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Abstract

Reconstructing the genomes of microbial community members is key to the interpretation of shotgun metagenome
samples. Genome binning programs deconvolute reads or assembled contigs of such samples into individual bins. However,
assessing their quality is difficult due to the lack of evaluation software and standardized metrics. Here, we present
Assessment of Metagenome BinnERs (AMBER), an evaluation package for the comparative assessment of genome
reconstructions from metagenome benchmark datasets. It calculates the performance metrics and comparative
visualizations used in the first benchmarking challenge of the initiative for the Critical Assessment of Metagenome
Interpretation (CAMI). As an application, we show the outputs of AMBER for 11 binning programs on two CAMI benchmark
datasets. AMBER is implemented in Python and available under the Apache 2.0 license on GitHub.
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Introduction

Metagenomics allows studying microbial communities and their
members by shotgun sequencing. Evolutionary divergence and
the abundance of these members can vary widely, with genomes
occasionally being very closely related to one another, repre-
senting strain-level diversity, or evolutionary far apart, whereas
abundance can differ by several orders of magnitude. Genome
binning software deconvolutes metagenomic reads or assem-
bled sequences into bins representing genomes of the commu-
nity members. A popular and performant approach in genome
binning uses the covariation of read coverage and short k-
mer composition of contigs with the same origin across co-
assemblies of one or more related samples, though the presence
of strain-level diversity substantially reduces bin quality [1].

Benchmarking methods for binning and other tasks in
metagenomics, such as assembly and profiling, are crucial for
both users and method developers. The former need to deter-
mine the most suitable programs and parameterizations for par-
ticular applications and datasets, and the latter need to com-
pare their novel or improved method with existing ones. When
lacking evaluation software or standardized metrics, both need
to individually invest considerable effort in assessing methods.
The Critical Assessment of Metagenome Interpretation (CAMI)
is a community-driven initiative aiming to tackle this problem
by establishing evaluation standards and best practices, includ-
ing the design of benchmark datasets and performance met-
rics [1, 2]. Following community requirements and suggestions,
the first CAMI challenge provided metagenome datasets of mi-
crobial communities with different organismal complexities, for
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which participants could submit their assembly, taxonomic and
genomic binning, and taxonomic profiling results. These were
subsequently evaluated, using metrics selected by the commu-
nity [1]. Here, we describe the software package Assessment of
Metagenome BinnERs (AMBER) for the comparative assessment
of genome binning reconstructions from metagenome bench-
mark datasets. It implements all metrics decided by the com-
munity to be most relevant for assessing the quality of genome
reconstructions in the first CAMI challenge and is applicable to
arbitrary benchmark datasets. AMBER automatically generates
binning quality assessment outputs in flat files, as summary ta-
bles, rankings, and as visualizations in images and an interac-
tive HTML page. It complements the popular CheckM software
that assesses genome bin quality on real metagenome samples
based on sets of single-copy marker genes [3].

Methods
Input

AMBER uses three types of files as input to assess binning
quality for benchmark datasets: (1) a gold standard mapping
of contigs or read IDs to underlying genomes of community
members, (2) one or more files with predicted bin assignments
for the sequences, and (3) a FASTA or FASTQ file with se-
quences. Benchmark metagenome sequence samples with a
gold standard mapping can, e.g., be created with the CAMISIM
metagenome simulator [4, 5]. A gold standard mapping can also
be obtained for sequences (reads or contigs), provided that refer-
ence genomes are available, by aligning the sequences to these
genomes. Popular read aligners include Bowtie [6] and BWA [7].
MetaQUAST [8] can also be used for contig alignment while
it evaluates metagenome assemblies. High-confidence align-
ments can then be used as mappings of the sequences to the
genomes. The input files (1) and (2) use the Bioboxes binning
format [9, 10]. AMBER also accepts individual FASTA files as bin
assignments for each bin, as provided by MaxBin [11]. These can
be converted to the Bioboxes format. Example files are provided
in the AMBER GitHub repository [12].

Metrics and accompanying visualizations

AMBER uses the gold standard mapping to calculate a range of
relevant metrics [1] for one or more genome binnings of a given
dataset. Below, we provide a more formal definition of all met-
rics than provided in [1], together with an explanation of their
biological meaning.

Assessing the quality of bins
The purity and completeness, both ranging from 0 to 1, are com-
monly used measures for quantifying bin assignment quality,
usually in combination [13]. We provide formal definitions be-
low. Since predicted genome bins have no label, e.g., a taxo-
nomic one, the first step in calculating genome purity and com-
pleteness is to map each predicted genome bin to an underlying
genome. For this, AMBER uses one of the following choices:

(1) A predicted genome bin is mapped to the most abundant
genome in that bin in number of base pairs. More precisely, let
X be the set of predicted genome bins and Y be the set of under-
lying genomes. We define a mapping of the predicted genome
bin x ∈ X as g(x) = y, such that genome y maps to x and the
overlap between x and y, in base pairs, is maximal among all

y ∈ Y, i.e.,

g (x) = arg max
y ∈ Y

|x ∩ y| . (1)

(2) A predicted genome bin is mapped to the genome whose
largest fraction of base pairs has been assigned to the bin. In
this case, we define a mapping g′(x) = y as

g′ (x) = arg max
y ∈ Y

|x ∩ y|
|y| . (2)

If more than a genome is completely included in the bin, i.e.,
|x ∩ y|/|y| = 1.0 for more than a y ∈ Y, then the largest genome
is mapped.

Using either option, each predicted genome bin is mapped
to a single genome, but a genome can map to multiple bins or
remain unmapped. Option 1 maps to each bin the genome that
best represents the bin, since the majority of the base pairs in
the bin belong to that genome. Option 2 maps to each bin the
genome that best represents that genome, since most of the
genome is contained in that specific bin. AMBER uses per de-
fault option 1. In the following, we use g∗ to denote one of these
mappings for simplicity whenever possible.

The purity p, also known as precision or specificity, quanti-
fies the quality of genome bin predictions in terms of how trust-
worthy those assignments are. Specifically, the purity represents
the ratio of base pairs originating from the mapped genome to
all bin base pairs. For every predicted genome bin x,

px = T Px

T Px + F Px
(3)

is determined, where the true positives T Px are the number of
base pairs that overlap with the mapped genome g∗(x), i.e., T Px =
|x ∩ g∗(x)|, and the false positives F Px are the number of base
pairs belonging to other genomes and incorrectly assigned to
the bin. The sum T Px + F Px corresponds to the size of bin x in
base pairs. See Fig. 1 for an example of predicted genome bins
and respective true and false positives.

A related metric, the contamination c, can be regarded as the
opposite of purity and reflects the fraction of incorrect sequence
data assigned to a bin (given a mapping to a certain genome).
Usually, it suffices to consider either purity or contamination. It
is defined for every predicted genome bin x as

cx = 1 − px . (4)

The completeness r, also known as recall or sensitivity, re-
flects how complete a predicted genome bin is with regard to
the sequences of the mapped underlying genome. For every pre-
dicted genome bin x,

rx = T Px

T Px + F Nx
(5)

is calculated, where the false negatives F Nx are the number of
base pairs of the mapped genome g∗(x) that were classified to
another bin or left unassigned. The sum T Px + F Nx corresponds
to the size of the mapped genome in base pairs.

Because multiple bins can map to the same genome, some
bins might have a purity of 1.0 for a genome (if they exclusively
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Figure 1: Schematic representation of establishing a bin-to-genome mapping for calculation of bin quality metrics. Reads and contigs of individual genomes are
represented by different symbols and grouped by genome (left) or predicted genome bins (right). A bin-to-genome mapping is established using one of the criteria

outlined in the text, with the upper bin mapping to genome C and the lower bin mapping to genome D. The mapping implies TPs, FPs, and FNs for calculation of
genome bin purity, completeness, contamination, and overall sample assignment accuracy.

contain its sequences), but the completeness for those bins sum
up to at most 1.0 (if they include together all sequences of that
genome). Genomes that remain unmapped are considered to
have a completeness of zero and their purity is undefined.

As summary metrics, the average purity p̄ and average
completeness r̄ of all predicted genome bins, which are also
known in computer science as the macro-averaged precision
and macro-averaged recall, can be calculated [14]. To these met-
rics, small bins contribute in the same way as large bins, differ-
ently from the sample-specific metrics discussed below. Specif-
ically, the average purity p̄ is the fraction of correctly assigned
base pairs for all assignments to a given bin averaged over all
predicted genome bins, where unmapped genomes are not con-
sidered. This value reflects how trustworthy the bin assign-
ments are on average. Let np = |X| be the number of predicted
genome bins. Then p̄ is calculated as

p̄ = 1
np

∑
x∈X

px. (6)

A related metric, the average contamination c̄ of a genome
bin, is computed as

c̄ = 1 − p̄. (7)

If very small bins are of little interest in quality evaluations,
the truncated average purity p̄α can be calculated, where the
smallest predicted genome bins adding up to a specified per-
centage (the α percentile) of the dataset are removed. For in-
stance, the 99% truncated average purity can be calculated by
sorting the bins according to their predicted size in base pairs
and retaining all larger bins that fall into the 99% quantile, in-
cluding (equally sized) bins that overlap the threshold. Let S, S ⊂
X, be the subset of predicted genome bins of X after applying the
α percentile bin size threshold and np, α = |S| . The truncated av-
erage purity p̄α is calculated as

p̄α = 1
np,α

∑
x∈S

px. (8)

AMBER also allows exclusion of other subsets of bins, such
as bins representing viruses or circular elements.

While the average purity is calculated by averaging over all
predicted genome bins, the average completeness r̄ is averaged
over all genomes, including those not mapped to genome bins
(for which completeness is zero). More formally, let Z be the set

of unmapped genomes, i.e., Z = {y ∈ Y | ∀x ∈ X : g∗(x) 	= y}, and
nr = |X| + |Z|, i.e., the sum of the number of predicted genome
bins and the number of unmapped genomes. Then r̄ is calcu-
lated as

r̄ = 1
nr

∑
x∈X

rx. (9)

Assessing binnings of specific samples and in relation to bin sizes
Generally, it may not only be of interest how well a binning
program does for individual bins, or all bins on average, irre-
spective of their sizes, but also how well it does overall for spe-
cific types of samples, where some genomes are more abundant
than others. Binners may perform differently for more abundant
genomes than for less abundant genomes, or for genomes of
particular taxa, whose presence and abundance depend strongly
on the sampled environment. To allow assessment of such ques-
tions, another set of related metrics exist that either measure
the binning performance for the entire sample, the binned por-
tion of a sample, or to which bins contribute proportionally to
their sizes.

To give large bins higher weight than small bins in perfor-
mance determinations, the average purity p̄bp and completeness
r̄bp per base pair can be calculated as

p̄bp =
∑

x∈X T P x∑
x∈X T P x + F P x

=

∑
x∈X

max
y

|x ∩ y|
∑

x∈X |x| (10)

and

r̄bp =

∑
y∈Y

max
x

|x ∩ y|
∑

y∈Y |y| . (11)

Equation (10) strictly uses the bin-to-genome mapping
function g. Equation (11) computes the sum in base pairs of the
intersection between each genome and the predicted genome
bin that maximizes the intersection, averaged over all genomes.
A genome that does not intersect with any bin results in an
empty intersection. Binners achieving higher values of p̄bp and
r̄bp than for p̄ and r̄ tend to do better for larger bins than for small
ones. For those with lower values, it is the other way around.

The accuracy a measures the average assignment quality
per base pair over the entire dataset, including unassigned base
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Figure 2: Assessment of genome bins reconstructed from CAMI’s high-complexity challenge dataset by different binners. Binner versions participating in CAMI are

indicated in the legend in parentheses. (A) Average purity per bin (x axis), average completeness per genome (y axis), and respective standard errors (bars). As in the
CAMI challenge, we report p̄99 with 1% of the smallest bins predicted by each program removed. (B) Average purity per base pair (x axis) and average completeness
per base pair (y axis). (C) ARI per base pair (x axis) and percentage of assigned base pairs (y axis). (D and E) Box plots of purity per bin and completeness per genome,
respectively.

pairs. It is calculated as

a =
∑

x∈X T P x
U + ∑

x∈X T P x + F P x
, (12)

where U is the number of base pairs that were left unassigned.
Like the average purity and completeness per base pair, large
bins contribute more strongly to this metric than small bins.

Genome binners generate groups or clusters of reads and
contigs for a given dataset. Instead of calculating performance
metrics established with a bin-to-genome mapping, the qual-
ity of a clustering can be evaluated by measuring the similar-
ity between the obtained and correct cluster partitions of the
dataset, corresponding here to the predicted genome bins and
the gold standard contig or read genome assignments, respec-
tively. This is accomplished with the Rand index by comparing
how pairs of items are clustered [15]. Two contigs or reads of the
same genome that are placed in the same predicted genome bin
are considered true positives T P . Two contigs or reads of differ-
ent genomes that are placed in different bins are considered true
negatives T N. The Rand index ranges from 0 to 1 and is the num-
ber of true pairs, T P + T N, divided by the total number of pairs.
However, for a random clustering of the dataset, the Rand index
would be larger than 0. The adjusted Rand index (ARI) corrects
for this by subtracting the expected value for the Rand index and
normalizing the resulting value, such that the values still range
from 0 to 1.

More formally, following [16], let m be the total number of
base pairs assigned to any predicted genome bin and, mx, y, the
number of base pairs of genome y assigned to predicted genome
bin x. The ARI is computed as

ARI =

∑
x,y

(
mx,y

2
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, (13)

where m.,y = ∑
x

mx,y and mx,. = ∑
y

mx,y . That is, m.,y is the number

of base pairs of genome y from all bin assignments and mx,. is the
total number of base pairs in predicted genome bin x.

AMBER also provides ARI as a measure of assignment accu-
racy per sequence (contig or read) instead of per base pair by
considering m to be the total number of sequences assigned to
any bin and mx,y the number of sequences of genome y assigned
to bin x. The meaning of m.,y and mx,. changes accordingly.

Importantly, the ARI is mainly designed for assessing a clus-
tering of an entire dataset, but some genome binning programs
exclude sequences from bin assignment, thus assigning only
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Figure 3: Heat maps of confusion matrices for four binning results for the low-complexity dataset of the first CAMI challenge representing the base pair assignments to

predicted genome bins (y axis) vs. their true origin from the underlying genomes or circular elements (x axis). Rows and columns are sorted according to the number
of true positives per predicted bin (see main text). Row scatter indicates a reduced average purity per base pair and thus underbinning (genomes assigned to one
bin), whereas column scatter indicates a lower completeness per base pair and thus overbinning (many bins for one genome). The last row represents the unassigned
bases per genome, allowing assessment of the fraction of the sample left unassigned. These views allow a more detailed inspection of binning quality relating to the

provided quality metrics (Supplementary Fig. S1).

a subset of the sequences from a given dataset. If this unas-
signed portion is included in the ARI calculation, the ARI be-
comes meaningless. AMBER, therefore, calculates the ARI only
for the assigned portion of the data. For interpretation of these
ARI values, the percentage of assigned data should also be con-
sidered (provided by AMBER together in plots).

Output and visualization

AMBER combines the assessment of genome reconstructions
from different binning programs or created with varying param-
eters for one program. The calculated metrics are provided as
flat files, in several plots, and in an interactive HTML visualiza-
tion. An example page is available at [17]. The plots visualize the
following:

� (Truncated) purity p̄α per predicted genome bin vs. average
completeness r̄ per genome, with the standard error of the
mean

� Average purity per base pair p̄bp vs. average completeness per
base pair r̄bp

� ARI vs. percentage of assigned data
� Purity px vs. completeness rx and box plots for all predicted

bins
� Heat maps for individual binnings representing base pair as-

signments to predicted bins vs. their true origins from the
underlying genomes

Heat maps are generated from binnings without requiring a
mapping, where rows represent the predicted genome bins and
columns represent the genomes. The last row includes all unas-
signed base pairs for every individual genome and, individual
entries, the number of base pairs assigned to a bin from a partic-
ular genome. Hence, the sum of all entries in a row corresponds
to the bin size and the sum of all column entries corresponds
to the size of the underlying genome. To facilitate the visualiza-
tion of the overall binning quality, rows and columns are sorted
as follows: for each predicted bin in each row, a bin-to-genome
mapping function (g, per default) determines the genome (col-
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Table 1: Respective number of genomes recovered from CAMI’s high-complexity dataset with less than 10% and 5% contamination and more
than 50%, 70%, and 90% completeness.

Genome binner Predicted bins
(% contamination) (% completeness)

>50% >70% >90%
Gold standard 596 596 596
CONCOCT (CAMI) <10% 129 129 123

<5% 124 124 118
MaxBin 2.0.2 (CAMI) <10% 277 274 244

<5% 254 252 224
MaxBin 2.2.4 <10% 274 271 236

<5% 249 247 216
MetaBAT (CAMI) <10% 173 152 126

<5% 159 140 118
MetaBAT 2.11.2 <10% 427 417 361

<5% 414 404 353
Metawatt 3.5 (CAMI) <10% 408 387 338

<5% 396 376 330
MyCC (CAMI) <10% 189 182 145

<5% 166 159 127
Binsanity 0.2.5.9 <10% 9 9 9

<5% 6 6 6
Binsanity-refine 0.2.5.9 <10% 206 204 192

<5% 183 181 171
COCACOLA <10% 88 87 75

<5% 69 69 60
DAS Tool 1.1 <10% 465 462 405

<5% 428 425 376

In bold are the highest number of recovered genomes for a certain level of completeness (column) and contamination (row).

umn) that maps to the bin and the true positive base pairs for
the bin. Predicted bins are then sorted by the number of true
positives in descending order from top to bottom in the matrix,
and genomes are sorted from left to right in the same order of
the bin-to-genome mappings for the predicted bins. In this way,
true positives concentrate in the main diagonal starting at the
upper left corner of the matrix.

AMBER also provides a summary table with the number
of genomes recovered with less than a certain threshold (5%
and 10% per default) of contamination and more than another
threshold (50%, 70%, and 90% per default) of completeness. This
is one of the main quality measures used by CheckM [3] and in,
e.g., [18] and [19]. In addition, a ranking of different binnings by
the highest average purity, average completeness, or the sum of
these two metrics is provided as a flat file.

Results

To demonstrate an application of AMBER, we performed an
evaluation of the genome binning submissions to the first
CAMI challenge together with predictions from four more pro-
grams and new program versions on two of the three challenge
datasets. These are simulated benchmark datasets representing
a single sample dataset from a low-complexity microbial com-
munity with 40 genomes and a five-sample time series dataset
of a high-complexity microbial community with 596 genome
members. Both datasets include bacteria, the high-complexity
sample also archaea, high copy circular elements (plasmids and
viruses), and substantial strain-level diversity. The samples were
sequenced with paired-end 150-bp Illumina reads to a size of 15
GB for each sample. The assessed binners were CONCOCT [16],
MaxBin 2.0.2 [11], MetaBAT [20], Metawatt 3.5 [21], and MyCC [22].
We generated results with newer program versions of MetaBAT

and MaxBin. Furthermore, we ran Binsanity, Binsanity-wf [23],
COCACOLA [24], and DAS Tool 1.1 [25] on the datasets. DAS Tool
combines predictions from multiple binners, aiming to produce
consensus high-quality bins. We used as input for DAS Tool the
predictions of all binners, except COCACOLA; for MaxBin and
MetaBAT, we used the results of the newer versions 2.2.4 and
2.11.2, respectively. The commands and parameters used with
the programs are available in the Supplementary Information.

On the low-complexity dataset, MaxBin 2.2.4, as its previ-
ous version 2.0.2, performed very well, as did the new MetaBAT
version 2.11.2 and DAS Tool 1.1 (Fig. 3, Supplementary Fig. S1).
Both MaxBin versions achieved the highest average purity per
bin, and version 2.0.2 achieved the highest completeness per
genome on this dataset. As in the evaluation of the first CAMI
challenge, we report the truncated average purity, p̄99, with 1%
of the smallest bins predicted by each program removed. These
small bins are of little practical interest for the analysis of in-
dividual bins and distort the average purity, since their purity
is usually much lower than that of larger bins (Supplementary
Table S2) and small and large bins contribute equally to this
metric. On the high-complexity dataset, both MaxBin versions
assigned less data than other programs, though with the high-
est purity (Figs. 2 and 3). MetaBAT 2.11.2 substantially improved
over the previous version with all measures. Apart from DAS
Tool 1.1, which created the most high-quality bins from the pre-
dictions of the different binners, MetaBAT 2.11.2 recovered the
most high-quality bins and showed the highest interquartile
range in the purity and completeness box plots for the high-
complexity dataset. MetaBAT 2.11.2 and MaxBin 2.0.2 also re-
covered the most genomes with more than the specified thresh-
olds of completeness and contamination on the high- and low-
complexity datasets, respectively (Table 1, Supplementary Ta-
ble S1). DAS Tool 1.1 could further improve on this measure,
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recovering the most genomes satisfying these conditions on
both datasets. Overall, DAS Tool obtained high-quality consen-
sus bins, asserting itself as an option that can be used particu-
larly when it is not clear which binner performs best on a spe-
cific dataset. As shown in [25], no single binner performs well
on all ecosystems and, equivalently, there is no guarantee that
the best-performing binners on the analyzed datasets from the
first CAMI challenge also perform best on other datasets. For
more extensive information on program performances of multi-
ple datasets, we refer the reader to [1] and future benchmarking
challenges organized by CAMI [26]. Notably, some binners, such
as CONCOCT, may require more than five samples for optimal
performance. In general, the binning performance can also be
influenced by parameter settings. These could possibly be fine-
tuned to yield better results than the ones presented here. We
chose to use default parameters or parameters suggested by the
developers of the respective binners during the CAMI challenge
(Supplementary Information), reproducing a realistic scenario
where such fine-tuning is difficult due to the lack of gold stan-
dard binnings. To thoroughly and fairly benchmark binners, the
CAMI challenge encouraged multiple submissions of the same
binner with different parameter settings. Although we present
results for binner versions released after the end of the chal-
lenge, with noticeable improvements of MetaBAT 2.11.2, the au-
thors of MetaBAT claim that no dataset-specific fine-tuning was
performed (direct communication). All results and evaluations
are also available in the CAMI benchmarking portal [27].

Conclusions

AMBER provides commonly used metrics for assessing the qual-
ity of metagenome binnings on benchmark datasets in several
convenient output formats, allowing in-depth comparisons of
binning results of different programs, software versions, and
with varying parameter settings. As such, AMBER facilitates
the assessment of genome binning programs on benchmark
metagenome datasets for bioinformaticians aiming to optimize
data processing pipelines and method developers. The software
is available as a stand-alone program [12], as a Docker image (au-
tomatically built with the provided Dockerfile), and in the CAMI
benchmarking portal [27]. We will continue to extend the met-
rics and visualizations according to community requirements
and suggestions.

Availability of source code

Project name: AMBER: Assessment of Metagenome BinnERs
Project home page: https://github.com/CAMI-challenge/AMBER
Research Resource Identifier: SCR 016151
Operating system(s): Platform independent
Programming language: Python 3.5
License: Apache 2.0

Availability of supporting data

An archive of the CAMI benchmark datasets [2] and snapshots of
the code [28] are available in the GigaScience GigaDB repository.

Additional files

SupplementaryInformation.pdf. This file contains the following
Figures, Tables, and Sections. Supplementary Fig. S1: Assess-
ment of genomes reconstructed from CAMI’s low complexity

challenge dataset by different binners. Supplementary Table S1:
Number of genomes recovered from CAMI’s low complexity data
set. Supplementary Table S2: Total number of bins predicted by
each binner on CAMI’s high complexity dataset and respective
number of bins removed to compute the truncated average pu-
rity per bin p̄99. Steps and commands used to run the assessed
binning programs.
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ARI: adjusted Rand index; CAMI: Critical Assessment of
Metagenome Interpretation.
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