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Abstract: Simultaneous localization and mapping (SLAM) is one of the key technologies for coal
mine underground operation vehicles to build complex environment maps and positioning and to
realize unmanned and autonomous operation. Many domestic and foreign scholars have studied
many SLAM algorithms, but the mapping accuracy and real-time performance still need to be
further improved. This paper presents a SLAM algorithm integrating scan context and Light weight
and Ground-Optimized LiDAR Odometry and Mapping (LeGO-LOAM), LeGO-LOAM-SC. The
algorithm uses the global descriptor extracted by scan context for loop detection, adds pose constraints
to Georgia Tech Smoothing and Mapping (GTSAM) by Iterative Closest Points (ICP) for graph
optimization, and constructs point cloud map and an output estimated pose of the mobile vehicle.
The test with KITTI dataset 00 sequence data and the actual test in 2-storey underground parking lots
are carried out. The results show that the proposed improved algorithm makes up for the drift of the
point cloud map, has a higher mapping accuracy, a better real-time performance, a lower resource
occupancy, a higher coincidence between trajectory estimation and real trajectory, smoother loop,
and 6% reduction in CPU occupancy, the mean square errors of absolute trajectory error (ATE) and
relative pose error (RPE) are reduced by 55.7% and 50.3% respectively; the translation and rotation
accuracy are improved by about 5%, and the time consumption is reduced by 2~4%. Accurate map
construction and low drift pose estimation can be performed.

Keywords: simultaneous localization and mapping; LeGO-LOAM; scan context; loop detection; ICP
graph optimization; unmanned vehicle

1. Introduction

As an important traditional energy industry in China, the coal industry is an important
part of China’s national economy. Intelligent coal mines are the core technical support
for the high-quality development of the coal industry, which is of great significance in
improving the safety level of coal mine production and in ensuring the stable coal supply.
SLAM is one of the ways to build the underground environmental map of complex coal
mines and its own intelligent positioning for coal mine operation vehicles. It is one of
the key technologies to realize unmanned driving and autonomous operation in a coal
mine [1].

Scholars at home and abroad have carried out a large number of studies on SLAM
algorithms based on vision [2–5] and LiDAR [6–10]. Due to advantages of intuitive map-
ping, high ranging accuracy, easily unaffected by the variation of illumination and view
angle, and its ability to operate in all weather conditions [11], Lidar is widely used in
the field of unmanned driving [12–15] and is more suitable for SLAM in Complex and
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changeable coal mine environments with poor light conditions. Huber and Vandapel [16]
used a high-precision laser scanner to build a high-precision three-dimensional geological
model of a coal mine, but this method needs post-processing of surveying data, which
cannot meet the requirements of real-time mapping and positioning of the coal mine en-
vironment, and the cost is high. Ren Z. et al. [17] studied the lightweight loop detection
and optimization algorithm based on rules and Generalized ICP (GICP) [18], and proposed
the SLAM optimization method based on GICP 3D point cloud registration, but the posi-
tioning and mapping accuracy still needs to be improved. Considering the real-time and
accuracy of positioning and mapping, there are still many problems to be solved in coal
mine underground environment SLAM.

LiDAR Odometry and Mapping (LOAM) [19,20] is presently the most representative
real-time 3D laser SLAM algorithm based on feature matching. It has a small amount of
calculation and motion compensation, but there is no loop detection, resulting in drift error
accumulating over time and poor mapping accuracy, and degradation problems in an open
environment. In view of the lack of LOAM algorithm, Shan T [21] added loop detection to
find loop points by combining ICP and Euclidean distance, and carried out lightweight
and ground optimization processing in feature extraction, and proposed Light weight and
Ground-Optimized LiDAR Odometry and Mapping (LeGO-LOAM) to achieve a similar or
better accuracy under the condition of reduced computing resources. However, sometimes
loop detection has errors or identification omissions. HDL-Graph-SLAM [22] integrates the
optimized Normal Distributions Transform (NDT) [23] point cloud registration algorithm,
and uses the method of accessing historical key frames to perform loop detection and
matching on the scene scanned by the point cloud of the current frame. It has good
stability, but the mapping speed is slow and the point cloud matching accuracy is not
high. IMLS-SLAM [24] proposed a scan-to-model matching framework based on implicit
moving least squares (IMLS) surfaces, which can provide accurate attitude estimation,
but it is not real-time estimation. SuMa [25] is a motion estimation and mapping method
based on surfel map. It uses projection data association to estimate the dense registration
of each projection point. It is more robust to missing features or missing data and can
establish a global consistent map in a large-scale environment only based on laser point
cloud data with a high accuracy, but the efficiency is limited. Reference [26] proposed an
optimization method of loop detection based on ground plane constraints and segmatch to
realize low drift positioning and the construction of dense 3D point cloud images. Loop
detection methods based on fast point feature histogram (FPFH) [27] and Gasalt3D [28] local
descriptors require key point extraction and large-scale local geometric calculation, and has
low loop detection efficiency. Rizzini D L [29] studied the global descriptor-based GLAROT
loop detection method, but its efficiency is still low. Giseop Kim and ayoung Kim of KAIST
University in Korea proposed a scan context loopback detection algorithm [30], which
uses a non-histogram global descriptor to realize fast and effective search and matching
of current and historical frame data. It has the characteristics of high precision, and low
time-consumption and computational costs. It is an efficient and robust loopback detection
method.

In view of the real-time and accuracy requirements of map construction of the coal
mine underground environment, and considering the high-precision, low-cost, efficient
and robust characteristics of the scan context, this paper uses a scan context algorithm to
optimize the LeGO-LOAM loopback detection module, and uses an ICP algorithm to opti-
mize the global map obtained by loop, and proposed a LeGO-LOAM-SC SLAM algorithm
fusing Scan Context and LeGO-LOAM to improve the accuracy, real-time and robustness
of coal mine underground map construction, and also evaluated the performance of the
proposed algorithm with the KITTI data set 00 sequence data and the point cloud data
collected experimentally in an underground simulation scene, so as to explore a better
SLAM algorithm and to provide technical support for map construction and unmanned
driving of the coal mine underground environment.
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2. Algorithm Principle and Improvement
2.1. LeGO-LOAM

LeGO-LOAM is a lightweight real-time positioning and mapping algorithm based
on 3D LiDAR, proposed by Shan T et al. on the basis of an LOAM algorithm in 2018. It is
mainly composed of point cloud segmentation, feature extraction, LiDAR measurement,
LiDAR mapping and transformation fusion, as shown in Figure 1.
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Let Pt = {p1, p2, . . . , pn} be the point cloud data obtained by LiDAR at time t, where pi
is a point in Pt and its Euclidean distance to LiDAR is indicated by ri.

To improve the processing efficiency and the accuracy of feature extraction, through
the point cloud segmentation module, the point cloud Pt is divided into different clusters
and is marked as ground points or segmentation points. At the same time, three features
of each point, namely, the label of the point, the row and column index in the depth map
and the distance value, are obtained for subsequent modules. First, the point cloud is
projected onto a depth map, and the point Pi in Pt is mapped to a pixel on the depth map.
Before segmentation, the ground plane of the depth map is estimated to extract the ground
features, and the points representing the ground plane are marked as ground points, which
do not participate in point cloud segmentation. Then, the point cloud is divided into
many clusters by an image segmentation method, and the points in the same cluster are
marked as an exclusive label. The ground points are kind of exclusive clusters. When using
segmented point cloud for fast and reliable feature extraction, clusters with fewer than
30 points are ignored to reduce the insignificant or unreliable features formed by small
objects such as leaves in a noisy environment.

The feature extraction module extracts edge and planar features from ground points
or segmentation points. The extraction process is as follows:

(1) Let S be the set of continuous points in the same row in the depth map and calculate
the roughness c of the point pi

c =
1

|S| · ‖ri‖

∥∥∥∥∥∥ ∑
j∈S,j 6=i

(rj − ri)

∥∥∥∥∥∥ (1)

where, ri and rj are the Euclidean distances from points pi and pj in set S to LiDAR,
respectively.

(2) Divide the depth map horizontally into several equal sub images to extract features
evenly.

(3) Segment different types of features according to the set threshold cth. The points with
roughness value c greater than cth are segmented into edge feature points, and the
points less than cth are segmented into plane feature points. The non-ground edge
feature point nFe with the largest roughness c and the plane feature point nFp with
the smallest roughness c in the ground or segmentation points are selected from each
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row of the sub image to obtain the edge feature point set Fe and the plane feature
point set Fp in all sub images. Then, the non-ground edge feature nFe with the largest
roughness c and the ground plane feature nFp with the smallest roughness c are
selected from each row of the sub image to obtain the edge feature set Fe and the
plane feature set Fp in all sub images. Obviously, Fe ⊂ Fe, Fp ⊂ Fp.

The LiDAR odometry module estimates the motion of the robot in two consecutive
frames, and uses the features extracted from the feature extraction module to find the
correlation transformation of the robot position in the continuous scanning frame. During
the estimation process, the label matching is used to narrow the matching range and to
improve the accuracy, and the two-step Levenberg-Marquardt (L-M) optimization method
is used to find the conversion relationship between two consecutive frames. The first step
is to use the ground plane features Fp to obtain [tz, θroll, θpitch]; the second step is to match
the edge features extracted from the segmented point cloud to obtain the transformation
[tx, ty, θyaw], and then the 6-dimensional transformation between two consecutive scans
is obtained finally by the fusion [tz, θroll, θpitch] and [tx, ty, θyaw], which reduces the
computational time by approximately 35% with a similar accuracy.

The LiDAR mapping module matches the features in the feature set {Fe
t, Fp

t} with the
surrounding point cloud map Q−t−1 to further refine the attitude transformation, then uses
the final transformed pose obtained by L-M optimization to add the spatial constraints
between the new node of the point cloud map and the historically selected node, and adds
new constraints through loop detection, then sends the pose map to GTSAM for graph
optimization and updates the estimated pose by sensor. The transforming module fuses
the pose estimation results from the LiDAR odometry module and the LiDAR mapping
module, and outputs the final pose estimation.

The loop detection module of LeGO-LOAM uses a k-dimensional tree (KD tree) model
to find the historical pose similar to the current pose and its nearby point clouds based on
Euclidean distance, uses ICP to calculate its matching degree and estimates the pose, and
uses the robot pose of the most similar historical frame to constrain the current robot pose
estimation and updates the point cloud map to obtain the global consistency map. The
loop algorithm has a large amount of calculation and a low detection efficiency. To give
consideration to real-time and accuracy, a lower frequency loop detection is adopted, and
there is still a large cumulative error in the mapping of long-range and large scenes.

2.2. Scan Context

The scan context algorithm, proposed by Giseop Kim and Ayoung Kim of KAIST
University, uses global descriptors of non-histograms to enable a faster and efficient search
of “context” (current/previous data). Scan context transforms 3D point clouds into 2.5D by
dimensionality reduction, and uses a search algorithm to match the point cloud data of the
current frame and the historical frame to realize loopback detection.

Figure 2 shows the structure diagram of scan context global descriptor. For a frame
of point cloud data scanned by LiDAR, the top view is obtained from the top of 3D point
cloud (as shown in Figure 2a), and the polar coordinate system is established with the
LiDAR position as its origin. Twenty rings are divided outward from origin, and each ring
is divided into 60 equal parts, namely 1200 grids, taking the maximum height (Z value)
of the points in each grid as the grid value. Then the top view is expanded radially into
20 rows and 60 columns of rectangular images (Figure 2b), the average values of each row
and each column are calculated respectively, and the two vectors—ring key and sector are
obtained as global descriptors.
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Figure 2. Construction diagram of scan context global descriptor. (a) Top view of one frame of point
cloud; (b) Rectangular image expanded from the top view.

The flow of scan context loopback detection algorithm is shown in Figure 3. The
rectangular image scan context is constructed by using the point cloud data scanned at one
time, the KD tree is constructed by using the ring key vector, the nearest neighbor search is
performed, multiple similar frames that may loopback with the current frame and their
ring key translation values are found, the similarity score is calculated, and the similar
frames with high scores are screened out; then, the minimum offset and the similarity score
is calculated sector by sector, the frame with the highest similarity score is selected as the
loopback frame, and the pose relationship between the current frame and the loopback
frame is solved, and the loop detection is realized.
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Figure 3. Loop detection algorithm overview.

2.3. Improved Algorithm Principle

To overcome the shortcomings of the LeGO-LOAM loop detection algorithm, the scan
context algorithm is used to replace the ICP loop detection method based on the Euclidean
distance in the LeGO-LOAM algorithm, and the pose constraints are calculated by ICP
and added to GTSAM for global pose optimization to build a global map, named as the
LeGO-LOAM-SC algorithm. This algorithm reduces the dimension of the point cloud by
integrating the scan context loopback algorithm, with a small amount of computation and
a fast loopback detection, to improve the mapping accuracy and efficiency. The algorithm
block diagram is shown in Figure 4.
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The LeGO-LOAM-SC algorithm flow is as follows:

(1) Read the point cloud data collected by LiDAR, divide each frame of point cloud Pt by
the point cloud segmentation module into different clusters and mark them as ground
points or segmentation points. Meanwhile, three characteristics of each point, namely,
the label of the point, the row and column index in the depth map and the distance
value, are obtained and the point cloud that cannot be clustered is removed.

(2) By the feature extraction module, calculate the feature point roughness c, and ex-
tract the edge feature points nFe and the plane feature points nFp according to the
roughness c ranking.

(3) The LiDAR odometry module uses edge feature points and plane feature points to
obtain the pose transformation matrix through a two-step L-M optimization, and
obtains the spatial constraints between two continuous frame point clouds.

(4) The LiDAR mapping module matches the features in {Fe
t, Fp

t} with the surrounding
point cloud Q−t−1 to further refine the posture transformation, and then uses the
final transformed pose obtained by L-M optimization to add the spatial constraints
between the new node of the point cloud map and the historically selected node,
sends the pose map to GTSAM for map optimization, updates the sensor estimated
attitude and updates the current map.

(5) Further eliminate the drift of point cloud map through a scan context loopback
detection algorithm. The process is as follows:

(a) Encode point cloud data The 3D point cloud is divided into Ns axial sector
and Nr radial ring bin in LiDAR coordinates at equal intervals, as shown in
Figure 2a. If the maximum sensing range of the LiDAR is Lmax, the radial gap
between the rings is Lmax/Nr, and the central angle of the sector is equal to
2π/Ns. Generally, Ns and Nr are set at 60 and 20, respectively. Set Pij be a point
set that belongs to the overlapping bins of the ith ring and jth sector, and take
the maximum height of the point cloud p in the point set Pij as the value of the
the radial ring bin, then the bin coding function is:

φ
(
Pij

)
= max

P∈Pij
z(p) (2)

where z( ) is a function of the z-coordinate value of point cloud p, and the
empty bin is assigned a zero value. Then the scan context I is finally expressed
as the Nr × Ns matrix, as follows:

I =
(
aij
)
∈ RNr×Ns, aij = φ

(
Pij

)
(3)

(b) Generate a scan context The point cloud and candidate point cloud to be
queried are retrieved, the distance between two column vectors at cq

j and cc
j

of the same index by cosine distance is calculate, and the distance function is
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normalized by dividing the sum of the distances between columns in the same
index by the total number of columns Ns.

d(Iq, Ic) =
1

Ns

Ns

∑
j=1

(1−
cq

j · c
c
j

‖cq
j ‖‖cc

j‖
) (4)

where, Iq and Ic are the scan context obtained from the point cloud to be
queried and the candidate point cloud, respectively. Get the vector K. The
displacement of LiDAR sensor coordinates relative to the global coordinates
will change the column order. Use all possible column displacement scanning
contexts to calculate the distance and find the minimum distance. Set Ic shift
n columns to get matrix Ic

n, then the column movement number n and the
corresponding distance of the best alignment can be obtained according to the
minimum distance,

D(Iq, Ic) = min
n∈[Ns ]

d(Iq, Ic
n) (5)

n∗ = argmin
n∈[Ns ]

d(Iq, Ic
n) (6)

Each row r of scan context is encoded into a real value by the ring coding
function ψ, and the ring key is represented by the Nr dimensional vector K,
whose element is taken from the nearest ring to the farthest ring from the
LiDAR.

k = (ψ(r1), · · · , ψ(rNr )), ψ : ri → R (7)

(c) Confirm the index of the loopback frame. Vector K is used to construct the key
of KD tree. The queried ring key is used to find similar ring keys and their
corresponding scan indexes. Use distance D(Iq, Ic) to compare the candidate
scan context with the scan context to be queried,

c∗ = arcmin
ck∈C

D(Iq, Ick), s.t D < τ (8)

where c is a set of candidate indexes extracted from KD tree, τ is the given
threshold, and c∗ is the index where it is determined to be looped.

(6) Combine m keyframes near c∗ into a local map, convert the current key frame to the
world coordinate system, register with the local map and calculate the registration
score by the ICP method. If the registration score is less than the given threshold, the
loopback is considered successful, and the pose constraints between the loopback
frame and the current frame is obtained. The constraints are added to GTSAM for
map optimization and to update the point cloud map. The transform fusion module
fuses the position and position estimation results from the LiDAR range meter module
and the LiDAR mapping module, and outputs the final position and the position
estimation.

3. The KITTI Dataset Test

The test software environment is Ubuntu 18.04, ROS melodic, PCL 1.10, GTSAM 4.0.3,
Python 2.7.17, and the hardware configuration is 8 GB of RAM, Intel Core i3-4100M, and
NVIDIA GeForce 940M. The test data set adopts KITTI data set 00 sequence.

3.1. Mapping Effect

Figure 5 shows a point cloud map of the 00 sequence of the KITTI dataset constructed
by LeGO-LOAM and LeGO-LOAM-SC, and the red box is where the scanning start point
and end point are located. Figure 6 is a partial enlarged view of the red box part of Figure 5.
It can be seen that when mapping by LeGO-LOAM algorithm, the loopback effect is poor
and there is a phenomenon of point cloud map drift, and the initial map and loopback map
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do not coincide. While mapping by LeGO-LOAM-SC, the initial map and loopback map
show good consistency, and the phenomenon of point cloud map drift make up.
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3.2. Track Comparison

Evo is a Python package for the evaluation of odometry and SLAM, and provides exe-
cutables and a small library for handling, evaluating and comparing the trajectory output
of odometry and SLAM algorithms [31,32]. It supports many trajectory formats: ‘TUM’
trajectory files, ‘KITTI’ pose files, ‘EuRoC MAV’ (.csv groundtruth and TUM trajectory file),
ROS and ROS2 bagfile, etc. evo has several advantages over other public benchmarking
tools: common tools for different formats; algorithmic options for association, alignment,
scale adjustment for monocular SLAM etc.; flexible options for output, plotting or export
(e.g., LaTeX plots or Excel tables); a powerful, configurable CLI that can cover many use
cases; modular core and tools libraries for custom extensions; faster than other established
Python-based tools. The motion tracks were extracted using the evo tool, as shown in
Figure 7. As can be seen from the figure that the motion trace generated by LeGO-LOAM-
SC had more coincidence with the real trace. At a sharp turning angle (circled in red in
the Figure 7), LeGO-LOAM failed to smooth the loop, while the loop of LeGO-LOAM-SC
algorithm is smoother and the effect is better.
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3.3. Estimate Trajectory Length Deviation and Time

The evo tool is used to analyze the track length and its deviation, CPU occupancy and
time consumption obtained by LeGO-LOAM and LeGO-LOAM-SC, as shown in Table 1.
It can be seen that compared with the LeGO-LOAM algorithm, the LeGO-LOAM-SC
optimizes the loop detection link and the actual track length is closer to the real track
length, the deviation is reduced by 47.8%, the time consumption is reduced by 2%, and the
CPU occupancy is reduced by 6%, indicating that the improved algorithm has a higher
mapping accuracy, a better real-time performance and a lower resource occupancy.

Table 1. Track length and the deviation, CPU occupancy and time consumption by the two algorithms.

Algorithm Path Length
(m)

Track Length
Deviation (m)

(Actual Path Length is
3724.187 m)

The CPU
Occupancy

Rate (%)

Time
Consumption

(s)

LeGO-LOAM 3730.692 6.505 65 570.167
LeGO-LOAM-

SC 3727.583 3.396 61 558.564

3.4. Absolute Trajectory Error and Relative Pose Error

Table 2 shows the maximum error, minimum error and mean square error of ATE and
RPE. It can be seen that the maximum error, minimum error and mean square error of ATE
by LeGO-LOAM-SC algorithm are reduced by 49.4%, 79.1% and 55.7% respectively, and
that the maximum error, minimum error and mean square error of RPE are reduced by
62.9%, 25.0% and 50.3% respectively, which shows that the LeGO-LOAM-SC algorithm
has a better accuracy in long-distance scenes, and is suitable for the mapping of large-scale
scenic cloud maps with a higher accuracy.
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Table 2. Comparison of absolute trajectory error and relative position error.

Algorithm Evaluating
Indicator Maximum Error Minimum Error Mean Square

Error

LeGO-LOAM
ATE 11.177 m 0.885 m 4.976 m
RPE 6.173 0.004 0.159

LeGO-LOAM-
SC

ATE 5.652 m 0.185 m 2.206 m
RPE 2.289 0.003 0.079

4. Experimental Verification

A tracked car equipped with 16-line lidar is used to simulate the mobile operation
vehicle in a coal mine. The equipped LiDAR is RS-LiDAR-16, with a measurement range
of 150 m, an accuracy of ±2 cm, a vertical perspective of 30◦, a horizontal perspective of
360◦, a vertical angle resolution of 2◦, a horizontal angular resolution of 0.2◦, and a rotation
rate of 10 Hz. The testing was carried out at a large underground parking lot with two
floors, as shown in Figure 8. The parking lot has a large scene and rich environmental
characteristics. There are bumpy roads such as deceleration belts and sewers, which can
test the positioning and mapping accuracy and robustness of the algorithm.
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Figure 8. Experimental environment. (a) Scene #1 of Basement 1 parking lot; (b) Scene #2 of Basement
2 parking lot.

Feature extraction is the key module of point cloud map construction. For a frame of
point cloud data obtained by RS-LiDAR-16 LiDAR, the feature extraction was performed
using LeGO-LOAM-SC, and the results of feature extraction at every stage were shown in
Figure 9.
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Figure 9. The results of feature extraction at every stage. (a) The original point cloud collected by
LiDAR; (b) the ground points (in red) and the segmentation points (in others) after point cloud
segmentation; (c) the edge feature points set nFe (in blue) and the plane feature points set nFp (in
orange); (d) the edge feature Fe (in green) and the plane feature Fp (in pink).

In Figure 9, (a) shows the original point cloud data collected by LiDAR; and (b) shows
the results after point cloud segmentation. The points marked in red represent ground
points while the points marked in others represent segmentation points, and the points
that cannot be clustered have been removed; (c) shows the visualization diagram of the
edge feature points nFe (in blue) and the plane feature points nFp (in orange) extracted
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from ground points or segmentation points according to the value of roughness c. The edge
feature nFe with the largest roughness c, and the non-ground and plane feature nFp with
the smallest roughness c and the ground are extracted from each row of the subgraph to
obtain the edge feature set Fe and the plane feature set Fp in all subgraphs, shown as (d).

The loopback frames at the entrance of the parking lot are detected respectively by
using the traditional LeGO-LOAM and the LeGO-LOAM-SC proposed in this paper; the
visualization results are shown in Figure 10. Among them, (a) is the result of loop detection
and visual processing by traditional LeGO-LOAM, and (b) is the visual diagram of loop
detection by improved LeGO-LOAM-SC. The results show that scan context is used as
loopback detection to make the point cloud coincidence degree of the current frame and the
detected historical loopback frame higher, indicating that the correction effect of historical
pose and map is better and has a better loopback effect.
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4.1. Mapping Effect

For the point cloud data for the two scenarios obtained from the experiment, the
maps were constructed respectively using three algorithms—LOAM, LeGO-LOAM and
LeGO-LOAM-SC—as shown in Figures 11 and 12.
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It can be seen from Figures 11 and 12 that in the mapping test of the two scenarios, the
loam algorithm failed to build a complete map; compared with the LeGO-LOAM algorithm,
the map constructed by the LeGO-LOAM-SC algorithm is clearer and the mapping effect
is better. Figure 13 is the partial enlarged map of the Figure 11 (the part in the red box).
It shows that the LeGO-LOAM loopback effect is poor with point cloud map drift and
misalignment at the loopback location (Figure 13a), and that the LeGO-LOAM-SC reduces
the map drift and coincides at the loop, and the loopback effect is better (Figure 13b).
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4.2. Trajectory Contrast

The motion trajectories were estimated respectively by three algorithms—LOAM,
LeGO-LOAM and LeGO-LOAM-SC—and were extracted using an evo tool, as shown
in Figure 14. It can be seen from Figure 14 that LOAM cannot trace the trajectory, and
that at the place with the large turning angle (circled in red), the LeGO-LOAM trajectory
drift is large, while the LeGO-LOAM-SC algorithm trajectory is smoother, and its overall
positioning effect is better.

Table 3 shows the relative position estimation error when returning to the starting
position. It can be seen from the table that the translation and rotation deviations of the
three SLAM algorithms are large, indicating that it is difficult to obtain accurate positioning
results only by 3D LiDAR. In comparison, the LeGO-LOAM-SC proposed in this paper can
still achieve more accurate positioning and mapping results when only using 3D LiDAR
information, and the translation and rotation accuracy of the map is improved by about 5%.
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Figure 14. Comparison plots of the LOAM, LeGO-LOAM-SC, and LeGO-LOAM trajectories. (a) For
scene #1; (b) for scene #2.

Table 3. The estimation error when returning to the starting position.

Scene #1 #2

Algorithm LOAM LeGO-LOAM LeGO-LOAM-SC LOAM LeGO-LOAM LeGO-LOAM-SC

Translation X (m) 22.68 −0.86 0.40 20.36 −1.24 −0.98
Translation Y (m) 3.57 0.14 0.10 −2.83 0.56 0.09
Translation Z (m) 59.84 13.86 12.23 38.32 8.92 8.59

Total translation (m) 64.09 13.89 12.24 43.49 9.02 8.65
Pitch angle (deg) −69.09 −2.46 0.93 −75.87 −6.36 −5.18
Drift angle (deg) 8.01 0.74 −6.26 13.02 −6.47 2.51
Roll angle (deg) 2.86 6.27 −0.58 −26.83 4.43 1.26

Total rotation (deg) 70.42 6.78 6.39 81.52 10.06 5.89

4.3. Track Length and Time Consuming

The trajectory length and time-consuming estimated by LeGO-LOAM and LeGO-
LOAM-SC were analyzed using the evo tool, as shown in Table 4. LeGO-LOAM-SC has a
better real-time performance and reduces time consumption by about 4%.

Table 4. Track length and time-consuming.

Scene Algorithm Path Length (M) Time Consuming (S)

#1
LeGO-LOAM 186.954 220.364

LeGO-LOAM-SC 179.286 211.864

#2
LeGO-LOAM 192.258 234.950

LeGO-LOAM-SC 198.360 225.268

5. Conclusions

(1) An improved SLAM algorithm fusing LeGO-LOAM with scan context, LeGO-LOAM-
SC algorithm, is proposed. The data set test and experimental test results show that the
improved algorithm has a higher mapping accuracy and a lower time-consumption
and resource occupancy.

(2) The KITTI dataset 00 sequence is used to test the mapping and pose estimation perfor-
mance of LeGO-LOAM and LeGO-LOAM-SC. The results show that LeGO-LOAM-SC
improves the drift of the point cloud map, the coincidence degree between motion
trajectory estimation and real trajectory is higher, the loop is smoother, the estimated
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trajectory length is closer to the real trajectory length, and the time consumption is
reduced by 2%. The CPU occupancy is reduced by 6%, the maximum error, minimum
error and mean square error of ATE are reduced by 49.4%, 79.1% and 55.7% respec-
tively, and the maximum error, minimum error and mean square error of RPE are
reduced by 62.9%, 25.0% and 50.3%, respectively.

(3) An experimental test found that the map constructed by LeGO-LOAM-SC algorithm
is clearer, the loopback effect is better, the generated estimation trajectory is smoother,
the overall positioning is more accurate, the translation and rotation accuracy is
improved by about 5%, and the time consumption is reduced by about 4%.
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