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Influence of Stage Cooling Method 
on Pore Architecture of Biomimetic 
Alginate Scaffolds
Yuanming Zhang1, Conger Wang1, Wei Jiang2, Wenqian Zuo2 & Guangting Han   1

Porous scaffold is widely used in the field of tissue engineering. However, the anisotropic structure of 
actual extracellular matrix (ECM) of human tissue pose a challenge to the scaffold structure that pore 
size should be changed in gradient. Here we report a stage cooling method to fabricate alginate scaffold 
with gradient pores. Eight cooling models were set according to different temperature steps, different 
initial temperature, and different time duration. The thermal characterization of solution during 
cooling process were recorded and scaffold morphology were observed. The results revealed that the 
temperature steps mainly affected pore shape, while the initial temperature and time duration mainly 
affected pore size. By altering the initial temperature and time duration, scaffold exhibited cellular and 
gradually enlarged pores on the vertical axial direction (10–65 μm at base, 50–141 μm at top). With 
this stage cooling method, pore shape and pore size could be easily tailored and scaffold with gradient 
structure could be fabricated.

Tissue engineering has been widely used for reconstruction of damaged tissue or organs, such as artificial skin, 
synthetic bone and vascular grafts. A promising approach in tissue engineering is to design and fabricate biode-
gradable scaffolds with ideal pores structure suitable for cell adhesion, growth and proliferation1. Every human 
tissue and organ has its own specific three-dimensional (3D) extracellular matrix (ECM) structure. Cells in a 3D 
support for tissue engineering typically align new ECM components according to the inner specific architecture 
of the bioscaffold2–4. The actual ECM of human tissue typically exhibited anisotropic structure with gradient 
pores, e.g. human skin has enlarged pore size with distance away from the skin surface. Scaffold with gradient 
pore structure ranging from 25 μm to 120 μm is supposed to be suited for ingrowth of skin tissue5. Therefore, 
tissue engineering scaffold with a specific gradient pore structure resembling the actual ECM would have great 
potential for the regeneration and repair of a broad range of damaged anisotropic tissues.

Alginate is a naturally biodegradable polymer that typically obtained from seaweeds. It has been certificated 
by Food and Drug Administration (FDA) for tissue engineering application. With similar chemical component to 
ECM, combined with its biocompatibility and hydrophilicity, alginate is favorable for cell adhesion and growth6–9. 
The composite materials of alginate with chitosan, collagen or polyving alcohol have been applied to the research 
of tissue repairing scaffold10,11.

Various approaches have been reported to date for the production of porous scaffolds. For example, rapid 
prototype (RP)12, injection moulding and solvent evaporation13, porogen leaching14,15, and gas foaming16,17. Such 
methods may be effectively applied for synthetic polymers but are not to be recommended for alginate, since it 
is neither molten nor insoluble in most solvents. Hence, despite the success of the above mentioned methods in 
producing anisotropic scaffolds, the processes are complexity. On the other hand, the use of additional chemicals 
in the fabrication process is not environmentally friendly.

Freeze-drying method is an important technique to overcome the above obstacles. In this case the solution 
or slurry of polymer is frozen, thereby creating an interpenetrating network of ice crystals18,19. These ice crystals 
are then removed by reducing the chamber pressure to induce sublimation, thus leading to the formation of a 
porous scaffold. This method is applied to natural polymers like alginate and collagen20,21. Wang22 fabricated a 
gradient scaffold by stacking three freezing-dried porous collagen membranes layer by layer to form a “sandwich” 
scaffold, which exhibited significantly faster wound closure effect than homogeneous scaffolds. Zhang23 mixed ice 
particulates into collagen solutions. The mixtures were stacked together and freeze dried to form scaffolds with 

1Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao 
University, Qingdao, 266071, P.R. China. 2College of Textiles and Fashion, Qingdao University, Qingdao, 266000, 
P.R. China. Correspondence and requests for materials should be addressed to G.H. (email: kychgt@qdu.edu.cn)

Received: 8 June 2017

Accepted: 6 November 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-5165-8166
mailto:kychgt@qdu.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 7: 16150  | DOI:10.1038/s41598-017-16024-x

gradient pores. By these two methods, layers with different pore diameter were stacked together and there exists 
visible demarcation on the junction. However, the ideal scaffold was expected to have gradually changed pore size.

By altering the freezing conditions, such as freezing temperature, freezing time and the freezing moulds, pore 
size and shape could be tailored24. Davidenko et al.25 designed five freezing moulds to achieve different heat trans-
fer rate within solution. By confining temperature gradient on horizontal and vertical direction, collagen scaffold 
with both circled and aligned pores with different diameter were produced. Pawelec et al. confined temperature 
gradient on the axial direction by set different solution height26. With increase of solution height, pores at top of 
scaffold becoming bigger and pillared structure, arranging from 90 to 170 μm.

Manipulation of alginate scaffold structure would be a matter of great interest, since this would provide an 
intrinsically biocompatible way of tailoring the scaffold applying to the precise requirements of tissue regenera-
tion. With this in mind, the current work was directed to the influence of stage cooling process upon the inner 
structures of alginate scaffolds, aiming to prepare scaffolds resembling 3D organization of the skin ECM. By 
adopting different temperature step, different initial temperature and different cooling time duration, scaffold 
with anisotropic pores gradient distributed along the vertical direction was produced. The concept of stage cool-
ing is new and simple, and the pore size and distribution range could be predicted.

Materials and Methods
Scaffold fabrication.  Sodium alginate powders (MW = 300,000, Mw/Mn = 1.5, Qingdao Hyzlin Biology 
Development Co., Ltd., China) was dissolved by water to prepare solution with concentration of 1.5%. The solu-
tion was homogenized at 15,000 rpm for 3 h at room temperature. After standing at 10 °C for 48 hours to remove 
bubbles, 12 g of the solution was poured into perspex dish with inside diameter of 64 mm and height of 12 mm, 
the height of solution was about 5 mm. The perspex dish was then put into an ultra-low temperature freezer with 
bottom placed on the cooling panel and the wall and top were coated by heat-insulated polyfoam as shown in 
Fig. 1. Thus, heat transfer between solution and environment were limited only downward through bottom of the 
dish and temperature gradient (∆T) on vertical direction within solution was generated.

In order to study the influence of stage cooling to scaffold microstructure, eight cooling models were set up as 
shown in Table 1. Model A was stage cooled from initial temperature of −75 °C, experienced 5 steps to the final 
temperature of −15 °C. Model B and C went through less steps from −75 °C to −15 °C, 3 and 2 steps separately. 
Model D and E both went through 5 steps, but different initial and final temperature. Model D was cooled from 
−60 °C to −5 °C, while Model E from −90 °C to −30 °C. Model F, G and H all cooled from −75 °C to −15 °C, but 
the time duration at each step was different.

After cooling process, the frozen solution was lyophilized in freeze drier (LGJ-IO, Beijing Songyuan Huaxing 
Technology Develop Co., Ltd., China) at 0 °C for 24 hours under vacuum at less than 1 Pa. As the sodium algi-
nate scaffold was soluble, it need to be cross-linked to get dissoluble calcium alginate scaffold. The first-degree 
samples were immersed into CaCl2 solution with concentration of 5% for 1 hour at room temperature and then 
flushed with distilled water. After freezing for 12 hours at −30 °C and secondary freeze-drying process (0 °C 

Figure 1.  Cross-section of the perspex dish coated by polyfoam with solution in it. The heat conduction was 
confined on the vertical axial direction with Tt > Tb, with Tt the temperature at top of solution, and Tb the 
temperature at base of solution. The temperature gradient within solution on vertical direction was labeled as ∆T.

Temperature (°C) 
Time (min) Model −90 −75 −60 −45 −30 −15 −5

A / 10 8 6 4 480 /

B / 18 / 10 / 480 /

C / 28 / / / 480 /

D / / 10 8 6 4 480

E 10 8 6 4 480 / /

F / 12 10 8 6 480 /

G / 8 6 4 2 480 /

H / 6 4 2 / 480 /

Table 1.  Stage cooling models.
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under vacuum at less than 1 Pa for 24 hours), the final calcium alginate scaffolds with gradient pores were pre-
pared. Five samples for each model was fabricated.

Thermal characterization.  Thermocouples were used to measure the temperature at the base and top of 
solution every minute during cooling process, recorded as Tb and Tt separately. The crystallization temperature 
(°C), the moment when ice crystallization occur (min), cooling rate (°C/min), and the biggest temperature differ-
ence between top and base of solution (∆Tmax, °C) could be obtained from temperature curves.

Scaffold morphology.  Scaffold morphology was characterized by scanning electron microscopy (JSM-
6390LV, JOEL, Japan). The cross section from top to base of the scaffold was observed to identify the gradient 
pore structure. Pore length and height was measured by Image-Pro Plus to calculate average pore size by Eq. (1) 
(Shapiro & Cohen, 1997).

l hd (1)= ×

In which, d is the average pore size, mm; l is pore length, mm; h is pore height, mm.

Results and Discussion
Thermal characterization.  The temperature curves of eight models during cooling process were showed in 
Fig. 2, and the characteristic values were listed in Table 2.

Model A.  In this model, it was found from Fig. 2(A) that the temperature at base layer of solution quickly 
decreased with cooling rate of −1.46 °C/min, while the cooling rate of top layer was −1.18 °C/min. Then at the 
16th minute, the cooling curve at base of solution flattens at −5.3 °C. This period was called latent heat section, 
during which the ice crystals began to form and grow in the entire solution. But crystallization at top layer of solu-
tion was delayed till the 20th minute at −2.65 °C because of the heat transfer direction within solution were limited 
only downward. Due to the hysteresis of heat conduction, the temperature gradient was produced between top 
and base layers of solution, and at some point reached ∆Tmax≈4.3 °C. When the whole solution was totally frozen, 
the temperature at both top and the base layers of solution slowly decreased approaching to −15 °C with time.

Model B and C.  As shown in Fig. 2(B,C), the cooling curves of these two models resemble each other in shape, 
but the thermal characterizations varied greatly. Model B, during the first cooling step at −75 °C, the base layer 
of solution started phase transmission at the 13th minute. Because of the fast cooling rate (−2.12 °C/min), the 
crystallization heat could be quickly dissipated with no measurable platform, and temperature at base contin-
uously decreased till the 28th minute when it rose approaching to the final environment temperature (−15 °C). 
The heat transfer at upper layer of solution was lagged behind with lower cooling rate of −1.67 °C/min, but still 
started crystallizing at the first cooling stage of −75 °C. As shown in Table 2, the crystallization on top layer of 
Model B started at the 17th minute with crystallization temperature of −4.1 °C. During the cooling process, ∆Tmax 
within solution was 17.83 °C. Compared with model B, Model C has faster cooling rate on upper layer of solution 
(−1.72 °C/min) and lower crystallization temperature (−4.8 °C), and it behaved the largest ∆Tmax among 8 mod-
els (29.71 °C). Taken model A together with these two models, it was found that the different freezing step effected 
the thermal characterization of models during freezing process.

Model D and E.  With the highest initial temperature among these eight models (−60 °C), Model D displayed 
the slowest cooling rate (−1.32 °C/min at base and −0.95 °C/min at top), shown in Fig. 2(D). The base of solu-
tion started crystallizing at −2.73 °C on the 18th minute, nearly at end of the second cooling stage. While the top 
layer started freezing at −0.75 °C on the 23rd minute, at the end of the third cooling stage, and the ∆Tmax was only 
3.5 °C. On the contrary, with the lowest initial temperature (−90 °C), it can be seen from Fig. 1(E) that Model E 
exhibited the quickest cooling rate (−2.89 °C/min at base and –1.7 °C/min at top) and the lowest crystallization 
temperature among these 8 models (−7.9 °C at base and −4.5 °C at top) with ∆Tmax of 15.6 °C. The crystallization 
of base layer started at the first cooling stage on the 10th minute, while the top layer started at the second stage on 
the 15th minute. Taken model A together with these two models, it was found that the different initial temperature 
effected the thermal characterization of models during freezing process.

Model F to H.  Compared to model A, model F, G and H all shared similar temperature curves with little dif-
ference (Fig. 2(F–H)). With the shortening of time at each cooling stage, the cooling rate in these three models 
decreased in sequence (Model F: −1.59 °C/min at base and −1.38 °C/min at top; Model G: −1.45 °C/min at base 
and −1.04 °C/min at top; Model H: −1.36 °C/min at base and −0.99 °C/min at top), while the crystallization tem-
perature increased (Model F: −6.1 °C at base and −3.9 °C at top; Model G: −3.6 °C at base and −0.85 °C at top; 
Model H: −2.73 °C at base and −0.8 °C at top). Crystallization on base layer of Model F started at the middle of 
the second cooling stage, while Model G at the end of the third stage, and Model H at the fourth stage. The ∆Tmax 
of Model F and G was similar (Model F: 4.4 °C; Model G: 4.2 °C), while Model H was the smallest (2.2 °C). From 
model F, G and H, It can be seen that the different time duration effected the thermal characterization of models 
during freezing process, but when the time duration of stage is shortened, the effect of stage cooling is weakened.

Scaffold morphology.  The alginate scaffold prepared from the eight models exhibited morphology with 
much difference. Figure 3 showed the SEM graphs of vertical axial cross-section and Table 3 showed the pore size 
and wall thickness of these scaffolds, the values are means of five samples.
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Model A.  In this model, as described previously, the moderate temperature gradient was produced between the 
top and the base of the frozen sample and the ∆Tmax was 4.3 °C (Fig. 2(A) and Table 2). As the temperature gradi-
ent is small, ice crystals were able to grow freely at all directions. This would lead to the ice crystals growing with 
different rate from the base layer to the upper layer, inducing to the formation, after sublimation, of an anisotropic 
distribution of rounded pores on scaffold with gradually enlarged diameters from base to top. Confirmation of 
this assumption was made by SEM examination of the scaffold produced in the model (Fig. 3(A)), where longi-
tudinal sections displayed gradient pores structure, with small pores at base (20 ± 3.5 μm), and gradually bigger 
toward top layer (100 ± 15.6 μm). All pores were approximate cellular shaped with good connectivity and thin 

Figure 2.  Temperature curves of eight models during cooling process. The squares indicate temperature at base 
of solution, and circles indicate top of solution.
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walls (9.6 ± 2.7 μm at base and 22.0 ± 3.4 μm at top) between neighboring pores. The diameter of pores at base 
section of scaffold were suitable for the construction of epidermal cells with its compact structure, while the larger 
pores at top section were suited for the adhesion of dermal cells.

On the bottom area, the cooling rate is high and the temperature is low so that ice crystals grew faster. As a 
consequence, the pores resulting from sublimation of ice crystals on this surface area is smaller. In the upper 
region, however, with lower cooling rate and higher temperature, the growth rate of ice crystals is slower, hence 
the pore size was larger compared with that observed at base.

Model B and C.  SEM images of the longitudinal sections of the alginate matrices produced in model B and C 
are shown in Fig. 3(B,C). It is interesting to note that lamellar structure alignment along the temperature gra-
dient is only observed in the longitudinal top segment (Fig. 2(B-t,C-t)), while in its matching bottom segment 
(Fig. 2(B-b,C-b)) tiny pores (scaffold B: 15 ± 2.1 μm; scaffold C: 8 ± 1.5 μm) were presented. The wall thickness 
between neighboring pores are much larger than that of Model A, and the wall between lamellar pores at top layer 
of scaffold are much thicker than cellular pores at the base section.

As can be seen from Fig. 2(B,C), these two models created a greater temperature gradient between the top 
and the bottom layer of solution compared with model A, and ∆Tmax of model B and C was 17.83 °C and 29.71 °C 
(Table 1) respectively. The larger temperature gradient providing greater driving force on the heat transfer direc-
tion for the growth of ice crystals. Ice crystals grow faster on the vertical direction but slower on horizontal, 
induced to a defined lamellar structure alignment with thick walls in the upper half of the two samples. While at 
the base section, the lower cooling temperature and faster cooling rate induced to smaller and round ice crystals, 
which left uniform and small pores at base of scaffold after sublimation.

Model D and E.  As expected, Scaffolds D and E have cellular gradient pores similar to scaffold A (Fig. 3(D,E)). 
Model D tend to form bigger and less pores (25 ± 2.4 μm at base and 141 ± 20.2 μm at top) with similar pore walls 
(9.1 ± 1.4 μm at base and 23.2 ± 2.9 μm at top), while scaffold E have much smaller pores (10 ± 1.8 μm at base 
and 50 ± 11.1 μm at top) and thinner pore walls (7.9 ± 1.6 μm at base and 14.7 ± 1.2 μm at top). Comparing with 
Model A, it could be seen that the initial temperature effected pore size on the top layer greater than the base layer, 
and the size difference between base and top became smaller with lower initial temperature.

With initial temperature of −60 °C, Model D was moved to environment of −5 °C at the 29th minute. This 
provided a slow enough cooling rate and loose of driving force for ice crystals. Ice crystals at top layer of solution 
were very instable with its crystallization temperature of −0.75 °C. The instable ice crystals melted and refroze 
ceaselessly, developing into much bigger crystals and widened the pore size variation of scaffold on the axial 
direction (25~141 μm). The range of pore size of scaffold D is approaching to the ECM of human skin, with pores 
at top section a little larger. With lower initial temperature of −75 °C, scaffold from Model A got smaller pores 
and narrowed pore size variation (20~100 μm). Model E was just opposite to Model D, with its initial temperature 
of −90 °C, it behaved the fastest cooling rate among these eight models. Both top and base layer of solution were 
frozen quickly without apparent platform period (Fig. 2(E)). Stable ice crystals were formed and the scaffold pore 
size were further reduced (10~50 μm).

Model F to H.  In accordance with expectation, Scaffold F and G displayed cellular gradient pores (Fig. 3(F,G)), 
while pores in scaffold H take the shape of homogeneous structure (Fig. 3(H)). Comparing with scaffold A, pores 
at top layer of scaffold F was smaller (70 ± 12.6 μm), while the base layer was similar (18.7 ± 1.6 μm). Then with 
the decrease of time duration at each temperature step, pores become bigger both at top and base of scaffold. 
However, the time duration effected pore size on the base layer greater than the top layer, with size difference 
declined. Scaffold G have pores of 65 ± 4.7 μm at base and 122 ± 22.4 μm at top, while scaffold H contains cellular 
pores of similar size, 130 ± 18.3 μm at base and 137 ± 12.1 μm at top. When the time duration of each cool-
ing stage shortened, the wall thickness slightly increased, but the difference between base and top section was 
narrowed.

With the shortening of time duration at each cooling stage, the cooling rate was decreased and crystalli-
zation temperature was increased, inducing bigger pores and smaller size gradient. The crystallization at base 
layer of solution all started from the 17th minute, but at different cooling stage. Especially for Model H, with its 

Model ∆Tmax (°C)

Crystallization 
temperature (°C)

Moment of 
crystallization (min)

Cooling rate 
(°C/min)

Top Base Top Base Top Base

A 4.30 −2.65 −5.30 20 16 −1.18 −1.46

B 17.83 −4.10 −6.50 17 13 −1.67 −2.12

C 29.71 −4.80 −6.50 15 13 −1.72 −2.12

D 3.50 −0.75 −2.73 23 18 −0.95 −1.32

E 15.60 −4.50 −7.90 15 10 −1.70 −2.89

F 4.40 −3.90 −6.10 18 17 −1.38 −1.59

G 4.20 −0.85 −3.60 21 17 −1.04 −1.45

H 2.20 −0.80 −2.73 22 17 −0.99 −1.36

Table 2.  The temperature characteristic values of eight cooling models.
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crystallization started at the fourth cooling stage, most of its cooling process were under the constant temperature 
of −15 °C. The effect of stage cooling is no more significant, which provided a nearly uniform temperature within 
the solution. The released heat of crystallization melts small and allow big crystals to grow freely at all directions, 
melting and rebinding with adjacent ones. The pores were much bigger than other samples and tending to be 
isotropic (with pore size of 130–137 μm, and wall thickness of 24.4–34 μm).

The explanations given above for the pore profiles observed in the longitudinal sections at the top and 
the bottom of the freeze-dried samples are in complete concordance with the well-known and widely docu-
mented4,18,24,27,28 temperature dependence of scaffold pore size produced by lyophilization technique. It is gener-
ally accepted that lower cooling temperatures yield smaller pore sizes for matrices.

Figure 3.  SEM images of scaffolds from eight cooling models.
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The human skin has functionally gradient pore structure range 25~120 μm. In this current work, advances 
have been made in tailoring pore structure on scaffold with pore size that changed gradually, and Scaffold A 
(20~100 μm) and D (25~141 μm) generally meet the size requirements. It could be deduced that when the ini-
tial temperature was set between −60 °C to −75 °C, pore size could be accuracy controlled. By controlling the 
parameters of stage cooling, more porous scaffolds with complex shape and size gradient could be fabricated for 
application of various tissue therapies.

Conclusion
In this study, freeze-drying method with stage cooling process was adopted to produce scaffolds with gradient 
pores mimicking the gradient structure of human skin. By varying the cooling temperature steps, initial envi-
ronmental temperature and time duration, the thermal characterization within solution was discrepant, fur-
ther inducing the change of pore shape and size on scaffold. The temperature steps mainly affected pore shape, 
and scaffold showed pillared pores at upper layer when the step was enlarged above 30 °C. The initial cooling 
temperature and time duration mainly affected pore size on scaffold. The pores at base of scaffold was smaller, 
corresponding to the dermal layer of skin; while pores at top of scaffold was larger, well suited for the growth of 
epidermal cells. Scaffold A and D generally meet the size requirements of 25~120 μm, and with the initial temper-
ature between −60 °C to −75 °C, pore size rang was predicted to be accuracy controlled. By this easy and cheap 
method of stage cooling, scaffold pore size and shape could be tailored for potential usage of more tissues with 
gradient architecture.
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G 122.0 ± 22.4 65.0 ± 4.7 26.8 ± 1.9 19.7 ± 2.2

H 137.0 ± 12.1 130.0 ± 18.3 30.4 ± 2.8 24.4 ± 2.8

Table 3.  Pore size of scaffolds from eight cooling models.
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