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Gram-negative phytopathogenic bacteria are a significant threat to food crops. These
microbial invaders are responsible for a plethora of plant diseases and can be
responsible for devastating losses in crops such as tomatoes, peppers, potatoes,
olives, and rice. Current disease management strategies to mitigate yield losses involve
the application of chemicals which are often harmful to both human health and the
environment. Bacteriocins are small proteinaceous antibiotics produced by bacteria
to kill closely related bacteria and thereby establish dominance within a niche. They
potentially represent a safer alternative to chemicals when used in the field. Bacteriocins
typically show a high degree of selectivity toward their targets with no off-target effects.
This review outlines the current state of research on bacteriocins active against Gram-
negative phytopathogenic bacteria. Furthermore, we will examine the feasibility of
weaponizing bacteriocins for use as a treatment for bacterial plant diseases.

Keywords: bacteriocins, Gram-negative bacteria, phytopathogenic bacteria, plant disease, plant disease
management, food security, crops

INTRODUCTION

By 2050 the global population is predicted to surpass 9 billion requiring food production to increase
by 70%, equivalent to 127 × 1015 kcal (Cole et al., 2018). Major food crops suffer from a lack of
genetic diversity allowing pathogens and pests to rapidly spread throughout fields and devastate
crops, causing yield losses of up to 32% (Oerke and Dehne, 2004).

Gram-negative bacterial phytopathogens are an important contributor to crop losses due to
plant disease (Mansfield et al., 2012). For example, Pseudomonas syringae pv. actinidiae, the causal
agent of the kiwifruit canker pandemic, triggered enormous damage to the New Zealand economy
(Vanneste et al., 2013) depreciating the land value of orchards growing the popular kiwifruit
variety Hort16A from 300,000 to 46,000 USD per hectare (Vanneste, 2017). Enterobacterial soft rot
phytopathogens such as Pectobacterium and Dickeya spp. are collectively responsible for diseases in
potato like black leg and tuber soft rot pre- and post-harvest (Pérombelon, 2002; Toth et al., 2011).
These diseases are responsible for losses of €30 m per annum in the Netherlands alone (Pérombelon,
2002; Toth et al., 2011).

Abbreviations: CLB, Colicin-like bacteriocin; GM, genetically modified; IDR, intrinsically disordered region; LLB, lectin-
like bacteriocin; LPS, lipopolysaccharide; MMBL, monocot-mannose binding lectin; PL1, putidacin L1; TBDT, TonB-
dependent transporter.
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Bacteriocins are proteinaceous antibiotics that are produced
by both Gram-positive and Gram-negative bacteria (Cascales
et al., 2007; Chavan and Riley, 2007). They target and kill
related bacterial strains allowing producing strains to establish
dominance within a niche (Chavan and Riley, 2007). Unlike
conventional small molecule antibiotics, bacteriocins exhibit
a narrow killing spectrum and cause minimal disruption to
the commensal bacterial community (Chavan and Riley, 2007).
A number of classification systems have been proposed to
encompass the diversity of bacteriocins (Heng and Tagg, 2006;
Chavan and Riley, 2007; Cotter et al., 2013). The classification
of Chavan and Riley (2007) is based on size, splitting the
bacteriocins into three groups; small peptide bacteriocins of <10
kDa, colicin-like bacteriocins (CLBs) which are multidomain
proteins of 25–80 kDa and tailocins, which are large phage-like
multimeric protein assemblies. This review focuses on the latter
two of these groups as there is a dearth of information on small
peptide bacteriocins active against phytopathogenic bacteria. In
addition, in this review we cover an additional group, the lectin-
like bacteriocins (LLBs), which although they fall within the size
range of CBLs, are mechanistically distinct. We also provide
examples of some orphan bacteriocins.

Bacteriocins have been identified in a number of important
plant pathogenic bacterial genera including Xanthomonas,
Pseudomonas, Pectobacterium, and Agrobacterium (Holtsmark
et al., 2008; Grinter et al., 2012a). These include many important
pathogens of crops such as rice, banana, potato, olives, peppers
and tomatoes (Mansfield et al., 2012). In this review, we aim
to outline the present landscape of research into bacteriocin
plantibiotics (biological agents which selectively kill plant
pathogenic bacteria) and discuss the practicalities of exploiting
them to remedy plant disease.

COLICIN-LIKE BACTERIOCINS

CLBs are multi-domain proteins that possess a modular domain
structure usually consisting of translocation, receptor binding
and cytotoxic domains. The translocation domain typically
incorporates, or consists of an intrinsically disordered region
(IDR) at the extreme N-terminus of the protein, which is first
to cross the outer membrane during uptake (Behrens et al.,
2020). To target a specific bacterial species, CLBs often parasitize
existing nutrient uptake pathways involving TonB dependent
transporters (TBDTs). These TBDTs are frequently involved
with the uptake of iron siderophores and other metal chelate
complexes, such as vitamin B12, from the environment (Michel-
Briand and Baysse, 2002; Cascales et al., 2007). For most CLBs
the IDR and translocation domains facilitate the import of
bacteriocins across the outer membrane into the periplasmic
space. Briefly, this is achieved by the IDR threading through
the pore of an outer membrane transporter and interacting
with components of the proton-motive force (PMF) responsive
Ton or Tol complexes in the periplasm. Subsequently, the
bacteriocin is actively pulled through the transporter in a
PMF-dependent manner to cross the outer membrane (White
et al., 2017). Methods of killing mediated by CLB cytotoxic

domains include endonuclease activity (DNase, tRNase, and
rRNase), depolarization of the inner-membrane, and inhibition
of peptidoglycan synthesis (Michel-Briand and Baysse, 2002;
Cascales et al., 2007).

In Pectobacterium carotovorum, three CLB nucleases termed
carocins have been characterized. Two of the carocins, S1K (40
kDa) and carocin D (91 kDa) are DNases while the third, S2
(85 kDa) is a tRNAse (Chuang et al., 2007; Chan et al., 2009,
2011; Roh et al., 2010; Atanaskovic et al., 2020). In addition, two
pectobacterial CLBs, pectocins M1 and M2 (both 29 kDa) have
been characterized that possess cytotoxic domains homologous
to that of colicin M and have been shown to similarly target lipid
II (Grinter et al., 2012b). Cleavage of lipid II by colicin M-like
bacteriocins results in inhibition of peptidoglycan biosynthesis
and cell death (Harkness and Ölschläger, 1991). Interestingly,
pectocin M1 and M2 lack an IDR at their N-termini and instead
contain a single globular domain N-terminal to the cytotoxic
domain that is homologous in both sequence and structure to
plant ferredoxin (Figure 1; Grinter et al., 2012b, 2014). Like
plant ferredoxin, these CLBs also contain a 2Fe-2S iron sulfur
cluster and as subsequent research has shown, have evolved
to parasitize an existing ferredoxin uptake system utilized by
Pectobacterium spp. to acquire iron from its plant hosts. Uptake
of ferredoxin is mediated by the TBDT FusA and the TonB-like
protein FusB which work in concert to translocate ferredoxin
into the periplasm (Grinter et al., 2016; Wojnowska and Walker,
2020). FusB acts both in removal of the plug from the lumen
of FusA and directly binding to ferredoxin mediating its active
translocation across the outer membrane via the lumen of
FusA (Wojnowska and Walker, 2020). Within the periplasm,
the processing protease FusC cleaves ferredoxin in two specific
locations releasing its iron into the periplasm (Mosbahi et al.,
2018). Competition assays with spinach ferredoxin and killing
assays under iron limiting conditions show that ferredoxin-
containing bacteriocins are translocated using the same pathway
(Grinter et al., 2012b). Bioinformatic analysis has revealed
another putative pectobacterial bacteriocin, pectocin P (35 kDa),
that also contains a ferredoxin domain (Grinter et al., 2012b).
However, the cytotoxic domain of pectocin P shares structural
homology to lysozyme implying that uptake using the ferredoxin
domain can be utilized as a general translocation pathway
to deliver cytotoxic proteins into the periplasm. Lastly, two
CLBs from P. syringae have been reported, syringacin M (30
kDa), which shares homology with colicin M, and a nuclease
bacteriocin, SE9a (64 kDa) related to pyocin S2 (Grinter et al.,
2012c; Hockett et al., 2017). Unlike the colicin M-like pectocins
M1 and M2, syringacin M does possess an N-terminal IDR
and so likely has an uptake mechanism that is similar to the
well-characterized colicins from E. coli (Grinter et al., 2012c).

Analysis of mutations in bacteria grown in the presence of
bacteriocins suggest that resistance usually results from changes
in the bacteriocin receptor (Cascales et al., 2007; Inglis et al.,
2016). However, the development of resistance in the wild is
still poorly understood and it may also depend on additional
factors involving the receptor. For example, in iron limiting
conditions, resistance to pyocin S2 is subject to negative selection
as its receptor is required for the uptake of iron (Inglis et al.,
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FIGURE 1 | Structure and homology of the ferredoxin containing pectocin M2. (A) The crystal structure of pectocin M2 (PDB:4N58). The ferredoxin domain is in
cyan, the linker region in purple and the colicin M-like cytotoxic domain in green. The iron sulfur cluster located in the ferredoxin domain is represented as yellow and
orange spheres. (B) The N-terminal domain of pectocin M2 (ZP_03825528) shares homology with spinach ferredoxin (1704156A). The C-terminal domain which is
separated from the ferredoxin domain by a short helical linker shares homology with the lipid II-cleaving cytotoxic domain of colicin M (WP_000449474). Numbers
shown are percentage identities calculated using the Needleman-Wunsch algorithm (Needle program) from EBI.

2016). As these receptors are typically involved in processes that
are important for competition and cell survival, resistant strains
tend to be less fit and show reduced pathogenicity in some
environments.

LECTIN-LIKE BACTERIOCINS

LLBs are a distinct family of protein antibiotics found in
Pseudomonas, Burkholderia, and Xanthomonas species
(Ghequire et al., 2012a, 2013a). The hallmark of LLBs is
the presence of monocot mannose-binding lectin (MMBLs)
domains. MMBLs are expanded in both plants and animals
and play a primitive defensive role against pests and pathogens
(Ghequire et al., 2012b). LLBs possess at least 1 MMBL domain

containing conserved QxDxNxVxYx sequences that constitute
a carbohydrate-binding pocket. These MMBLs are instrumental
in defining the selectivity of LLBs by enabling the docking onto
D-rhamnose-containing lipopolysaccharide (LPS) on the cell
surface (Ghequire et al., 2013b; McCaughey et al., 2014).

Our current understanding of LLBs arises predominantly
from the study of pyocin L1 and putidacin L1 (PL1) isolated
from P. aeruginosa and P. putida, respectively (Parret et al., 2003;
McCaughey et al., 2014). PL1 (30 kDa) harbors 2 MMBL domains
(Figure 2A) and phylogenetic analyses of the N- and C-terminal
MMBL domains suggest distinct functions in LPS docking
(Ghequire et al., 2013b). The N-terminal MMBL domains diverge
substantially implying their importance in selectivity, whereas
the C-terminal MMBL domains tightly cluster suggesting that
their primary function are to bind to carbohydrates with high
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FIGURE 2 | LLBs can be provide robust disease resistance against P. syringae. (A) Structure of the LLB PL1 (PDB:4GC2). The N- and C-terminal MMBL domains
are shown in red and blue, respectively, and C-terminal extension is shown in green. Within these domains the QxDxNxVxYx sugar binding motifs are shown in
purple. The C-terminal extension is predicted to play a role in the cytotoxic action of PL1 by disrupting the function of BamA. (B) Non-transgenic (NT) vs. transgenic
expression of PL1 in both Arabidopsis seedlings (upper panel) and Nicotiniana benthamiana leaves (lower panel) provides robust resistance against strains of
P. syringae that are susceptible to PL1. These images were adapted from Rooney et al. (2019).

affinity (Ghequire et al., 2018b). Intriguingly, it was recently
reported that LLBs containing 1 MMBL exhibit anti-microbial
activity against Pseudomonads (Ghequire and De Mot, 2019).
Although little is known about these bacteriocins isolated from
soil- and plant-associated bacteria, their MMBLs share homology
with the N-terminal MMBL domains of putidacin L1-type LLBs
(Ghequire and De Mot, 2019).

Resistance to LLBs can arise from changes to LPS structure
by susceptible bacteria (Ghequire et al., 2013b; McCaughey et al.,
2014). However, LPS binding does not fully explain the selective
nature of LLBs (Ghequire et al., 2013b). An exhaustive genetic
study of resistant bacterial isolates identified novel changes in
a surface-exposed extracellular loop of the outer membrane
protein BamA (Ghequire et al., 2018a). BamA is a critical
component of the β-barrel assembly machinery responsible for
the chaperoning and insertion of β-barrel proteins into the outer
membrane (Noinaj et al., 2017). Sequence alignments comparing
PL1 sensitive and resistant strains identified the amino acid
sequences of loop 6 of BamA as a genetic determinant of PL1
susceptibility. This was elegantly demonstrated when a “resistant”
allele of BamA successfully rescued a PL1-sensitive strain from
PL1-mediated killing in vitro (Ghequire et al., 2018a).

TAILOCINS

Tailocins are headless phage tail-like bacteriocins consisting
of 8–14 individual components, including a sheath, core and
baseplate (Ghequire et al., 2015b; Scholl, 2017). A producing
cell releases 100s of particles and sometimes one particle is

sufficient to eliminate a target cell (Scholl, 2017). Although
tailocins from phytopathogenic bacteria share a high degree of
similarity with contractile tail phages derived from Myoviridae,
they have evolved independently, and represent an expansive
group of protein complexes playing critical ecological roles like
biofilm formation (Ghequire et al., 2015b; Turnbull et al., 2016).
Tailocin-mediated killing occurs in two steps. Firstly, the tail
fibers selectively bind to LPS of a target cell (Michel-Briand and
Baysse, 2002). In turn, the sheath contracts and punctures the cell
envelope, depolarizing the cell membrane and resulting in cell
death (Scholl, 2017).

Tailocins are produced by a range of bacteria including
Pseudomonads and Pectobacterium spp. (Nguyen et al., 2001;
Hockett et al., 2015). Remarkably, tailocins from P. syringae have
evolved independently of those of P. aeruginosa and do not
share the same evolutionary ancestor (Ghequire and De Mot,
2015a; Hockett et al., 2015). This likely reflects the different
environmental niches that P. aeruginosa and P. syringae occupy.
Intriguingly, diversification and expansion of the tailocin family
in P. syringae is driven by localized recombination of tailocin
genes like those encoding the tail fibers (Baltrus et al., 2019).

Identification and genetic dissection of two distinct tailocins
from P. chlororaphis has unmasked the robust competitive
advantage tailocins provide in heterogeneous biofilms and the
rhizosphere (Dorosky et al., 2017, 2018). Notably, P. fluorescens
SF4c harbors a tailocin targeting X. vesicatoria, the causal agent
of bacterial spot disease in tomatoes (Príncipe et al., 2018).
In the case of Pectobacterium there are two highly similar
tailocins, carotovoricin (Ctv)Er and CGE originating from
P. carotovorum IAM 1068 and P. carotovorum CGE234-M403,
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respectively (Yamada et al., 2006). Indeed, both carotovoricins
are identical apart from two 26 bp inverted repeats within
and downstream of the tail fiber gene, which differentiates
their killing spectrum (Nguyen et al., 2001). Notably, strains
of Pectobacterium harboring CtvCGE are sold in Japan, under
the name “Biokeeper” to manage bacterial soft rot infections in
potatoes (Chuang et al., 1999).

Classically, tailocin tolerance arises from alterations in the
LPS, enabling the targets to evade tailocin recognition (Scholl,
2017; Kandel et al., 2020). A recent study postulates that bacteria
can persist in environments containing sub-lethal concentrations
of tailocins (Kandel et al., 2020). Persistence is not a heritable
genetic trait, and likely reflects heterogeneity of gene expression
within a clonal population influenced by factors such as
starvation and metabolic activity (Kandel et al., 2020). Persistence
allows bacteria to bypass mutations which incur fitness costs
providing the selective pressure is transient.

ORPHAN BACTERIOCINS AND
PLANTIBIOTICS

Several bacteriocins from phytopathogens do not display
homology with other well-characterized classes. For example,
X. campestris pv. glycines 8ra produces a bacteriocin called
glycinecin A (55 kDa), which is unusually encoded by two genes
(Heu et al., 2001). Interestingly, although glycinecin A can be
produced recombinantly in E. coli, active bacteriocin is only
obtained when glyA and glyB are co-expressed in the same cell;
active bacteriocin cannot be reconstituted by combining the two
separately expressed polypeptides in vitro (Heu et al., 2001).
There are two bacteriocins identified from X. campestris and
X. perforans, glycinecin R, and BCN-A, containing Rhs repeats
(pfam05593) which share homology with the toxin complex of
the insect pathogen Photorhabdus (Roh et al., 2008; Marutani-
Hert et al., 2020). The mode of action for these Xanthomonas
bacteriocins are unknown.

The production of a very narrow spectrum bacteriocin-
like substance agrocin 84 (1.4 kDa) by some non-pathogenic
strains of Agrobacterium tumefaciens has been characterized and
exploited to control crown gall diseases caused by pathogenic
strains of A. tumefaciens (Kerr and Htay, 1974; Ellis et al., 1979).
This small nucleotide antibiotic represses leucyl-tRNA synthetase
activity (Tate et al., 1979; Kim et al., 2006). Remarkably,
A. tumefaciens strains that successfully evolve resistance against
agrocin 84 become non-pathogenic (Kerr, 1980). The success of
agrocin 84 as a strategy to control crown gall disease resulted
in the development of an agrocin 84-producing A. tumefaciens
strain which was successfully trademarked and sold under the
name Nogall by Bio-care Technology (Jones et al., 1988).

APPLICATIONS OF BACTERIOCINS AND
FUTURE PERSPECTIVES

The control of bacterial phytopathogens in agriculture often relies
on the application of chemicals containing copper or antibiotics,

notably streptomycin. These often have detrimental impacts on
human health and the environment and their long term success as
a control measure can be limited by the development of resistance
(Sundin and Bender, 1993; Damalas and Eleftherohorinos, 2011).
For example, streptomycin treatment has been used extensively
in orchards to mitigate diseases like fire blight and citrus
greening. However, widespread applications of antibiotics in a
field context has the potential to create reservoirs of resistance
that can potentially transfer from plant pathogenic bacteria into
bacterial pathogens of clinical importance (Norelli et al., 2003;
McKenna, 2019).

A major driver of the success of the insecticidal protein
Bacillus thuringiensis (Bt) toxin has been its high degree of target
selectivity and its ease of expression in planta. Bacteriocins share
similar characteristics. In both clinical and agricultural contexts
this is highly advantageous as their use would be expected to
cause minimal disruption to the microbiome. Like Bt toxins,
bacteriocins can be expressed in plants or directly applied to
crops. Nomad Biosciences have neatly illustrated the feasibility of
expressing bacteriocins (LLBs and CLBs) in several plant species
(Schulz et al., 2015; Paškevičius et al., 2017; Schneider et al.,
2018). Furthermore, there is little evidence of bacteriocin toxicity
in various animal models (Behrens et al., 2017). Bacteriocins
are naturally produced by environmental bacteria, it is thought
that they have limited toxicity toward humans, animals or
benign environmental bacterial species and some bacteriocins are
already classified as generally regarded as safe for use in food
preservation (Schulz et al., 2015). As we have recently shown,
bacteriocins can be expressed transgenically in planta to provide
resistance against P. syringae. Expression of PL1 in two model
plant species provided a strong resistance phenotype in plants
challenged with several unrelated PL1-sensitive P. syringae field
isolates (Figure 2B; Rooney et al., 2019) with bacterial titres in
PL1 transgenic lines 1.5 log-units lower than in non-transgenic
controls (Rooney et al., 2019).

Non-GM-based protocols for bacteriocin-based control
measures include examples where non-pathogenic but
bacteriocin producing strains of bacteria have been directly
applied to crops, for example, Nogall and Biokeeper (Jones
et al., 1988; Chuang et al., 1999). Alternatively, treatments
using bacteriocins as a direct application to crops have shown
promise in laboratory conditions against olive knot disease
and bacterial spot disease of tomato (Lavermicocca et al.,
2002; Príncipe et al., 2018). One potential issue in utilizing
bacteriocins as a direct treatment is the requirement for large
scale bacteriocin production. This maybe technically difficult for
multi-component bacteriocins (e.g., tailocins) but should not
be a problem for LLBs and CLBs where successful production
in planta has already been demonstrated (Schulz et al., 2015;
Paškevičius et al., 2017; Rooney et al., 2019).

The organization of bacteriocins into functional domains
enables them to be readily engineered, providing a potential route
for producing further variants by domain swapping to create new
chimeric bacteriocins with altered target activities and modes
of killing (Lukacik et al., 2012). Similarly, for CLBs appropriate
domain swapping could yield chimeric bacteriocins for which
there is no immunity protein-based resistance in the targeted
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bacterial species (Akutsu et al., 1989). For tailocins, the exchange
of tail fibers has already been shown to produce novel chimeras
(Baltrus et al., 2019).

Despite the discovery and characterization of bacteriocins
from phytopathogens, there is limited proof of a competitive
advantage for the producing strain in vivo. Evidence
suggests that soluble bacteriocins like CLBs function
in the apoplastic space (endophytic fitness) whereas
tailocins function in rhizosphere communities (epiphytic
fitness) (Dorosky et al., 2018; Li et al., 2020). However,
in vitro data suggests bacteriocins could work in concert
in a conditionally redundant manner (Hockett et al.,
2017).

Overall, bacteriocins represent an under-utilized resource
of disease control. In the age of metagenomics, this can be
easily remedied by the swift identification and characterization

of new bacteriocins. This would allow bacteriocins to be
rapidly deployed against current and emerging threats to
important food crops.
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