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Abstract

Monitoring protected areas (PAs) is essential for systematic evaluation of their effectiveness

in terms of habitat protection, preservation and representativeness. This study illustrates

how the use of species distribution models that combine remote sensing data and informa-

tion about biodiversity surrogates can contribute to develop a systematic protocol for

monitoring PAs. In particular, we assessed the effectiveness of the Natura 2000 (N2000)

network, for conserving and preserving the representativeness of seven raptor species in a

highly-dynamic landscape in northwest Spain between 2001 and 2014. We also evaluated

the cost-effectiveness of the N2000 network by using the total area under protection as a

proxy for conservation costs. Overall, the N2000 network was found to poorly represent the

habitats of the raptor species. Despite the low representativeness, this network showed a

high degree of effectiveness due to increased overall habitat availability for generalist and

forest specialist species between 2001 and 2014. Nevertheless, additional protected areas

should be established in the near future to increase their representativeness, and thus

ensure the protection of open-habitat specialist species and their priority habitats. In addi-

tion, proactive conservation measures in natural and semi-natural ecosystems (in particular,

montane heathlands) will be essential for long-term protection of Montagu’s harrier (species

listed in the Annex I of the Bird Directive), and thus complying with the current European

Environmental Legislation. This study sheds light on how the development and application

of new protected area indices based on the combined use of freely-available satellite data

and species distribution models may contribute substantially to the cost-efficiency of the PA

monitoring systems, and to the ‘Fitness Check’ process of EU Nature Directives.

Introduction

The global Aichi Biodiversity Targets of the Convention on Biological Diversity [1] aim to halt

biodiversity loss by 2020. Target 11 states that ‘by 2020 at least 17% of terrestrial and inland
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water areas [. . .] are conserved through effectively and equitably managed, ecologically repre-

sentative and well-connected systems of protected areas’. Protected areas (PAs) are therefore a

mainstay of the current conservation strategies that address the ongoing decline in biodiversity

[2]. However, the ability of static PA networks to conserve biodiversity is often questioned, as

rapid shifts in species’ distributions are occurring in response to changes in current environ-

mental conditions [3,4]. Despite the increase in PAs in the last few decades, it is unlikely that

the Aichi Biodiversity Targets will be met by 2020 [5]. The main means whereby the European

Union (EU) is attempting to achieve these targets is the Natura 2000 network of PAs (hence-

forth ‘N2000’), comprising over 25,000 sites representing 18% of the area of the 27 Member

States of the EU [6]. The N2000 network includes Special Protection Areas for wild birds

(SPAs), designated by the Member States under the Birds Directive (2009/147/EC) to conserve

the habitats of particularly threatened species and migratory species; and Special Areas of Con-

servation (SACs), designated for other taxa and habitats under the Habitats Directive (92/43/

EEC). This network aims to ensure a ‘favourable conservation status’ for species and habitat

types listed in the annexes of the aforementioned European directives.

Although systematic monitoring of PAs is essential for evaluating PA effectiveness in terms

of maintaining habitat protection, preservation and representativeness [7], it is rarely carried

out. In this context, satellite remote sensing is an extremely powerful tool to assist systematic

monitoring processes as it enables coverage of large, remote and non-sampled areas over dif-

ferent time periods, thus providing a continuous source of environmental information [8].

The usefulness of remote sensing for mapping and delineation of land cover categories within

and around PAs has been widely demonstrated [9]. However, the correspondence between

land cover and habitat is far from straightforward [10]. This limitation can be overcome by

establishing links between land cover types and species’ habitat preference. Species distribution

models (also called ‘ecological niche models’ or habitat suitability models) empirically corre-

lates field observations with environmental predictor variables, helping to predict the probabil-

ity of occurrence of species for non-sampled areas [11,12]. Combining remote sensing data

with ground surveys in species distribution modelling may contribute to the ecological inter-

pretation of remote-sensing data, and provide a framework for assessing the long-term conser-

vation effectiveness by generating information about changes in species and their habitats

within and outside PAs [13,14]. Conservation funds are often limited; however, the combined

use of remote sensing and species distribution modelling might be a cost-effective tool for

monitoring temporal changes in biodiversity [15,16]. In addition, the increasingly important

role of remote sensing in protocols for long-term monitoring of biodiversity may help to

strengthen the link between satellite remote sensing and conservation biology [17–19]. None-

theless, the number of multi-disciplinary studies integrating remotely-sensed data and habitat

suitability models for monitoring the effectiveness of PAs remains very low [20,21].

In this study, we illustrate how species distribution modelling that integrates satellite

remote sensing data and ground level information about biodiversity surrogates can contrib-

ute to the development of a systematic protocol for multi-temporal monitoring of PAs. In light

of budget restrictions, the first step requires clear choices about the features to be used as sur-

rogates for overall biodiversity in the assessments [7]. Raptors are ideal species for evaluating

the effectiveness of PAs, as their ecological requirements usually encompass the needs of many

other species [22]. We assessed the effectiveness of three types of PAs (Special Protection

Areas-SPAs, Special Areas of Conservation-SACs and the entire N2000 network) for conserv-

ing (henceforth ‘effectiveness’) and representing (henceforth ‘representativeness’) seven rap-

tors species in a highly dynamic, fire-prone landscape located in northwestern Spain between

2001 and 2014. We also evaluated the cost-effectiveness of the different types of PAs (hence-

forth ‘efficiency’), using the total area under protection as a proxy for conservation costs [23].

Satellite earth observation and protected area monitoring
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We expect that these three indices of conservation effectiveness will vary between the three sys-

tems of PAs. More specifically, we expect SACs to be the least effective in conserving the prior-

ity areas for target species because this system is not based on bird protection and is therefore

prone to a lack of representativeness. By contrast, we hypothesize that the SPA system will be

more efficient (i.e. providing a higher level of protection per unit area) in protecting the prior-

ity areas for most bird species, especially those at most risk, because these areas are specifically

designed to preserve bird populations (including many raptor species). However, we also

expect that SPAs and SACs will complement each other, leading to a more efficient N2000 net-

work for protecting raptor species than the individual PA systems alone.

Material and methods

In this study we propose a framework to contribute to the development of a systematic protocol

for the multi-temporal monitoring of PAs by combining remote sensing data, species distribu-

tion models and protected area indices with ground-level information about biodiversity surro-

gates. The modelling framework is structured in five iterative steps, as described below (sections

2.2–2.6) (see Fig 1). However, the approach is flexible because different methods can be used

within each step. The framework provides verifiable, repeatable and standardized information

for medium- and long-term monitoring of PAs, applicable to different periods and PA systems.

Study region and protected-area systems

This study was conducted in Ourense province, southeast of Galicia in northwest Spain (c.
7,281 km2). The study region is located in the transition zone between the Mediterranean and

Eurosiberian biogeographic zones, in the proximity of the Atlantic coast [24]. The study area is

representative of the landscapes of southern Europe, which have undergone a gradual aban-

donment since the mid-twentieth century caused by the cessation of the traditional agropas-

toral activities, and the rural exodus. As consequence, the historical landscape characterized by

complex field mosaics of crops and woodlands have been progressively replaced by homoge-

neous landscapes mainly dominated by forests (both oak forest and pine plantations) and

shrublands. Agricultural areas represent less than 8% of the area (for a detailed description of

vegetation composition, see section 2.4) [25]. The area is also subjected to a high frequency of

human-induced fires traditionally linked to the long-standing socio-economic difficulties of

rural communities (e.g., vandalism, pyromania, revenge, land use change attempts) [26],

resulting in an unstable and highly dynamic system.

In the province of Ourense, 11 SACs have been designated since 1999 for the protection of

habitats and species listed in the annexes of the Habitats Directive and 4 SPAs for the protec-

tion of birds included in the Birds Directive [27]. SACs and SPAs cover respectively 16.6% (c.
120,000 ha) and 8.3% of the study region (c. 60,000 ha). Their total combined extent (N2000)

is 130,000 ha, and covers 17.9% of the study area (Fig 2).

Selecting biodiversity surrogates

Biological surrogates are often used as proxies for assessing overall biodiversity when design-

ing conservation assessment plans, saving conservation managers money and time [28–30]. In

light of budget restrictions, the first step often requires clear choices about the features to be

used as surrogates for overall biodiversity assessments [7]. In this sense, top predators such as

raptors (recognized as flagship and umbrella species) are ideal species for evaluating the effec-

tiveness of PAs, since their ecological requirements usually encompass the needs of many

other species [22]. These species can act as valuable indicators of changes and stresses in

ecosystems, as they are sensitive to changes in land-use, habitat loss and fragmentation.

Satellite earth observation and protected area monitoring
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Conservation efforts focused on their preservation therefore usually imply an improvement in

the protection of the whole region [22,31].

Sampling design and target species

Road-based sampling surveys were carried out in the study area between May and August

2001 and 2014. For this, we divided the study area into 66 sampling units comprised of 10-km

x 10-km grid cells (Fig 2). Grid cells with more than 50% of their surface outside of the prov-

ince were not sampled. A final set of 34 grid cells representing all land cover types [32] was

selected (c. 52% of the study area). In each grid cell, a road survey of 40 km was conducted

Fig 1. Conceptual framework of the systematic protocol for the multi-temporal monitoring of protected areas systems.

https://doi.org/10.1371/journal.pone.0181769.g001
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from a 4 x 4 vehicle travelling at a speed of 30–40 km/h and covering a total of 1,360 km. In all,

we conducted 140 hours of observations, always between 2 hours after sunrise and two hours

before sunset. The same methods were followed in both study periods (2001 and 2014) in

order to keep observations consistent and to minimize any biases associated with migratory

behaviour or phenological timing. Permissions to conduct our censuses of raptors in the field

were provided by “Dirección Xeral de Patrimonio Natural” da Xunta de Galicia. We did not

collect or manipulate raptors in this study. We collected 327 geo-located observations of rap-

tors in 2001 and 446 observations in 2014 for a total of 773 observations of 18 species of raptors

(Fig 2). Of these 18 species, we selected those species with more than 10 presences for statistical

reasons (S1 and S2 Datasets). Hence, we focused on 7 species, which exhibit different degrees

of habitat specialization ranging from open habitats (i.e. shrubland and agricultural land) to

forest land (Table 1; S1 Appendix).

Remotely-sensed data

The land use/land cover (LULC) composition for 2000 and 2014 was derived from optical mul-

tispectral bands (30-meter resolution) of Landsat 7 Enhanced Thematic Mapper plus (ETM +)

Fig 2. Study area, species records (both in 2001 and 2014) and protected-area systems (Natura 2000 network, SPAs and SCAs).

https://doi.org/10.1371/journal.pone.0181769.g002
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(29 March 20 2000 and 24 June 2000) and Landsat 8 Operational Land Imager (OLI) sensors

(19 March 2014 and 9 July 2014). The Landsat scenes captured during spring and summer

(e.g. March and July images) were considered to enhance seasonal discrepancies in the phenol-

ogy of deciduous species. All Landsat scenes were processed to Standard Terrain Correction

(Level 1T), which provides systematic radiometric and geometric accuracy by incorporating

ground control points while employing a Digital Elevation Model (DEM) for topographic

accuracy. We downloaded all scenes from the United States Geological Survey (USGS) Global

Visualization Viewer (http://glovis.usgs.gov). We also included ancillary data during the classi-

fication procedure to improve the overall accuracy of the resulting maps [34]: 1) vegetation

indices (NDVI; [35]) were calculated for each image to enhance the contribution of vegetation

in the spectral response and mitigate other factors such as soil, topography, lighting conditions

and atmosphere [36]; and 2) topography information from the Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM)

(http://reverb.echo.nasa.gov/).

In order to produce several LULC maps, we applied a maximum likelihood classifier, the

most widely-used supervised classification strategy [34], and other approaches that provided

insights into the comparison of categorical maps (mahalanobis distance, spectral angle map-

per and artificial neuronal networks) (see S2 Appendix for global accuracy, and confusion

matrices of the LULC maps for 2000 and 2014). Eight relevant LULC types were recognised

during the fieldwork: (1) deciduous forests, dominated by native oak forest (Quercus robur
and Q. pyrenaica, which constitute the climax vegetation in the region), chestnut groves

(Castanea sativa) and riparian forests (Betula spp.); (2) coniferous forests, dominated by

pine plantations (Pinus sylvestris and P. pinaster which are a legacy of past forestry policies

aimed at increasing wood production); (3) closed shrubland, i.e. shrubland and heathland

covered by more than 50% of shrub species (Cytisus spp., Ulex spp. and Erica spp.); (4) open

shrubland, i.e. rocky soil with less than 50% cover by shrub species and including areas of

sparse vegetation resulting from fire events and intensive forest logging (clear-cutting); (5)

meadow and fallow land; (6) arable or farming land (being or capable of being tilled for crop

production); (7) water surfaces (dams and rivers); and 8) urban patches. Water surfaces and

urban patches were considered constant because of very low values of change at a broad scale

throughout the study period.

Training and validation areas for the supervised classification procedure were selected for

each of the eight classes considered (see S2 Appendix). For each class, these were digitized by

photointerpretation of high-resolution images derived from the QuickBird satellite (available

in Google Earth: for more details, see https://www.digitalglobe.com/) and different RGB

Table 1. List of target species, number of observations and their European conservation status. N2001 shows the number of observations in 2001,

and N2014 in 2014. Species of European Conservation Concern (SPEC) categories according to [33]: SPEC 3 (Not concentrated in Europe but with Unfavour-

able Conservation Status); Non-SPEC (Not concentrated in Europe and with Favourable Conservation Status). Those species included in Annex I of the Bird

Directive (2009/147/EC) are indicated. ABB (abbreviation).

Species Scientific name ABB N 2001 N 2014 SPEC Annex I

Honey buzzard Pernis apivorus PAPI 11 18 Non-SPEC included

Black kite Milvus migrans MMIG 24 31 SPEC 3 included

Short toed eagle Circaetus gallicus CGAL 25 20 SPEC 3 included

Montagu´s harrier Circus pygargus CPYG 53 29 Non-SPEC included

Common buzzard Buteo buteo BBUT 134 177 Non-SPEC Non- included

Booted eagle Hieraaetus pennatus HPEN 4 15 SPEC 3 included

Common kestrel Falco tinnunculus FTIN 42 34 SPEC 3 Non- included

https://doi.org/10.1371/journal.pone.0181769.t001
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composites obtained by combining Landsat satellite bands. The transformed divergence index,

a measure of spectral separability between classes, was used to assess the quality of statistics

prior to image classification [37]. This index was computed over the training (and validation)

areas to ensure maximum spectral separability (values higher than 1.99) between the different

classes.

Training and validation areas based on Google Earth images were defined using Quantum

GIS 2.4 software. Evaluation of the spectral separability, classification procedures, and the sub-

sequent accuracy of the generated maps was performed using ENVI 4.7 SP1 software.

Predicting high suitability habitats

Species distribution modelling enabled empirical correlation of diurnal raptor occurrence

(presence/absence) data with the remotely sensed data. Occurrence data consisted of all pres-

ence records gathered from the field surveys in 2001 and 2014. Pseudo-absence data (also

known as ‘back-ground’ data), are usually drawn at random from the entire region, whereas

presence data is often spatially biased toward easily accessed areas. Since the spatial bias gener-

ally results in environmental bias, the difference between presence data and background sam-

pling may lead to inaccurate models [38]. To correct the estimation, pseudo-absences were

taken from the presence points of the other species recorded during the same surveys. As the

bias in the sampling design is the same for all species, better results can be obtained by using

pseudo-absences within the presence points of the other species (also called ’target-group

background’, see [38,39]) rather than using randomly selected pseudo-absences. Species with

less than 10 presences, however, were not considered for statistical reasons such as the risk of

model overfitting [40,41]. LULC data covariates consisted of the percentage (%) of area occu-

pied by each LULC class. To account for the different requirements of our raptor species in

terms of home range and habitat use, we calculated the percentage (%) of area occupied by

each LULC class within four levels of habitat characterization (500-m, 1-km, 2-km, 5-km radii

surrounding each observation) (S1 and S2 Datasets). The radii sizes were chosen based on

recent literature to ensure the inclusion of the different spatial organization levels used by rap-

tors during the breeding season: the nest area, the post-fledging family area, and the foraging

area [42,43].

Habitat suitability models were developed using the BIOMOD2 package (R-package ‘Bio-

mod2’) [44]. All modelling algorithms available in BIOMOD2 were used: generalized linear

models (GLM), generalized additive models (GAM), generalized boosted models (GBM, also

known as boosted regression), flexible discriminant analysis (FDA), classification tree analy-

sis (CTA), multivariate adaptive regression splines (MARS), surface range envelope (SRE, a.

k.a. BIOCLIM), maximum entropy (MaxEnt), Breiman and Cutler’s random forest for classi-

fication and regression (RF), and artificial neural networks (ANN) [44]. The combined use

of different modelling algorithms has proven a successful approach for fitting the inherent

uncertainty of individual models and providing more informative and ecologically correct

predictions [45]. Ensemble models were trained and evaluated by splitting data into calibra-

tion and validation subsets, including 70% and 30% of the data, respectively. We randomly

repeated this procedure 30 times to yield predictions independent of the training data [46].

The predictive performance of these models was evaluated using the area under receiver

operating characteristic curve (AUC) [46], true skill statistic (TSS) [47] and Cohen’s kappa

coefficient [48]. The ensemble models were constructed using the weighted mean of proba-

bilities option [45,49]. All procedures were repeated for each species, habitat characterization

level and year (2400 single models for each species). The ensemble models were directly pro-

jected at 500-m grain size [50,51] so as to: (1) calculate all protected area indices at the same

Satellite earth observation and protected area monitoring
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spatial resolution, independently of the habitat characterisation level; and (2) provide spatial

projections fine enough to ensure a realistic spatial representation of the protected areas and

thus reduce the risk of over-representing the original extent of PAs that could have been

caused by rasterizing the PA borders at broader resolutions. Model projections were evalu-

ated with the Boyce’s index, that only requires presences and measures how much model

predictions differ from random distribution of the observed presences across the prediction

gradients [52]. Boyce’s index was found to be the most appropriate metric in the case of pres-

ence-only models [53]. It is continuous and varies between -1 and +1. Positive values indi-

cate a model which present predictions are consistent with the distribution of presences in

the evaluation dataset, values close to zero mean that the model is not different from a ran-

dom model, negative values indicate counter predictions, i.e. predicting poor quality areas

where presences are more frequent [53]. Boyce’s index values were computed using the R

package ‘ecospat’ [54], and was used to identify the best model and radius of habitat charac-

terization for each species.

Two levels of habitat suitability were defined from the probability layers and subsequently

applied to each projection: (1) suitable habitats were defined as those areas with habitat suit-

ability values above the lowest 10% percentile (henceforth ‘SH’); and (2) within these SH areas,

a second level threshold (the average of the suitable values within the SH areas) was applied

with the aim of identifying high suitability habitats for the species (henceforth ‘HSH’). The

10% percentile is a widely-used threshold, as the error of omission is lower at lower percentiles

(i.e. the model predicts absence in areas where the species is found) and the model is more sen-

sitive [55]. Thus, we adopted a more conservative outlook of habitat change for both species,

which is appropriate given the inherent uncertainty of modelling approaches. This method has

been successfully applied in identifying priority areas for bird conservation, and selecting

marine Important Bird and Biodiversity Areas (IBAs) in Spain [56–58]. HSH can be inter-

preted in the context of the European Birds directive as the priority areas for conservation of

these species.

Index-based analysis: Effectiveness, efficiency and representativeness

Based on core concepts of conservation planning [59], we developed three indices of the effec-

tiveness, efficiency and representativeness of the three PA systems (i.e. the entire N2000 net-

work, SACs and SPAs) for protecting high suitability habitats of the target species between

year 2001 (t1) and 2014 (t2):

1. Effectiveness index, defined as the proportion of high suitability habitats (HSH) of each

species (i) included within each system (s) at the end (t2) of the time interval relative to the

HSH at the beginning (i.e. year 2001) (t1):

Effectiveness ði � sÞ ¼
HSHðt2Þ
HSHðt1Þ

2. Efficiency index, defined as the proportion of HSH of species (i) at each time interval (t)

relative to the surface of each system (s) (as a proxy for conservation costs):

Efficieny ði � sÞ ¼
HSHðtÞ
SurfaceðsÞ

Satellite earth observation and protected area monitoring
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3. Representativeness index, defined as the proportion of HSH of each species (i) included

within each system (s) relative to the HSH in the entire study area (total HSH).

Representativeness ði � sÞ ¼
HSHðsÞ
Total HSH

In addition, we calculated overall indices for the entire set of raptors, weighted by the threat

status (T) of each species (i):

Weighted Effectiveness ¼
Pn

i ðEffectiveness ði � sÞÞ x TPn
i T

Weighted Efficiency ¼
Pn

i ðEfficiency ði � sÞÞ x TPn
i T

Weighted Representativeness ¼
Pn

i ðRepresentativeness ði � sÞÞ x TPn
i T

where the threat status (T) was estimated by taking into account inclusion of the species in the

Annex I of the Bird Directive and their European conservation status (SPEC category)

(Table 1):

T ¼ Annex x SPEC

where the inclusion in the Annex 1 or in the SPEC category equals 2 (non-inclusion and non-

SPEC equals 1).

Finally, changes in HSH for the whole study area and within the N2000 network were calcu-

lated as the difference between HSH at the end (t2) of the time interval relative to the HSH at

the beginning (t1). All spatial analyses were conducted using the ‘raster’ package, and repre-

sented with ‘ggplot2’ and ‘plotrix’ packages in R [60].

Results

Model performance

The ensemble habitat suitability models, based exclusively on remotely sensed data, showed a

good predictive ability (AUCMEAN = 0.90, AUCSD = 0.10; TSSMEAN = 0.75, TSSSD = 0.21; Kap-

paMEAN = 0.63, KappaSD = 0.21; and BoyceMEAN = 0.70, BoyceSD = 0.20, Fig 3). Only the scores

for the most generalist species (Short-toed eagle Circaetus gallicus) indicated low accuracy

(AUC < 0.75; Boyce < 0.5). The predictive capacities of the models were highly dependent on

the habitat characterization level (Fig 3). Comparison across the four levels of habitat charac-

terization identified models developed with 500-m radii as the best approaches for Montagu´s

harrier Circus pygargus, common kestrel Falco tinnunculus, Black kiteMilvus migrans and

common buzzard, with 1-km radii for Booted eagleHieraatus pennatus and Short-toed eagle,

with 2-km radii for Honey buzzard Pernis apivorus. The habitat suitability models constructed

by characterizing the habitat within 5-km radii showed the lowest values in terms of model

performance, so they were not considered in the PA assessment (Fig 3).

Representativeness, effectiveness and efficiency of the protected-area

systems

The estimated indices related to the protection of high suitability habitats of the target species

showed variations among the seven species and the three systems of PAs (Figs 4 and 5).
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Overall, the high suitability habitats for the whole set of raptors were poorly represented in all

three PA systems, especially by the SPAs (the smallest of the three protected area systems)

(Table 2 and Fig 4). In particular, only two raptor species (Montagu´s harrier and Common

kestrel) strongly linked to open habitats (shrubland and farmland, see S1 Appendix) were well

represented (with values higher than 20%; see Fig 4). Nevertheless, these two species, together

with Short-toed eagle, were the most affected by the loss of high suitability habitats in the

study area (see black line in Fig 6). More importantly, the representativeness was found to

decrease between year 2001 and 2014 for all species, except for Common kestrel (Fig 4).

In general, the three protected area systems were similar in terms of effectiveness and effi-

ciency (Table 2). Overall, all three PA systems showed high effectiveness, but low efficiency, in

protecting optimal habitats for raptors (Figs 4 and 5). The high effectiveness is due to an over-

all increase in the availability of high suitable habitats between 2001 and 2014 (Fig 6; for all spe-

cies except for Montagu´s harrier, Common kestrel and Short-toed eagle). Again, the SPAs

were less effective than the SCAs in protecting the priority areas for most of the species

(Table 2, Fig 5). However, the SPA system was found to be the most efficient (i.e. it provided

the highest level of protection per unit area) (Table 2), especially for the Common kestrel (Fig

4). The N2000 network has clearly helped to mitigate the habitat loss that this species has been

suffering in the study area (Fig 6) by maintaining habitats associated with the agricultural

lands (S3 Appendix). However, the efficiency of the SPAs decreased between 2001 and 2014

Fig 3. Mean evaluation metric scores for each species and habitat characterization level derived by averaging the values obtained for each

period. The following three evaluation indices were calculated: area under the ROC curve (AUC), True skill statistic (TSS), Cohen’s kappa coefficient

(Kappa) and Boyce’s index (Boyce). For full names of the species, see Table 1.

https://doi.org/10.1371/journal.pone.0181769.g003
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(Fig 4), which can compromise its future role in protecting the most threatened species (i.e.

Common kestrel and Montagu´s harrier).

Discussion

This study proposes a framework that will contribute to developing a cost-effective and sys-

tematic protocol for monitoring PA networks. We showed how satellite remote sensing can be

Fig 4. Representativeness and efficiency of each protected-area system (the whole N2000 network, SPAs and SCAs) for year 2001 and 2014. 1)

Representativeness, showing the proportion (%) of high suitability habitat (HSH) for each targeted species included within each protected-area system; 2)

Efficiency, defined as the percentage of HSH of each species relative to the surface of each system. For full names of the species, see Table 1.

https://doi.org/10.1371/journal.pone.0181769.g004

Fig 5. Effectiveness of each protected-area system (the whole N2000 network, SPAs and SCAs). Effectiveness, defined as percentage (%) of high

suitability habitats (HSH) for each targeted species in 2014 relative to the HSH in 2000 within each PA system. For full names of the species, see Table 1.

https://doi.org/10.1371/journal.pone.0181769.g005
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combined with ground-level biodiversity data, species distribution models and protected area

indices to enable verifiable, repeatable and standardized information for medium- and long-

term monitoring, applicable to different time periods and protected-area systems (Fig 1).

Spatial conservation priorities are highly sensitive to choice of biodiversity surrogates [28,61].

In this sense, previous research provides evidences of a tight association, at least in some

Table 2. Overall representativeness, effectiveness and efficiency of the three protected-area systems. The protected-area systems are: the entire

N2000 network (N2000), the Special Protection Areas (SPAs), and the Special Areas of Conservation (SACs). The index values are weighted by the threat

status of each target species (see Table 1).

Protected-area system (in %)

Index N2000 SCAs SPAs

Weighted Representativeness 15 14 7

Weighted Effectiveness 95 101 95

Weighted Efficiency 16 15 20

https://doi.org/10.1371/journal.pone.0181769.t002

Fig 6. Changes (%) in the coverage of high suitability habitats for each targeted species within the Nature 2000 network (dashed

line) and in the whole study area (black line) between 2001 and 2014. For full names of the species, see Table 1.

https://doi.org/10.1371/journal.pone.0181769.g006
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biological systems, between top predators and high biodiversity, especially if the species differ

widely in their diet and habitat associations which can offer much complementary in terms of

species composition [62]. Our target raptor species were found to be associated with different

habitat types, from open habitats (including farmlands and shrublands) to forests. Our raptor

species also showed different degree of specialization, from specialist species such as Montagu

´s harrier (tightly associated with closed shrubland) or Common kestrel (more closely corre-

lated with meadows and arable land) to more generalist ones such as Common buzzard (see S1

Appendix). In general, habitat specialists with narrow niche breadths often show a low degree

of tolerance to ecosystem alteration, so they can act as a good indicators of environmental

change [63]. On the other hand, top predators are also considered indicators because they are

at the top of food webs and need wide home-range areas to function. Predators play an impor-

tant role in ecosystems because they can determine the community structure patterns of their

prey [64]. In addition, raptors have been used as ‘umbrella’ species in world conservation strat-

egies because their protection may facilitate the conservation of great portions of unaltered

habitats [65]. In fact, previous research showed that sites selected on the basis of predators

held greater densities of individual birds and butterflies than other sites [65]. Focusing on top

predators was also found to allow a more efficient selection of sites required to achieve a given

level of species representation in PA systems [22,65]. Nevertheless, quantitative tests of the sur-

rogate-efficacy of these indicators have been astonishingly few, and context-dependent. Thus,

other authors appeals to conservation biologists to use top predators more cautiously as surro-

gates or indicators [66,67]. In this regard, our monitoring PA framework is sufficiently flexible

to support initial multi-taxon datasets, which would improve the surrogacy effectiveness [68].

Gap analysis is commonly used in the assessment of PA systems to determine the degree to

which conservation targets are achieved [7,69,70]. Here we performed a comparative gap anal-

ysis of three PA systems (N2000, SPAs and SACs) designated according to different criteria

and conservation targets. This implied the use of different indices to measure their ability to

fulfil protection and representation goals. To our knowledge, very few studies have evaluated

the efficiency and effectiveness of PA systems at two different times after implementation [71].

From our viewpoint, a multi-temporal perspective is needed to estimate the effectiveness of

protection afforded, especially under changing environmental conditions, and new protected

area indices should account for this multi-temporal dimension. Otherwise, this type of evalua-

tion would be limited to estimating the degree to which habitats and species are represented

within a particular system at a certain time. Although the conservation cost per unit area is not

homogeneous across space, but varies considerably among different protected sites [23], the

total area protected in a given region is widely recognized as an adequate proxy for estimating

cost-effectiveness [72].

The three PA systems showed different degrees of effectiveness and efficiency for protecting

and representing the target species’ habitats. Overall, the Natura 2000 network poorly repre-

sented the habitats of the target raptor species (Table 2, Figs 4, 7 and 8). Recent studies have

predicted that PA networks will remain important for future bird conservation under climate

[4,73] and land cover change [58,74,75]. However, a low degree of overlap between the distri-

bution of protected areas and threatened species could compromise the present and future

role of such networks in tackling global biodiversity loss [76,77]. In the present study, the

SPAs, although specifically implemented to preserve bird populations (including many raptor

species) [78–80], yielded the lowest representativeness values of the three systems in the study

region (Table 2). Despite the low representativeness of the Natura 2000 network, this system

proved to be highly effective for protecting raptor species and their habitats (Fig 5) as a result

of the overall increase in the habitat availability for most of the species between 2001 and 2014

(Figs 6, 7 and 8). These results also suggest that SCAs and SPAs complement each other to a
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Fig 7. Distribution of high suitability habitats within the Nature 2000 network (grey shaded areas) in the

whole study area (black line) between 2001 and 2014. Acronyms: Buteo buteo (BBUT), Circaetus gallicus

(CGAL), Circus pygargus (CPYG), and Falco tinnunculus (FTIN).

https://doi.org/10.1371/journal.pone.0181769.g007
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Fig 8. Distribution of high suitability habitats within the Nature 2000 network (grey shaded areas) in the whole study area (black line) between

2001 and 2014. [continuation]. Acronyms: Hieraaetus pennatus (HPEN), Milvus migrans (MMIG), and Pernis apivorus (PAPI).

https://doi.org/10.1371/journal.pone.0181769.g008
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certain extent, despite the high degree of overlap. However, efficiency values of<25% indi-

cated that conservation of these habitats is likely very costly as more than 4 hectares are

required to maintain 1 hectare of habitat (Table 2). The effectiveness, efficiency and represen-

tativeness varied greatly between the different raptor species. The least protected species (by

far) was the Montagu´s harrier, which suffered a decrease in suitable habitat of more than 50%

between 2001 and 2014 inside Natura 2000 network (Figs 5 and 6). By contrast, the Natura

2000 network was very effective in protecting and representing the Common kestrel’s habitat

(Figs 4, 7 and 8), and only 1.8 hectares were required to protect 1 hectare of habitat (efficiency

value for year 2000 of 0.53). However, the efficiency was found to decrease between year 2001

and 2014 (Fig 4), which could strongly compromise the future role of the Natura 2000 network

in protecting the most threatened species (Common kestrel and Montagu´s harrier). In this

regard, additional protected areas should be established in the near future to increase their rep-

resentativeness, and thus ensure the protection of open-habitat specialist raptor species and

their priority habitats. In addition, proactive conservation measures of natural and semi-natu-

ral ecosystems (montane heathlands) will be essential for long-term protection of Montagu’s

harrier (species listed in the Annex I of the Bird Directive) [81], and thus complying with the

current European Environmental Legislation and the global Aichi Biodiversity Targets of the

Convention on Biological Diversity.

From a more methodological viewpoint, our modelling framework helps to overcome some

limitations related to the initial biodiversity data (e.g. insufficient data, sample selection bias or

presence-only data; [38]) and the modelling techniques (e.g. uncertainty associated with the

algorithm selection, the consensus procedure or the model evaluation method) [49,82], while

simultaneously contributing to the cost-efficiency of the monitoring system [83]. In general,

resources for biodiversity monitoring are too limited to gather large sets of data including both

presences and absences, so species distribution models often rely on presence-only data [84].

These modelling approaches based on presence-only data are prone to suffer from sample

selection bias [85]. In this regard, developers of some of the most widely-used presence-only

software (e.g. MAXENT) have begun to explore methodologies to account for sample selection

bias when additional information on sampling effort is available [38,86]. Thus, the ‘target-

group background’ method (which consists of treating points where other species in the same

data set were recorded as background points) was found to improve average performance for

several modelling techniques in comparison with classical methods based on a random selec-

tion of pseudo-absence data from the entire region [38,85]. This improvement was found to be

greatest when there is strong bias in the target-group presence records [38]. More importantly,

if this target group is appropriate, then users could simply use presence–absence methods

rather than presence-only modelling [38,85]. Moreover, the model evaluation metric can yield

inaccurate and inappropriate conclusions in many cases, especially in presence-only based

models wherein pseudo-absence can contribute with an additional level of model uncertainty.

Thus, true skill statistic (TSS) was found to compensate for the shortcomings of kappa statistic

(inherently dependent on prevalence) while keeping all of its advantages [47]. However, TSS

index is sensitive to the threshold applied to transform raw probabilities into presence-absence

predictions. An alternative method for assessing the accuracy of SDMs is the area under the

ROC curve (AUC)—often used as a single threshold-independent measure for model perfor-

mance [46]. Despite these advantages, some authors also found AUC inappropriate because

the two error components (false-presence and false-absence errors) are weighted equally [87],

which can be particularly worrying when modelling with pseudo-absences [88]. In this regard,

Boyce’s index is one of the most adequate metrics when dealing with presence-only data [53],

as it only requires presences, is threshold-independent and offers further insights into the

model quality: robustness, habitat suitability resolution and deviation from randomness [53].
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In our particular case, we found that for some species (e.g. Montagu´s harrier and Common

kestrel) Boyce’s index values were consistent with values from AUC, TSS and Kappa indices

(Fig 3), which is in line with previous works [53]. However, for other species Boyce’s index

showed very low values in comparison with the more classical ones (see e.g. Honey buzzard or

Short-toed eagle at 5-km level), so this metric was decisive to select the best habitat characteri-

zation level, and modelling approach. Overall, the highly accurate scores of evaluation metrics

yielded by the habitat predictions indicate the potential usefulness of remote sensing-derived

land cover classifications to provide spatially-explicit, ecologically relevant predictors [8], that

fully capture the habitat characteristics of most of the target species (Fig 2). This facilitates the

correspondence between land cover and species’ habitat, thus overcoming one of the main

limitations associated with the protected-area assessments based exclusively on remote-sensing

data [10]. Overall, the best models were built by characterizing the habitat within 500-meter

and 1- km radii around each observation, which is more associated with nesting areas, and the

post-fledging family areas than foraging habitats [42,43]. Therefore, comparison between

modelling approaches based on different levels of habitat characterization enabled identifica-

tion of the best options for each species in terms of home range and habitat use, reinforcing

the relevance of multiple spatial scales in species distribution modelling [89] and, therefore, in

protected-area monitoring.

Conclusions

The study confirms that the development and application of new protected area indices based

on the combined use of freely-available satellite data and species distribution models can sub-

stantially contribute to the cost-efficiency of the PA monitoring systems. It also shows the rele-

vance of considering multi-temporal, multi-level and multi-species approaches for a more

comprehensive evaluation of the effectiveness, efficiency and representativeness of the pro-

tected-area networks. At regional level, the N2000 network was found to poorly represent the

habitats of the raptor species. However, this network showed a high degree of effectiveness due

to increased overall habitat availability for generalist and forest specialist species between 2001

and 2014. Nevertheless, additional protected areas should be established in the near future to

increase their representativeness, and thus ensure the protection of open-habitat specialist rap-

tor species and their priority habitats. In addition, proactive conservation measures in natural

and semi-natural ecosystems (montane heathlands) will be essential for long-term protection

of Montagu’s harrier (species listed in the Annex I of the Bird Directive), and thus complying

with the current European Environmental Legislation and, in turn, with the global Aichi Bio-

diversity Targets of the Convention on Biological Diversity. In 2014 the European Union initi-

ated a process called ‘Fitness Check’ of EU Nature Legislation. This process is a comprehensive

and evidence-based policy evaluation aimed at assessing the effectiveness, efficiency, coher-

ence, relevance and EU added value of the Birds and Habitats Directives in contributing to the

EU Biodiversity Strategy. As the Natura 2000 network constitutes the backbone of biodiversity

conservation in Europe, the application of the proposed framework at large spatiotemporal

scales may contribute significantly to the assessment process. Finally, the use of this framework

may also help to strengthen the link between remote sensing, ecological modelling and conser-

vation biology.
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