The mentioned
studies also model a set of guidelines to achieve reactor design
with energy efficiency, which can be applied once the best
available heat transfer coefficients have been reached. The
optimal design was related to the heat transfer coefficient relative
size across the wall of the tubular reactor and heat transfer
coefficients in heat exchangers.
The main drawbacks are the nonlinear relations of the flow

and force concerned with the chemical reactions. Wilhelmsen et
al.16 studied hydrogen producer steam reformers extensively.

Johannessen and Kjelstrup16 minimized entropy generation in
the reactor using optimal control theory. They considered
temperature a control variable and used governing equations of
the plug flow reaction and SO2 oxidation to show a way to
minimize the entropy generation rate in plug flow reactors by
optimal control theory. It is demonstrated that decreasing the
entropy generation rate up to 25% can be obtained by changing
the reactor length and controlling the utility. A hypothesis was
proposed that a reactor with high energy efficiency had relatively
long sections with constant entropy generation rate and driving
forces.
Kingston and Razzitte17 investigated the unique kinds of

continuously stirred tank reactors (CSTRs) and plug flow
reactors (PFRs). They also verified the temperature and
pressure and gave a graphical picture of entropy generation in
chemical reactions to constant volume, allowing access to
different options efficiently. Also, they indicated that by dividing
a reactor into two smaller ones, with different operating
temperatures, the entropy generation decreased, going as near
as 48% less in the case of a CSTR and PFR in series, and
achieving 58% with two CSTR.
Chen et al.18 produced light olefins using CO2 hydrogenation

to minimize entropy production. Røsjorde et al.19 attempted to
minimize entropy production in propane dehydrogenation
using different tower condenser reactor and exchanger
components. The structural theory to model and minimize
entropy generation has been used. Abdous et al.20 analyzed the
same problem in helically coiled tubes under flow boiling
conditions under a constant heat flux. Kurnia et al.21 applied this
analysis to various cross-sections.
Vandewalle et al.22 used computational fluid dynamic (CFD)

fouling in steam cracking reactors and developed a 3D algorithm
to simulate coke formation in steam cracking reactors. They
examined coke layer growth to analyze a reactor’s run length and
determined that the ribbed reactor design had the most
extended run length.
Mu and Gu23 studied the optimal modeling of thermal

cracking furnaces based on the enriched Kumar model by
considering free-radical reactions. An improved search engine
algorithm (IPR) was developed to compute the importance of
substances in the Kumar model for efficient model selection.
The proposed model indicated that the new model achieved a
mean relative error (MRE) of less than 0.1% compared to 5% in
the Kumar model. The proposed model could be applied to
modeling extensive feedstocks with high accuracy.
Zhou et al.24 optimized the ethane thermal cracking furnace

via the coupling of the reaction network. The residence time
related to the minimum by-product was determined to be 0.4 s,
and its by-product was 4.3% less than that at the initial residence
time (0.3 s).
Gold yttrium oxide nanorods for oxidative catalytic cracking

of n-propane to light olefins have been studied by Narasimharao
and Alshehri.25 Gold nanoparticles loading has affected the
activity of oxidative catalytic cracking. In addition, simple Au-O-
Y species and Lewis acid sites are provided for the activity.
Ebrahimian et al.26 proposed an innovative reactor concept

for thermal coupling of naphtha reformation with propane
ammoxidation. The production of aromatics, hydrogen, and
acrylonitrile have been considered. The evaluation of the
thermally coupled reactors with the conventional reactors has
been performedeliminating traditional furnaces in naphtha
reforming.
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A comprehensive investigation on hydrogen production
through propane steam reforming inside a reactor has been
performed by Barnoon et al.27 The results demonstrate that the
hydrogen generation yield can change from 77.5 to 92.2%. The
reaction rate can be varied by the velocity and temperatures of
the hot gases. Also, for T = 900 K, full propane used is obtained
at the reformer outlet.
Simulation and dynamic optimization to find optimum

operational parameters of the industrial tubular reactor for
propane cracking have been investigated by Berreni andWang.28

This work was performed in gPROMS. The steady-state and
dynamic optimizations were respectively performed. The results
show that dynamic optimization can improve the net profit by
10.6% rather than the base case. In addition, the computation
demand by dynamic optimization was much wider and higher
than the steady-state optimization.
A coupled CFD simulation method for investigating the

pyrolysis process in industrial naphtha thermal cracking furnaces
has been performed by Rezaeimanesh et al.29 A typical k−ε
turbulence model is combined with the molecular kinetic
response for cracking, a thorough combustion model, and
radiative properties in this full CFD model. The simulation
results corresponded well with industrial data acquired from a
mega olefin plant of a petrochemical complex in terms of
temperature, product yield, and especially propylene-to-ethyl-
ene ratio (P/E). The difference between P/E resulting from
industrial data was less than 2%.
From the standpoint of intelligent manufacturing, knowledge

expression, numerical modeling, and optimization application of
ethylene thermal cracking have been investigated by Zhang et
al.30 This study presented a summary of advances and
contributions to PSE-assisted thermal cracking production; it
introduces the frameworks, methodologies, and algorithms
suggested over the last 10 years; and it explores the benefits,
limitations, and industrial applications.
Yuan et al.31 performed advanced exergy analysis to assess the

energy-saving potential of industrial ethylene cracking furnaces.
Inside the furnace, a simulation is run that considers the
interactions of three different components. The highest exergy
degradation occurs during the combustion process in the
radiation section. High avoidable exergy destruction in tube
reactors and combustion processes have been found.
Monitoring of combustion in an industrial cracking furnace

using a combination of CFD and visual techniques has been
investigated by Rebordinos et al.32 A newmethodology based on
CFD calculations of OH− and CH− radicals via decreased
chemical kinetics and industrial-scale experimental validation
using flame spectroscopic measurements and UV CCD cameras
have been developed to monitor burner efficiency. Second, NOx
emissions have been simulated using the standard approach of

reduced chemistry and post-processing over the CFD fields,
proving that realistic predictions can be made in this setting
using plant data at the stack.
For an ethylene-cracking furnace with many faults and

exceptional operation conditions, a two-level completely
energy-efficient quantitative diagnosis method was developed
by Meng et al.33 The goal of energy efficiency diagnosis was to
determine the severity and root causes of various types of
inefficiency. More accurate findings are obtained when a
mechanism and a data-driven multiple benchmark criteria are
coupled.
Saffari et al.34 assessed the entropy generation in a thermal

cracking reactor. The results indicated for two states that the
three factors were in the order of chemical reactions, heat
transfer, and pressure loss in terms of their contribution to
entropy generation. The variation of feed temperature did not
affect the entropy generated by the chemical reactions.
However, the entropy generation in the reactor with optimum
wall temperature was the lowest. Also, entropy was higher at the
inlet of the reactor when the wall had an optimal temperature.
Previous studies rely on basic principles of flow, chemical

reactions, and fundamental energy equations, which do not
involve minimization of entropy generation and its adequation
for the process. A review of previous research shows no
investigation of optimizing thermal cracking reactors by
addressing maximum productivity and minimum entropy
generation. In addition, no systematic approach has been
adopted for the multiobjective optimization of thermal cracking
reactors. The innovation of this study is that it has, for the first
time, addressed the maximization of productivity, and
minimization of entropy generation have been considered
simultaneously. In this regard, the second law of thermody-
namics and the entropy production rate were employed.
Considering entropy generation sources, the basic factors, and
mitigating its generation, enhance the process that may lead to a
better economization. Also, a systematic approach was adopted
based on the genetic programming (GP) technique for the
multiobjective optimization of thermal cracking reactors based
on key parameters based on minimizing entropy generation and
maximizing products. The GP technique reduced the run time
and obtained high convergence to two objectives optimization.

2. THERMAL CRACKING PROCESS

Lighter product yield when the hydrocarbon feed flows at a high
speed within a thermal cracking reactor at 800−900 °C with
dilution steam. The reactor outlets are mainly ethylene and
propylene, as well as olefin, butadiene, and aromatics. The outlet
reactor products rapidly cooled down to 300 °C to prevent
unwanted reactions. High-pressure steam was generated using

Figure 1. Hydrocarbon thermal cracking process.34
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the resulting energy. Then water and oil were injected to reduce
the temperature of the products to virtually room temperature
and split up the heavy elements. The pressure of the outlets was
then increased to 35 bar. They were sent for fractionation to split
up the primary products.35

Figure 1 is a representation of the process. Thermal cracking
reactors are influenced by various performance factors, such as
feed composition and feed quantity, reactor pressure and
temperature, the amount of the dilution steam, and reactor
residence time. The coke precipitate remains on the reactor
walls and impairs the furnace’s performance. Monitoring and
controlling the optimum factors and parameters enhances the
operation and improves the furnace performance.
The reactor resides on the thermal cracking furnace that

provides the required heat for the reactions. The inside
temperature of the reactor is an essential parameter in thermal
cracking reactions due to their endothermic characteristic. Heat
flux increasing in the outgoing reactor surface to the highest
possible allowed level may expand the amounts of undesirable
products such as coke. Therefore, the reactor temperature
should be regulated to increase the desired products instead of
undesired products. The temperature was increased due to the
resident materials in the outlet of the reactor. Nevertheless, the
flow should get consistent heat during its process inside the
reactor axle. Overheating leads to hot spots and generates local
coke.28

The position of the reactors in thermal cracking furnaces is
different. They may be established either in parallel or vertical to
the floor regarding the furnace type. Normally, variable-diameter
reactors are used as an option for liquid feeds. However, fixed-
diameter reactors are used for gassy feeds. The number of
reactor paths inside the furnace may vary based on the available
technical knowledge.
2.1. Reactor Specifications. The employed reactor is the

same as in ref 28 fed by pure propane. Table 1 illustrates the
required details.

3. MATHEMATICAL MODEL OF THE THERMAL
CRACKING REACTOR

Berreni and Wang prepared an accurate mathematical model of
an industrial thermal cracking reactor. Accordingly, the
mathematical models were extracted from ref 28. For simplicity,
a simple scheme is presented in Figure 2. In addition, other
relevant equations were extracted from ref 36.
3.1. Mass Balance Equation. The following equation

captures the mass balance for the jth component of the reaction
mix along the dz length of the reactor

∑π
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where ri represents the speed of the ith reaction. The following
equation captures ri:

∏= α| |r K ci i j
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(2)

The molar flow/pressure rate should be considered to apply the
speed law. Assuming all the gases as ideal, the general law of gas
indicates
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3.2. Energy Balance Equation. Equation 5 captures the
energy balance along the reactor28
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3.3. MomentumBalance. Equation 6 captures the pressure
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The first term on the right-hand side is friction-induced pressure
loss. The second term captures the pressure loss induced by
momentum change. Regarding the continuity law and the
assumption of the gas ideality, the following equations are
derived28
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Substituting the equations gives

Table 1. Study Reactor’s Specifications28

parameters/variable value

length of the coil in the radiant section 95 [m]
length of the straight portion of the coil 8.85 [m]
length of the bends 0.554 [m]
the radius of the bends 0.178 [m]
tube internal diameter 0.108 [m]
wall thickness 0.008 [m]
total feed per coil 0.7635 [kg/s]
steam dilution rate 0.4 [kg steam/kg propane]
inlet pressure 3 [bar]
inlet temperature 873.15 [K]

Figure 2. Schematic illustration of a thermal cracking reactor.34

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04345
ACS Omega 2022, 7, 12493−12508

12496

https://pubs.acs.org/doi/10.1021/acsomega.1c04345?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04345?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04345?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04345?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=
+ +

−
α

( )P
z

Frd
d

M
z M T

T
z

M P
P

G RT

t

d(1 / )
d

1 1 d
d

1

m

m

m t

t
2 (11)

The friction function for the direct section of the tube is defined
as28
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The following equation may be replaced in the pressure
equation28
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3.4. Calculation of Convection Heat Transfer in
Reactor Outlets. The following equations illustrate the
calculation of convection heat transfer28

= −q hA T T( )w b av (17)
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where n = 0.4 outlet heating, Tw > Tb, L/D > 60, 6000 < ReD <
107.
3.5. Entropy Generation in the Thermal Cracking

Reactor. The reactor is supposed to function in a stable or
steady state. Therefore the entropy balance of the system
includes three additional terms. Heat transfer induces two
additional entropy factors to the system. So, the following
equation captures the amount of entropy generation16
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For a small element dz, we haveΔSu = −πDJq(z)/Ta(z)dz. The
following illustrates the final entropy generation equation by
entropy balance16
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the local entropy generation becomes39
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Equation 27 shows three facts responsible for entropy in a
chemical reactor: the heat transfer to the reactor wall, chemical
reactions, and pressure loss. The terms of the above equation
result from multiplying thermodynamic flux and its relevant
force. The first term includes the multiplication of heat flux Jq(z)
and its thermodynamic force Δ(1/T), the second term includes
the multiplication of velocity flux and its thermodynamic force

−( )T
P
z

1 d
d

, and the last term includes the multiplication of the

velocity flux of the reaction ri and its thermodynamic force
−Δ( )G

T
i .

Integrating σ over the reactor length captures the amount of
entropy generation as in the following equation
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3.6. Kinetic Model Selected for the Research. The
molecular mechanism used in this work has been proposed by
the authors in ref 37. Propane and water steam were fed into the
reactor; they were converted into 12 components throughout 11
reactions. Water steam reactions with other components were

Table 2. Reactions Involved in the Thermal Cracking of Propane37

no reaction A(1/S, m3/kmol·S or kgS/mol·m) E (kJ/mol) ΔH (kJ/mol, @298 K)

1 C3H8 ↔ C2H4 + H4 4.692 × 1010 211.7 82.66
2 C3H8 ↔ C3H6 + H2 5.888 × 1010 214.6 124.68
3 C3H8 + C2H4 → C2H6 + C3H6 2.536 × 1013 241.7 −11.64
4 2C3H6 → 3C2H4 1.514 × 1011 233.5 117.5
5 2C3H6 → 0.5C6 + 3CH4 1.423 × 109 190.4 −14.48
6 C3H6 ↔ C2H2 + CH4 3.794 × 1011 248.5 96.4
7 C3H6 + C2H6 → C4H8 + CH4 5.553 × 1014 251.1 −11.24
8 C2H6 ↔ C2H4 + H2 4.652 × 1013 272.8 136.32
9 C2H4 + C2H2 → C4H6 1.026 × 1012 172.6 −133.42
10 C4H8 → C6 6.92 × 107 143.6 83.42
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ignored. Table 2 shows these reactions, the activation energy,
and the Arrhenius equation factor. Coke formation is ignored in

this study. The following equation captures the velocity specific
to the reaction K, which is a function of temperature37

= −K A E RTexp( / ) (29)

where A is the exponential function coefficient or frequency
factor, E is the activation energy (J/mol or cal/mol), R is the
ideal gas constant, and T shows the absolute temperature (K).

3.7. Assumptions and Problem-Solving Procedures.
The reactor model is addressed in this section. The pressure,
temperature, and weight percent data related to the components
and reactor length are used to assess entropy. The reactor
simulation assumptions are as follows:

• It is assumed that the internal flow of the reactor is plug
flow; because the velocity of the gas is high and the reactor
diameter is negligible compared to its length; thus, the
axial dispersion of the reactor is ignorable. This
assumption is valid based on ref 28.

• Coke deposition is ignored, and the reactor is assumed to
be steady-state.

Figure 3. Pseudocode for the MOGA algorithm.

Figure 4. (a) Schematic description of the stream’s flow to a specific river and (b) schematic of the WCA optimization process.39
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• The internal space of the reactor is assumed to be filled
only with the combination of gas and steam.

• The reactions initiate from the input and terminate in the
reactor’s output.

• The input/output hydrodynamic and thermal zone effects
are not considered.

• The concentrations are captured using the law of ideal gas.

The relevant equations, i.e., energy, molar, and momentum
balance, need to be solved simultaneously.
After performing 10 chemical reactions, the feed and pure

propane resulted in 10 individual components. Table 2
demonstrates the results. A differential equation is derivable
for the components. The molar balance questions are initially
equal to zero, except for propane, whose value is given in Table
2.
The input feed temperature is required to solve the energy

equation, which is a function of the temperature of the outer
surface, and its profile is provided based on the length of the
reference reactor.28 Finally, the initial input pressure for the
pressure loss equation is known. There are 12 differential
equations whose initial conditions are known. They were solved
using theMATLAB software package, using the ode15s function,
solving complicated differential equations using the GEAR

method. Now that all required factors are known, the integral
generated in the reactor may be calculated.

4. OPTIMIZATION
In this study, two optimization algorithms were used: the
multiobjective genetic algorithm (MOGA), a well-known and
efficient method for multiobjective optimization, and the
multiobjective water cycle algorithm (MOWCA), which is an
attractive, recent, and simple concept.

4.1. MOGA. While GA considered problems with one
objective function, MOGAs can overcome this limitation and
simultaneously consider two or more objectives. In many
industrial problems, objectives under consideration conflict with
each other, and optimizing a particular solution related to a
single-objective can result in unacceptable results dealing with
the other objectives. A reasonable solution to a multiobjective
problem is to investigate a set of solutions, each of which satisfies
the objectives at an acceptable level without being dominated by
any other solution.38 Equation 30 mathematically presents a

multiobjective optimization problem

∈

f x f x f x

x X

min( ( ), ( ), ..., ( ))

s . t .
k1 2

1 (30)

where K is the number of objectives and set X is the feasible set
of decision vectors. The vector-valued objective function can be
written as eq 31

→f X R f x f x f x: , ( ( ), ( ), ..., ( ))k
k

T
1 2 (31)

MOGA was used via MATLAB-2020a. The following steps
considered the reproductive procedure of the genetic algorithm:
natural selection, crossover, mutation, fitness computation,

Figure 5. Flowchart of the water cycle algorithm.

Table 3. Key Decision Variables and Constraints

decision variables unit lower limit upper limit

inlet gas temperature K 700 1000
inlet gas pressure bar 2 6
inlet mass flow rate of gases g/s 500 900
wall temperature K 950 1300
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repair, updation of population, and elitism. While GA is related

to one objective function, MOGA can consider more than one

objective function. The upper and lower bounds were

considered. The MOGA was run in MATLAB software. The

pseudocode for the MOGA algorithm used in this study is

shown in Figure 3.
4.2. WCA. The water cycle algorithm (WCA) mimics the

flow of rivers and streams toward the sea based on the water

cycle process. In the case of rain or precipitation, the primary

population of design variables (i.e., the population of streams) is

randomly increased following the raining process. The best

individual variable (i.e., the best stream) with minimum cost

function is the sea. Afterward, some good streams with cost

function values close to the current best record are assumed as

rivers, considering the other remaining streams to have flowed

into rivers and the sea. The optimization algorithm should be

started with a primary population representing a matrix of

streams. For an N-dimensional optimization problem, the

following algorithm can be developed using some equations.

= +N number of Rivers 1sr (32)

= −N N Nstream pop sr (33)

whereNpop andN represent the total population and the number

of design variables, respectively.

=
∑

× =
=

i

k

jjjjjjjj

y

{

zzzzzzzz
NS N n Nround

Cost

Cost
, 1, 2, ...,n

n

i
N

i1
stream srsr

(34)

where NSn is the number of streams that flow to the specific

rivers and sea. The following equations may obtain the new

position for streams and rivers.

⃗ = ⃗ + × × ⃗ − ⃗+
X X C X Xrand ( )

i i
i

i i
Stream

1
Stream R ver Stream (35)

⃗ = ⃗ + × × ⃗ − ⃗+
X X C X Xrand ( )

i i i i
Stream

1
Stream Sea Stream (36)

⃗ = ⃗ + × × ⃗ − ⃗+
X X C X Xrand ( )i

i
i

i i
i

i
R ver

1
R ver Sea R ver (37)

where rand is a uniformly distributed random numbers between

0 and 1. The new position of the streams is determined by

⃗ = ⃗ + × ⃗ − ⃗X LB rand (UB LB)Stream
New

(38)

where LB and UB are lower and upper bounds defined by the

given problem, respectively. The value of dmax adaptively

decreases as follows

= −+d d
d

iMax Iterat on
i i

i

max
1

max
max

(39)

Figure 4a shows a schematic view of a stream flowing toward a
specific river along their connection line. Figure 4b shows the
schematic of the WCA optimization process. Also, Figure 5
shows the flowchart of the water cycle algorithm.

4.3. Optimization Problem. The objective functions of the
problem are as follows:

• Maximum production based on weight percentages

• Minimization of entropy generation

Two-objective optimization leads to a two-dimensional
Pareto frontier. Thus, the closest solution in the population to
the ideal point in the 2D space of the frontier would be
considered as the optimum solution to the problem.
The preliminary community should be generated concerning

some limitations in the input data, i.e., the constraints of the

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04345
ACS Omega 2022, 7, 12493−12508

12500

https://pubs.acs.org/doi/10.1021/acsomega.1c04345?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04345?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04345?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04345?fig=&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


decision variables. The values of the constraints are shown in
Table 3.
4.4. Genetic Programming. Genetic Programming (GP)

generates prediction functions based on decision variables to
reduce the optimization run time. In this regard, based on
simulation results associated with varying decision variables, the
best correlation for estimating objective functions have been
proposed by the GP code. Figure 6 shows the algorithm of using
GP to generate OFs.

5. RESULTS AND ANALYSIS

5.1. Results for the Reactor in the Reference State. In
this research, the main objective was to produce ethylene. The
main outputs of the propane thermal cracking reactor included
ethylene, methane, propane, propylene, and hydrogen. To verify
the computer code for modeling and simulation of the thermal
cracking reactor, the simulation results were compared with an
industrial case study.28

The percent of propane conversion and the weight of the
products were derived by comparing with an industrial reactor.
Although coke production was neglected, according to Table

4, the simulation results match the practical results to a high
degree of consistency. The weight percent of C3H6 had the
highest inconsistency of 12%. The conversion percent difference
falls to 0.01%, which was initially the main objective.
Figure 7 illustrates the outer wall temperature profile of the

tube, derived from the temperature of the reactor surface in the
industrial sample.28

Table 4 presents the results according to the temperature of
the outer wall (Figure 8); Figure 8 also depicts the calculation of
the governing equations and the temperature profile of the gas

mixture. The temperature is 873.15 K at the starting point of the
input. As heat is transferred along the tube, the chemical
reactions progress, and the outer temperature reaches the wall
temperature. Figure 9 depicts the reactor conversion percent,
and Figure 10 depicts the weight percent profile of each product.

5.2. Generation of Correlation Using GP. Different
simulations were performed to generate the prediction
correlations for objective functions with the computer code in
the range of decision variables. These data are transferred to the
GP code, and the best prediction correlations for objective
functions have been achieved, as shown in Table 5. When the
mean square error (R2) range is between 0.9 and 1, the accuracy
is very high.
The verification of the following equations has been

compared with the simulation data with high accuracy. These
equations reduce the computation time by about 85%. Also,
their accuracy is very high and acceptable.

5.3. Optimization Results. 5.3.1. Multiobjective Opti-
mization. Table 6 presents the Pareto Front optimum solutions
for objective functions and decision variables based on MOGA.
As shown, the optimum objective functions and corresponding
decision variables were determined.
To draw the Pareto front and find the best solution that trade-

off between multiple objectives, it is better first to rewrite the
target functions in the Pareto optimal solutions so that the
difference between the dimensions of the functions is
neutralized in the concept of points distance from the ideal
point. To make the answers dimensionless, we use the following
relation

Figure 6. Algorithm using GP to generate OFs.
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=
−
−

OF
OF OF

OF OFi k
i k i

i i
DL, ,

, min,

max, min, (40)

OFDL,i,k is the dimensionless objective function for the i-M
function and the kM response, i is the target function counter,
and k is the response function in that target function. The
presentation of the Pareto front for the dimensionless OFs is
shown in Figure 11. The 2D normalized Pareto front indicates
normalized entropy generation rate versus normalized products.
As shown in Figure 11, the point to the coordinates (1,0) is

the equilibrium point or ideal point. From the Pareto front’s
optimal response set, any response closer to the ideal point is the
optimal response. The concept of distance is used according to
the following equation to find the closest answer to the ideal
point

= − + −d (OF OF ) (OF OF )k k k1, 1,ideal
2

2, 2,ideal
2

(41)

The minimum distance is calculated as 0.5913 and is related to
the selected optimal solution, as shown in Table 5.

The optimum values of OFs and decision variables based on
MOGA are determined and shown in Table 7. The weight
percentage of the basic system products is 60.615%, and the
entropy production rate is 1048 J/s. The table above shows that
the weighted percentage of products and the system’s entropy
production rate after optimization reached 61.13% and 899.8 J/
s, displaying an improvement of 0.85 and 16.51%, respectively.
The GP and non-GP results also showed similar improvements.
However, the computation time of the GP declined significantly
(about 85% of the base case).
With MOWCA, the Pareto front optimum solution and its

decision variables are indicated in Table 8.
The Pareto front optimal solution based on MOWCA is

demonstrated in Figure 12.
The weight percentage of the products produced in the basic

system is 60.61%, and the entropy production rate is 1048 J/s.
As shown in Table 9, the weighted percentage of products and
the entropy production rate of the system after optimization
reached 61.81% and 882.72 J/s, respectively, which resulted in
an improvement of 1.97 and 18.77%, respectively. As shown in
Table 9, the optimization with GP and non-GP algorithms
shows similar results.

5.3.2. Single-Objective Optimization. In this case, two
optimization processes are implemented with one of the target
functions. Optimization results to maximize product production
lead to 64.36% by weight of system products, equivalent to a
6.17% increase in product production. The single-objective
optimization response aims to maximize product production, as
shown in Table 10.

Table 4. Comparison of the Products of Simulated and
Industrial Reactors

component
weight percent (wt %) of the

simulated reactor
weight percent (wt %) of
an industrial reactor28

conversion
coefficient

90.61 90.60

CH4 22.89 24.00
C2H4 36.82 34.50
C3H6 12.89 14.70
C3H8 9.38 9.30
H2 1.67 1.20

Figure 7. Temperature profile of the outer surface of the reactor with
the industrial wall temperature.

Figure 8. Temperature profile of the gas mixture in the reactor with
industrial wall temperature.

Figure 9.Conversion percent profile per unit length of the reactor with
industrial wall temperature.

Figure 10. Weight percent of the products along the reactor with
industrial wall temperature.
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The optimization results aimed at minimizing the entropy
production rate lead to the production of 687.99 (J/K s) entropy
in the system, equivalent to a decrease of 52.38% in the
production of the entropy production rate of the system. The
solution to the single-objective optimization to minimize the
entropy production of the system is indicated in Table 11.
Also, a single optimization using WCA has been performed.

The optimization results aim to maximize the product, leading
to the formation of 64.56% by weight of system products,
equivalent to a 6.51% increase in product production as
determined in Table 12.
The optimization results aimed at minimizing the entropy

production rate lead to the production of 687.50 (J/K s) entropy

Table 5. Objective Function Correlation Generated by GP

objective function best equation
mean square error

(R2)

products (%) 0.00127 × Pgasin + 7045.399 × log(Tw) + 1.55E−28 × Pgasin × Tw
8 − 42402.84 − 6.23 × Tw − 1.38E − 9 × Pgasin × Tw

2 0.97

entropy
generation

+ × − +

+ × − ×

×
+ ×

× ×

P

E

123.876 0.00189717

1.498 1.60 17

E
T P

E m
T

T

T P

T

T P

gas
4.42 12 3.78 5 371.07 a

w w

in gasin gasin gasin

gasin gasin
2

2

gasin gasin
3

0.94

Table 6. Pareto front optimum solutions for Objective
Functions Based on MOGA

OF1 OF2 DV1 DV2 DV3 DV4

products
(%)

entropy
(J/K s)

Tgas_in
(K)

Pgas_in
(kPa) ma (g/s) Tw,in (K)

44.19 699.63 852.71 250.002 750.00 1000.00
44.19 699.63 852.71 250.002 750.00 1000.00
48.41 741.06 853.11 250.003 750.76 1010.39
64.45 986.14 852.79 250.004 751.05 1098.55
54.50 807.46 852.88 250.004 750.30 1028.80
56.42 831.17 853.15 250.004 750.40 1035.97
55.44 818.78 852.99 250.003 750.22 1032.20
46.07 717.76 852.91 250.003 750.53 1004.44
52.80 787.75 852.97 250.003 750.25 1023.12
64.17 971.10 853.49 250.005 750.43 1090.57
60.10 882.90 853.03 250.004 750.45 1053.11
61.61 908.49 852.94 250.004 750.22 1062.63
51.84 777.23 853.31 250.004 750.73 1020.13
57.14 840.46 853.07 250.004 750.43 1038.88
63.39 946.53 853.34 250.004 750.45 1078.57
45.68 713.97 852.83 250.003 750.39 1003.51
63.15 940.32 853.40 250.005 750.39 1075.81
46.94 726.23 853.01 250.003 750.42 1006.60
61.29 902.59 853.46 250.004 750.32 1060.42
57.84 849.82 853.28 250.003 750.53 1041.89
58.72 862.21 852.95 250.002 750.40 1045.97
63.64 953.19 853.46 250.004 750.35 1081.70
62.87 933.99 853.27 250.002 750.60 1073.00
53.02 790.38 852.96 250.004 750.40 1023.85
59.33 871.11 852.94 250.004 750.44 1048.98
64.04 966.05 853.28 250.004 750.43 1087.93
64.56 1001.43 853.54 250.005 751.93 1108.04
52.43 783.61 852.97 250.004 750.22 1021.96
49.20 748.99 852.76 250.003 750.16 1012.52
45.08 708.22 853.06 250.003 750.46 1002.08
53.46 795.40 852.93 250.003 750.42 1025.28
61.13 899.80 853.42 250.004 750.36 1059.36
46.98 726.65 852.95 250.003 750.40 1006.71
44.44 701.94 852.72 250.002 750.02 1000.56
60.60 891.09 852.76 250.004 750.39 1056.04
50.23 759.82 853.21 250.003 750.57 1015.38
58.08 853.21 853.17 250.004 750.41 1043.00
64.25 974.33 853.52 250.004 750.42 1092.29
60.58 890.60 853.27 250.004 750.43 1055.92
54.33 805.38 853.09 250.004 750.24 1028.21
54.96 813.05 853.28 250.004 750.62 1030.44
55.77 823.00 852.72 250.004 750.20 1033.46
61.95 914.86 853.22 250.004 750.54 1065.11
62.68 929.68 852.97 250.004 750.37 1071.16
56.08 826.87 853.29 250.003 750.68 1034.62
64.55 996.99 853.48 250.005 751.88 1105.13
47.57 732.49 852.80 250.003 750.27 1008.21
62.39 923.42 853.46 250.005 750.37 1068.63

Figure 11. Normalized Pareto front optimum solution obtained with
MOGA.

Table 7. Pareto Front Optimum Solutions for Objective
Functions Based on MOGA

optimum objective function parameters with GP value without GP value

products (normalized) 0.83 0.83
entropy generation (normalized) 0.66 0.66
products (%) 61.13 61.13
entropy generation (J/K s) 899.80 899.80

optimum decision variable parameters with GP value without GP value

Tgas_in (K) 853.42 853.42
Pgas_in (bar) 25 25
ma (g/s) 750.36 750.36
Tw_in (K) 1059.36 1059.36
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in the system, equivalent to a decrease of 52.49% in the
production of the entropy production rate of the system, as
shown in Table 13.
5.4. Computational Time. The computational time for

MOGA, MOWCA, GP-MOGA, and GP-MOWCA are
indicated in Table 14. In the GP-MOGA and GP-MOWCA,
the time for generation of data sets and GP correlations have
been considered.

The computation time is based on Intel Core i7-8750Hwith 6
CPU cores and 16GBmemory. As seen, the computation time is

Table 8. Pareto Front Optimum Solutions for Objective
Functions Based on MOWCA

OF1 OF2 DV1 DV2 DV3 DV4

products
(%)

entropy
(J/K s)

Tgas_in
(K)

Pgas_in
(kPa) ma (g/s) Tw_in (K)

64.56 962.27 943.15 250.000 750.00 1108.01
44.19 689.91 943.15 250.000 750.00 1000.00
44.19 689.91 895.34 309.530 816.06 1119.54
64.56 962.27 943.15 250.000 750.00 1108.01
63.37 912.68 943.15 250.000 750.00 1078.33
62.08 886.71 943.15 250.000 750.00 1066.12
48.95 733.39 943.15 250.000 753.29 1011.83
45.71 702.98 943.15 250.000 750.00 1003.58
44.78 694.93 943.15 250.000 750.00 1001.36
63.97 928.76 943.15 250.000 750.73 1086.63
48.07 724.02 932.18 384.524 766.49 1100.51
56.53 812.96 943.15 250.422 750.90 1036.40
50.27 749.95 913.24 250.067 750.66 1015.50
57.37 820.33 907.80 285.339 837.65 1050.34
50.96 756.77 943.15 250.000 763.98 1017.51
64.42 946.32 943.15 250.000 750.00 1097.14
46.03 705.98 943.15 250.016 750.30 1004.36
55.95 806.38 943.15 250.435 750.93 1034.14
46.73 712.18 926.17 253.355 776.41 1028.38
52.59 770.42 943.15 250.504 751.07 1022.44
49.77 744.57 912.72 250.000 750.20 1014.08
54.50 787.35 943.15 250.000 750.00 1028.82
55.38 799.93 943.15 250.448 750.95 1031.97
58.30 832.55 871.60 272.639 757.16 1116.20
49.51 737.11 901.89 341.795 836.10 1132.17
55.05 793.36 943.15 250.000 750.00 1030.79
60.70 864.94 943.15 250.000 751.46 1056.65
57.87 825.99 869.25 306.906 819.11 1194.70
54.02 782.21 881.20 310.435 779.45 1051.96
63.59 921.19 934.42 250.020 750.20 1081.01
58.87 838.76 908.91 424.713 779.49 1054.57
53.15 777.29 943.15 250.000 760.60 1024.25
47.77 721.33 943.15 250.000 750.00 1008.73
52.18 764.33 926.52 413.089 782.40 1092.34
59.53 850.37 943.15 250.341 750.73 1050.06
47.30 717.09 943.15 250.000 750.00 1007.52
59.23 843.62 873.70 280.983 805.55 1158.11
61.21 872.22 943.15 250.000 750.00 1059.89
60.19 859.58 943.15 250.000 756.88 1053.65
61.81 882.72 943.15 250.000 751.65 1064.08
64.45 951.98 923.33 312.665 824.69 1118.13
51.61 758.82 943.15 250.000 753.03 1019.44
61.43 875.80 907.61 353.490 820.16 1009.01
53.40 779.90 943.15 250.000 760.50 1025.09
44.50 692.64 943.15 250.010 750.15 1000.71
60.02 854.45 943.15 250.000 750.00 1052.70
47.04 714.72 943.15 250.000 750.00 1006.85
51.85 761.11 859.39 334.392 836.31 1131.28

Figure 12. Normalized Pareto front optimum solution obtained with
MOWCA.

Table 9. Pareto Front Optimum Solutions for Objective
Functions Based on MOWCA

optimum objective function parameters with GP value without GP value

products (normalized) 0.86 0.86
entropy generation (normalized) 0.71 0.71
products (%) 61.81 61.81
entropy generation (J/K s) 882.72 882.72

optimum decision variable parameters with GP value without GP value

Tgas,in (K) 943.15 943.15
Pgas,in (bar) 25 25
ma (g/s) 751.65 751.65
Tw,in (K) 1064.08 1064.08

Table 10. Results of Maximization of the Product by GA

optimum objective function parameters with GP value without GP value

products (%) 64.36 64.36
entropy generation (J/K s) 1022.20 1022.20

optimum decision variable parameters with GP value without GP value

Tgas,in (K) 908.35 908.35
Pgas,in (bar) 25.29 25.29
ma (g/s) 785.71 785.71
Tw,in (K) 1107.42 1107.42

Table 11. Results of Minimization of Entropy Generation by
GA

optimum objective function parameters with GP value without GP value

products (%) 48.92 48.92
entropy generation (J/K s) 688.00 688.00

optimum decision variable parameters with GP value without GP value

Tgas_in (K) 845.85 845.85
Pgas_in (bar) 35.39 35.39
ma (g/s) 750.27 750.27
Tw_in (K) 1000.00 1000.00
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reduced significantly in GP-MOWCA and GP-MOGA
compared with MOGA and MOWCA.40

6. CONCLUSIONS
A thermal cracking reactor was investigated in this study. The
input feed was propane and water steam, and the main output
products were propane, methane, ethylene, propylene, and
hydrogen. The amount of entropy generated by the sources and
the governing equations was investigated.
Single-objective and two-objective optimizations using GA

and WCA were performed to maximize products and minimize
entropy generation. Decision variables were the inlet gas
temperature, inlet gas pressure, the mass flow rate of the inlet
air, and the wall. GP was employed to generate the best
correlations to predict objective functions based on key variables
to reduce the run time of optimization runs.
Based on single-objective optimization, the following results

were obtained:

• Maximizing product production using GA and WCA led
to 64.36 and 64.56% by weight of system products
equivalent to a 6.17 and 6.51% increase in the product
compared to the base case.

• Minimizing the entropy production rate using the GA and
WCA led to a decrease of 52.38 and 52.49% compared to
the base case in the entropy generation rate of the system.

Based on two-objective optimization, the following results
were obtained:

• The weighted percentage of products and the entropy
production rate improved 0.85% and 16.51% compared
with the base case using the MOGA algorithm, and 1.97
and 18.77% compared to the base case.

It is suggested that future studies will address exergonic and
exergoeconomic parameters. For studies on the optimization
problem, environmental impacts are critical factors that should
be further investigated.
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■ NOMENCLATURE
j jth component
dz the length dz
Fj the intensity of the molar flow of the jth component
αij stoichiometric coefficient of the jth component in the ith

reaction
Rj overall velocity of the production and/or consumption of

the jth component
ri the velocity of the ith reaction
Ki the specific velocity of the ith reaction
cj the molar concentration of the jth component
yj molar ratio
ΔHi the heat of the ith reaction
Jq(z) heat flux transferred from the outer heat source to the

reaction flow in the location z of the reactor
Cpj heat capacity of the jth component
α unit conversion factor
ρ gas density
u gas speed
Mm gas mixture molecular weight
Λ the angle of the bends, which is equal to 180°
Tw surface temperature
T∞ fluid temperature
h the coefficient of the convection heat transfer
Tc the temperature of the tube center
Tb bulk temperature
Tbo outlet bulk temperature
Sin entropy of the inlet flow
Sout entropy of the outlet flow
ΔSu entropy induced by heat transfer

Table 12. Results of Maximization of the Product by WCA

optimum objective function parameters with GP value without GP value

products (%) 64.56 64.56
entropy generation (J/K s) 1009.20 1009.20

optimum decision variable parameters with GP value without GP value

Tgas_in (K) 915.27 915.27
Pgas_in (bar) 35.39 35.39
ma (g/s) 25 25
Tw_in (K) 1108.01 1108.01

Table 13. Results of Minimization of Entropy Generation by
WCA

optimum objective function parameters with GP value without GP value

products (%) 59.66 59.66
entropy generation (J/K s) 687.50 687.50

optimum decision variables parameters with GP value without GP value

Tgas_in (K) 878.08 878.08
Pgas_in (bar) 28.03 28.03
ma (g/s) 799.67 799.67
Tw_in (K) 1161.73 1161.73

Table 14. Comparison of Computation time for MOGA,
MOWCA, GP-MOGA, and GP-MOWCA

methodology MOGA MOWCA
GP-

MOGA
GP-

MOWCA

computation time (s) 63 056.8 61 753 34 270 33 380
computation time (h) 17.51 17.15 9.52 9.27
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σ locally generated entropy

A
coefficient of exponential function or coefficient of
frequency

E the activation energy (expressed in J/mol or cal/mol)
R ideal gas constant
T absolute temperature, K
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