
RESEARCH Open Access

Model averaging strategies for structure learning
in Bayesian networks with limited data
Bradley M Broom1*, Kim-Anh Do2, Devika Subramanian3

From The 8th Annual Biotechnology and Bioinformatics Symposium (BIOT-2011)
Houston, TX, USA. 20-21 October 2010

Abstract

Background: Considerable progress has been made on algorithms for learning the structure of Bayesian networks
from data. Model averaging by using bootstrap replicates with feature selection by thresholding is a widely used
solution for learning features with high confidence. Yet, in the context of limited data many questions remain
unanswered. What scoring functions are most effective for model averaging? Does the bias arising from the
discreteness of the bootstrap significantly affect learning performance? Is it better to pick the single best network
or to average multiple networks learnt from each bootstrap resample? How should thresholds for learning
statistically significant features be selected?

Results: The best scoring functions are Dirichlet Prior Scoring Metric with small l and the Bayesian Dirichlet metric.
Correcting the bias arising from the discreteness of the bootstrap worsens learning performance. It is better to pick
the single best network learnt from each bootstrap resample. We describe a permutation based method for
determining significance thresholds for feature selection in bagged models. We show that in contexts with limited
data, Bayesian bagging using the Dirichlet Prior Scoring Metric (DPSM) is the most effective learning strategy, and
that modifying the scoring function to penalize complex networks hampers model averaging. We establish these
results using a systematic study of two well-known benchmarks, specifically ALARM and INSURANCE. We also apply
our network construction method to gene expression data from the Cancer Genome Atlas Glioblastoma
multiforme dataset and show that survival is related to clinical covariates age and gender and clusters for
interferon induced genes and growth inhibition genes.

Conclusions: For small data sets, our approach performs significantly better than previously published methods.

Introduction
In the last ten years there has been a great deal of
research published on learning Bayesian networks from
data [1-4]. Most of the work in structure discovery in
Bayesian networks has focused on designing computa-
tionally tractable procedures for searching the space of
networks, and on devising metrics for scoring networks
during search. However, the problem of determining the
quality and robustness of learned structures in the con-
text of limited data remains largely open. Structure learn-
ing algorithms are known to be unstable — small

changes in training data can cause large changes in the
learned structures. As Bayesian network learning begins
to find serious application in biology [5], there is an
increasing need for learning protocols that can not only
discover network features, such as edges and Markov
blankets, from small amounts of data, but can also deter-
mine an accurate confidence estimate for those features.
In many biological and clinical settings, the size of the
dataset may be severely limited, either by high cost or by
the limited number of cases from which data can be col-
lected (for instance, people affected by a rare disease) [6].
In such settings, it is worthwhile to use substantial
amounts of computation in order to achieve as accurate
a result as possible. Model averaging using bootstrap
replicates (that is, bagging) with feature selection by

* Correspondence: bmbroom@mdanderson.org
1Department of Bioinformatics and Computational Biology, UT MD Anderson
Cancer Center, Houston, Texas 77030, USA
Full list of author information is available at the end of the article

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

© 2012 Broom et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:bmbroom@mdanderson.org
http://creativecommons.org/licenses/by/2.0


thresholding [7] is a widely used solution [8]. Unfortu-
nately, there is no established method for determining
feature-selection thresholds. There is no prescription for
the choice of bootstrap technique: the ordinary non-para-
metric bootstrap [9], a bias-corrected version of the non-
parametric bootstrap [10], or the more continuous Baye-
sian bootstrap [11]. Whether the choice of bootstrap
method interacts with the choice of scoring function is
unknown, as is the number of bootstrap replicates
needed to achieve a certain level of confidence in the
final model.
In this paper, our goal is to understand the interac-

tions between choice of bootstrap method and scoring
function, size of training data and number of bootstrap
replicates as well as the choice of feature-selection
threshold on averaged models. Unlike linear regression,
for which closed form expressions for the performance
of model-averaging procedures can be derived [12], our
model class is too complex to permit the analytical deri-
vation of quality guarantees. We therefore use experi-
ments on two moderately sized Bayesian networks with
known structure (ALARM and INSURANCE) to system-
atically study the effects of varying the bootstrap techni-
que, the amount of training data, the number of
bootstrap replicates, as well as the scoring function for
network learning. We design a variant of permutation
testing to automatically select thresholds for feature
selection in bootstrap averaged (bagged) models and
construct a loose upper bound for the number of boot-
strap replicates needed for stable estimates of feature
probabilities.
The variance in the structure of learned networks

comes in part from the data, which is usually a single
realization from some unknown true model. This is
schematically depicted in Figure 1, where possible data
sets sampled from the true model lie on the x axis, and
potential Bayesian networks on the given set of variables
are on the y axis. The contours denote regions in which
the posterior probability of the network given the data
are the same. Given a single data set, exploration in the
structure space is completely determined by the para-
meters of the search algorithm. This is denoted by the
vertical dotted blue line in Figure 1.
When the amount of data is small relative to the size

of the model, the posterior probability of the model
given the data is not sharply peaked around a single
model [13]. To correctly assess the probability of a
structural feature (for instance, an edge) in the model,
we need to average over the entire ensemble of net-
works with similar posterior probabilities. If it is reason-
able to assume that all high-scoring structures are
equally good, we have the probability of a feature e
given data  to be

P e I e( | ) { }, 


  (1)

or we can compute Bayesian posterior probabilities

P e P I e( | ) ( | ) { },   


  (2)

where we weight each feature in proportion to the
posterior probability of the structure  in which it
occurs.
For large networks, the direct estimation of P e( | )

is intractable. Structure learning algorithms approximate
the computation in Equations 1 or 2 by only considering
high scoring structures encountered during search.
These structures tend to be quite similar to one another,
as evidenced by the fact that feature (such as, edge)
probabilities computed from them are usually close to 0
or 1. Computing feature probabilities by MCMC sam-
pling over structures drawn from the posterior distribu-
tion P D( | ) has been proposed by Madigan and York
[14] and refined by Giudici et al. [15]. These techniques
do not scale to large networks, and have been shown to
be slow-mixing [13].
A different approach to estimating feature probabil-

ities is to sample in different sections of the structure
space by perturbing the data set  . In effect, we fol-
low the horizontal green dotted line parallel to the x
axis in Figure 1. By taking bootstrap resamples from

Figure 1 Bayesian network search space The search for Bayesian
networks guided by data. Contours represent likelihood of
structures given data.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 2 of 18



the original dataset, learning a single high-scoring
Bayesian network from each resample, and averaging
feature probabilities over these networks, we can obtain
feature probability estimates from a more diverse
population of structures. This is the motivation behind
Algorithm 1 shown below, proposed in [4]. A final net-
work is assembled by including only those structural
features that have estimated probabilities above a pre-
specified threshold t, which is given as an input to the
algorithm.

Algorithm 1 : Model averaging by bootstrap aggregation and moodel assembly by thresholding             

  Input :   {( (x1
ii

n
ix i N

M

) ( ), , ) | } ( )

(

 1    training data

  number of bootstrap  resamples

 scoring function on structures

 a proba

),

( )

(

F

t
s

bbility threshold

a graph with ’s as vertices, 

)

,Output :  Xi eedges  with probability greater than 

    

X X t

i to M
i j

for d1 oo

   
Resample  instances with replacement from , yieldinN  gg data set .

Learn the highest scoring structure  from




i

i    using a learning algorithm guided by .
 

Compute 

i sF

end

 

 



  

1
1M

X X

i
M

i

i j

 (average adjacency matrix)

Compute { | (( ) }X X ti j   (threshold the averaged model)                                    

The practical application of this algorithm, particularly
in the context of limited data requires answers to many
questions. Specifically:
• How many bootstrap resamples M are required to

obtain stable estimates of the feature probabilities in
bagged models?
• Which scoring functions Fs work best with bagging?

Friedman et al. [4] only used BDe as a scoring function
in their bootstrap experiments. Hartemink et al. [16]
offer experimental evidence that that BDe outperforms
MDL/BIC in a bagging context. It is an open question
how scoring functions such as DPSM compare to BDe.
• Is the bias in bagged Bayesian networks arising from

the discreteness of the bootstrap method [10] a signifi-
cant problem? If so, would a continuous version of
bootstrap, like the Bayesian bootstrap [11] be a better
choice for bootstrap resampling than the ordinary dis-
crete bootstrap?
• How do we select thresholds for learning statistically

significant features over averaged models? Does the
choice of threshold depend on the scoring function, pro-
blem domain, sample size, and bootstrap resampling
technique?
• Should a single high scoring structure be learned

from a bootstrap replicate (as shown in Algorithm 1), or
an averaged ensemble of high scoring structures (double
averaging, as shown in Figure 2)?
The paper is organized as follows. In the next section,

we review the problem of learning the structure of Baye-
sian networks from data, and describe the state of the art
in scoring functions, search algorithms, and bootstrap-
ping techniques. In the following section, we present an
extensive experimental study that explores the space of

model-averaging strategies in the context of the ALARM
network. We then describe our technique for automati-
cally selecting a probability threshold for feature selec-
tion. Our threshold selection criterion is designed to
minimize the number of false positive features in bagged
models. We conclude with a characterization of an effec-
tive model-averaging strategy in contexts with limited
data.

Learning the structure of Bayesian networks
Bayesian networks
Bayesian networks are a compact, graphical representa-
tion of multivariate joint probability distributions on a
set of variables. The graph structure reflects conditional
independence relationships between the random vari-
ables. Formally, a Bayesian network for a set X = {X1,…,
Xn} of n discrete random variables is a pair   ( , )
where  is a directed acyclic graph whose vertices
represent the random variables X1,… , Xn, and whose
edges represent direct dependencies between these vari-
ables. Θ represents the set of conditional probability dis-
tributions of the form ΘXi|Ui = P(Xi|Ui), 1 ≤ i ≤ n, where Ui

denotes the parents of variable Xi in the graph  . The joint
probability distribution P(X1,…, Xn) encoded by  can
be reconstructed as the product of the individual condi-
tional probability distributions in Θ:

P U( , , ) ( | ).X X P Xn i i

i

n

1

1

 



Learning Bayesian networks from data: scoring functions
The problem of learning a network from data is nor-
mally posed as an optimization problem: Given a set
   { | }( )x j j N1 of instances drawn from a multi-
variate joint probability distribution P(X), find a network
 * ( *, *)  which maximizes the posterior probabil-
ity of the network given the data:

     

  
 



* ( | ) ( | ) ( ),

( | , ) ( ,,

 


argmax argmax

argmax

P P P

P P  )),

( | , ) ( | ) ( )., argmax      P P P

The prior over network structures has two compo-
nents: a discrete probability distribution P( ) over
graph structures  , and for each possible graph, a den-
sity measure P( | )  over possible values of the para-
meter Θ. The simplest, and most common choice for
both the prior P( ) over graphs as well as the para-
meter distribution P( | )  , is the uniform distribution.
Assuming that the data is sampled i.i.d., the likelihood
of the data given a network   ( , ) is

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 3 of 18



P P X xi i
j

i

i

n

j

N

( | , ) ( | ).( )    

 U

11

The posterior probability P D( | ) is called a scoring
metric or scoring function for Bayesian network learning
algorithms. By marginalizing over all choices for the
parameter distribution Θ, we can write P D( | ) as

P P P P d

P X x P P di i
j

i

( | ) ( | ) ( | ) ( ) ,

( | ) ( | ) ( ) .( )

     

 



 

 ,  

 



U
ii

n

j

N




11


The scoring function P D( | ) simplifies under the
assumption of uniform structure and parameter priors
to the following, called the K2 metric in [17], and the
UPSM score in [18]:

P P
r

N r N
i

ij ij

q

i

n

ijk

k

r
i

i( | ) ( )
( )!

)! ( )!,
   

 




 
1

1
11

1

where ri is the number of values that Xi takes, and qi
is the number of values that the parents of Xi in 
take. Nijk is the number of instances in  in which
variable Xi has its k

th value, and its parents take their jth

value, and N Ni j i jk
k

ri
 1

.
A generalization of the above scoring metric uses

Dirichlet priors (l >= 1) for P( | )  . The parameter
priors for each variable are considered independent of
one another, an assumption called global parameter
independence in [13],

P P X

i

n

i i
( | ) ( ).|  


 U

1

Figure 2 Bayesian model averaging strategies On the left is the model averaging protocol of [4], on the right is our proposed model
averaging strategy. The three key differences are the choice of scoring function, learning multiple models from each bootstrap resample, and
automatic determination of the probability threshold.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 4 of 18



In addition, the parameter modularity assumption is
made [19]. For two graph structures  and  such
that the parents of node Xi are the same in both graphs,
we have

P PX Xi i i i
( | ) ( | ).| | U U  

The graph structure parameter prior P( ) is assumed
to satisfy structural modularity; that is, it can be factored
as a product of distributions over the possible parent sets
of node Xi in the graph. Under these assumptions, the
posterior probability of the graph structure P D( | ) can
be written in fully factored form as

P P X x P G P G di i
j

i X X

i

n

j

N

i i i i
( | ) ( | ) ( | ) ( )( )

| | ).   

 U u u 


11

The scoring function with these assumptions reduces
to

P P G
N

N N

N N

N
ij

ij ijj

q

i

n
ijk ijk

i

i

( | ) ( )
( )

( )

( )

(
  


 

 



 





11 jjkk

ri

)
,




1

where Nijk is the Dirichlet distribution order for vari-
able i with value k and parent value j, and

  
N Nij ijk

k

ri

1
. When the Dirichlet orders for all sets

of parameters ( )Nijk are set to a constant l, the score

is called DPSM [18]. When we assume  N
N

r qijk
i i

, it is

called the Bayesian Dirichlet (BDe) metric [17]. The
choice of Nijk is critical, particularly for small data sets.
If these parameters are large, making Nijk dominate the
Nijk values, the available data has less influence in deter-
mining the space of structures explored.
There is another family of scoring functions based on

maximizing the likelihood function P( | )  . The first
among these is the BIC score, also known as the Schwartz
criterion, which is derived from the Laplace approximation
to the logarithm of P( | )  ( [20], page 64) and defined
by

BIC score  log ( | , ) log ,P
d

N  
2

where ̂ is the maximum likelihood estimate of Θ
given  and D, d is the number of free parameters in
Θ, and N is the size of the training sample. The number
of free parameters in Θ is

d r qi i

i

n

 

( ) ,1

1

where ri is the number of values that variable Xi can
take, and qi is the number of values that the parents of
Xi in  can take. Direct maximization of P( | , )  
yields overfitted models, because the likelihood of the
data given  and Θ can be increased by increasing the
complexity of  (that is, by adding an edge). The sec-
ond term

d
N

2
log can be seen as a penalty term to

compensate for model complexity. Finding a structure
 with the highest BIC score is equivalent to finding a
structure with the highest approximate posterior prob-
ability given the data D. As the sample size N ® ∞, the
probability that the BIC criterion selects the true model
approaches 1. However, with finite sample sizes, BIC
tends to select models that are much simpler than the
true model, due to the penalty term.
The MDL, or the Minimum Length Description scor-

ing function has its origins in data compression and
information theory. The best model for a data set  ,
according to the MDL, is one that minimizes the sum of
the length (in bits) of the encoding of the model itself,
and the length of the encoding of the data given the
model. When applied to Bayesian network structure
learning, the MDL score is the sum of the description
length of the graph  , the description length of the
conditional probability parameters Θ given  , and that
of the data  given  and Θ. The description length
of the graph  is

DL ni

i

n

( ) ( | |) log ,  

 1

1



where |πi| is the number of parents of Xi in  , and n
is the number of variables Xi in X. The description
length of Θ is the product of the total number of inde-
pendent parameters for specifying each conditional
probability table, and the number of bits needed to
encode each of these parameters for a data set of size N.
Define

DL N r qi

i

n

i( | ) log ( ) .   

1

2
1

1

Finally, the number of bits needed to encode the data
given the model is

DL P( | , ) log( ( | , ).     

Thus

MDL score      

log ( | , ) log ( ) ( | |) loP N r qi i i

i

n

i

n

   1
2

1 1
11

 gg .n

Minimizing the MDL scoring function yields a model
with the shortest description length. If we ignore the

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 5 of 18



description length of the graph, DL( ) , the MDL score
equals the BIC score with reversed sign. The MDL scor-
ing function favors graphs in which nodes have fewer
parents, because it reduces the encoding length of Θ
and  .
To summarize, scoring functions belong to one of two

families. Bayesian scoring functions, of which K2,
DPSM, and BDe are examples, represent the posterior
probability P D( | ) of a structure  given data  .
The second family consists of complexity-penalized like-
lihood measures, of which BIC and MDL are examples.
MDL can also be justified from an information-theoretic
perspective. These scoring functions embody different
assumptions about priors on the space of structures as
well as priors on parameter distributions given the
structures. There are few systematic studies in the litera-
ture to guide choice of scoring functions for specific
applications. Below we show a comparative analysis of
the performance of these scoring functions in the con-
text of limited data.

Learning Bayesian networks from data: local search
algorithms
The problem of learning a network which maximizes
P D( | ) is usually posed as a combinatorial optimiza-
tion problem. It is known to be NP-complete [21], so
local search algorithms guided by scoring functions are
used to find approximate solutions.
The local search algorithm used in our experiments is

greedy hill-climbing with randomized restarts and Fried-
man’s sparse candidate algorithm [4] with k = 6 (maxi-
mum number of parents per node). Every network
explored by the algorithm during the search is recorded,
and no network is ever considered twice. Initially, the k
most likely parents for each node, the candidates, are
selected by scoring all networks with a single edge
between two nodes. Denote by K the set of all networks
in which the parents of every node belong to the set of k
candidate parents for that node. A list of starting net-
works containing all networks in K with up to two edges
is then generated. A starting network is picked at random
from this initial list. From this starting network, all neigh-
boring networks in K that have not been considered
before and which differ by an additional edge, one less
edge, or a reversed edge are evaluated. The highest scor-
ing neighboring network, if its score is higher, replaces
the current network. The search is continued until no
new networks are generated or all generated networks
score less than the current network. New sets of k candi-
date parents are then generated following Friedman’s
algorithm, and the search is continued. New candidate
parents sets are picked until a previously seen set of can-
didate parents is revisited, or C = 10 different candidate
parent sets have been considered. Such searches starting

from a randomly picked member of the initial network
list are performed a total of M1 = 25 times. Another
M2 = 25 such searches are performed starting from a net-
work chosen randomly from all of those seen during the
first M1 searches. Network features are determined from
the highest scoring network(s) visited over all searches.

Bootstrap and Bayesian bootstrap
The bootstrap is a general tool for assessing statistical
accuracy of models learned from data. Suppose we have a
data set    { | }( )x j j N1 , where each x(j) is a vector
of size n drawn from the cross product of the domains of
variables X1,…, Xn. The basic idea is to randomly draw
datasets with replacement from  , with each sample the
same size as the original set, that is, N. This is done B
times, producing B bootstrap replicates, as shown on the
left in Figure 2. We learn Bayesian networks from each
bootstrap resample. We can then analyze the networks
generated over the B resamples; for example, producing
means and variances on frequencies of structural
features.
Each example in  is represented between 0 and B

times among the bootstrap resamples. Thus one can can
think of the standard bootstrap procedure as assigning
each example in  an integer weight drawn from a mul-
tinomial distribution, representing its number of occur-
rences in the B resamples. The probability of not
including a specific example in a resample is about 1/e ≈
37%. Since an example contributes to the count Nijk in
the scoring function; dropping examples biases the
counts, and the structures that are learned from them
[10]. Whether the discreteness of the bootstrap leads to
the generation of more complex graphs as claimed in
[10], with more false positive features, or whether it leads
to structures with missing edges (false negative features)
because of undersampling of weaker relationships in the
data, is an open one.
An alternative approach is to use the Bayesian boot-

strap [11]. It is a Bayesian resampling procedure that is
operationally similar to the ordinary non-parametric
bootstrap. In the Bayesian bootstrap, examples are
assigned continuously varying weights drawn from a
Dirichlet distribution. Not surprisingly, the Bayesian
bootstrap procedure has a Bayesian interpretation.
Assume that examples are drawn from some unknown
multivariate distribution P(X), and that we have no speci-
fic priors on that distribution. The uninformative prior
on P combined with the multinomial sample likelihood
yields, via Bayes Theorem, a Dirichlet posterior distribu-
tion on the fraction of the original population that each
sampled example represents. The ensemble of Bayesian
bootstrap resamples, and the distribution of statistics
derived from them, can be viewed as samples from a
Bayesian posterior distribution. The continuously varying

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 6 of 18



weights of the Bayesian bootstrap ensure that there is a
vanishingly small chance of assigning a zero weight to
any example in a resample. Thus, all of the inter-relation-
ships between examples are preserved in the resample,
but in reweighted form. Statistics derived from these
resamples do not embody the bias introduced by the dis-
creteness of the regular bootstrap.
We now turn to the question of the number of boot-

strap resamples needed to form accurate estimates of
structure feature probabilities.

Estimating a bound on the number of bootstrap
resamples
The probability of a feature e from a bootstrap resample,
P e b( | ) , will be exactly 0 or 1 if estimated from the
single best network. In double averaging, the P e b( | ) ,
although estimated from multiple high-scoring net-
works, have highly bimodal distributions, each being
either close to 0 or close to 1, with few exceptions. Con-
sequently, we here approximate the feature probabilities
from each resample as either 0 or 1. The averaged or
bagged feature probabilities then have binomial distribu-
tions that in the large resample limit approximate a nor-
mal distribution with mean p and variance

p p B( ) / ,1  (3)

where p is the probability of getting a probability value
of 1 in each resample, and B is the number of resam-
ples. For fixed number of resamples B, the largest var-
iance is obtained when p = 0.5. The largest feature
probability variance can therefore be estimated by

( . . ) / .0 5 0 5 B (4)

For B = 200 (experimental setting used in [4] and sug-
gested in [9]), the largest feature probability variance is
0.25/200 ≈ 0.00125 yielding a standard deviation of
approximately 0.035. Three standard deviations around
the mean of 0.5 yields a probability range of 0.4 – 0.6.
To obtain a more reasonable standard deviation of
about 0.01 on link probabilities, and hence a three-
sigma range of 0.47-0.53, we need

B  0 25

0 01
25002

.

.
.

In practice, we are most concerned about feature
probabilities close to the cutoff threshold. For features
probabilities p greater than 0.5, the number of resamples
required to achieve a standard deviation of 0.01 is
approximately

B
p p ( )

.
.

1

0 012

Even for a large p, for instance 0.9, this works out to
be 900 resamples.
In practice, our resample feature probabilities are

sometimes not exactly 0 or 1, so we expect the above to
be slight overestimates.

ALARM network simulation study
To understand how different bagging methods, scoring
metrics, and their parameters affect learning perfor-
mance, we conducted an extensive simulation study
using the well known ALARM network. This network
contains 37 discrete nodes, with two to four values per
node, and 46 edges. We drew a master dataset contain-
ing 100,000 data points from the ALARM network’s
joint probability distribution.
To evaluate the effect of different strategies and para-

meters on learning performance, we extract a subset
from that master dataset and apply the network learning
strategy being tested. In all cases, the core learning
strategy is the greedy hill-climbing algorithm with ran-
dom restarts described above. We compute posterior
probabilities of network features, such as edges, by
determining how often each such feature occurs in the
best single network learnt from each bootstrap resample.
A slight variation is double averaging, which first com-
putes feature probabilities for each resample by (Baye-
sian) averaging of multiple high-scoring networks learnt
for that resample, and then averages these probabilities
across resamples. In either case, the bagging process
produces estimates of posterior probabilities P e( | )
for edge features. Given a threshold 0 ≤ t ≤ 1, we will
call an edge e present if P e t( | )  . An edge is a true
positive if it is present in the known ALARM network.
An edge is labeled a false positive if its posterior prob-
ability exceeds t, and it is absent in the reference net-
work. An edge is a true negative if its posterior
probability is less than t and it is absent in the reference
network. Edges with posterior probabilities less than t
that are present in the reference network are false nega-
tives. We do not consider edge direction in our assess-
ments; an edge is defined to be present if the sum of
probabilities of occurrence in both directions exceeds
the threshold t. We report the number of false positives
and false negatives as a function of the threshold t and
use it to assess the quality of models learned. Unless
otherwise stated, the learning performance we report
are averages obtained by applying the above process to
60 independent subsets of the master dataset.

Number of bootstrap resamples required
To estimate the number of bootstrap resamples
required, we performed 60 independent Bayesian boot-
strap bagging analyses of a single dataset containing 250
data points. Each analysis used identical data, but a

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 7 of 18



different seed for the pseudo-random number generator.
To illustrate the convergence of the different bootstrap
runs, we choose the edge between PULMEMBOLUS
and PAP as a representative example. Figure 3 shows
the cumulative probability of this edge being present.
Every independent bootstrap run is plotted as a faint
grey line. Overlapping lines are darker in proportion to
the number of lines involved. The solid blue line is the
cumulative average across all bootstrap runs of this pos-
terior probability. The solid red line (on the right-hand
side axis) is the variance of the probability across the
bootstrap runs. The dotted blue lines indicate three
standard deviations (estimated across the bootstrap
runs) above and below the sample mean. The dotted
red line indicates the expected variance if we assume
that the result for each bootstrap resample is either 0 or
1. The variance curve shows that to get a standard
deviation of 0.03 to 0.01 for this edge (corresponding to
variance of 10–3 to 10–4), we need between 500 and
2,500 resamples. Most experimental studies in the litera-
ture use 200 bootstrap samples, a figure suggested by
[9]. However, this experiment (as well as others we have
done) indicates we need an order-of-magnitude more
resamples for structure learning with limited data. For

the remainder of this study, we use 2,500 bootstrap
resamples in all experiments.

Effect of bagging on learning performance
Figure 4 shows the impact of bagging on learning per-
formance, for datasets with 250 data points. The scoring
function used is DPSM with l = 1. The false positive/
false negative tradeoff curve with bagging lies well below
the tradeoff curves without bagging. For a fixed number
of false positives, bagging yields significantly fewer false
negatives. Similarly, for a fixed number of false nega-
tives, bagging yields fewer false positive edges. In the
structure learning context, bagging enables us to esti-
mate the posterior probabilities of edge features more
accurately, with additional resamples resulting in sub-
stantial reduction in variance. This variance reduction
translates to more accurate structures learned from the
same data. Similar trends are observed for other scoring
metrics as well as other bagging approaches.

Effect of double bagging
The learning procedure, with its multiple restarts, often
produces several top networks with very similar high
scores. Since the greatest computational effort, by far, is

Figure 3 Bootstrap convergence This figure shows the convergence of 60 independent bootstrap estimates for the probability of the edge
between PULMEMBOLUS and PAP in the ALARM network being present for a single dataset containing 250 data points. The horizontal axis (log
scale) is the number of bootstrap resamples. The left-hand vertical axis is the cumulative proportion of top networks that include the edge
between PULMEMBOLUS and PAP. Each of the 60 independent bootstrap bagging analyses is plotted as a faint grey line. Overlapping lines are
darker in proportion to the number of lines involved. The average across all 60 estimates is plotted as a solid blue line, and the dotted blue lines
indicate plus or minus three estimated standard deviations from the average. The right-hand vertical axis (log scale) is the variance of the
estimates. The solid red line is the sample variance. The dotted red line is the theoretical estimate according to equation 3.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 8 of 18



the learning procedure, it might be possible to improve
learning performance by deriving a composite probabil-
ity for each feature from several of these top scoring
networks from each resample. We compared bagging
using only the best network, to bagging of feature prob-
abilities estimated by a simple average and a Bayesian

average of multiple, distinct high-scoring networks from
each bootstrap resample. This averaging over the top
networks occurs prior to bagging, as shown on the right
hand side of Figure 2. Figure 5 shows the results of dou-
ble averaging versus picking the single best on the
ALARM data set with scoring function DPSM (l = 1).

Figure 4 Effect of bagging on learning performance This figure shows the effect of bagging on learning performance for the ALARM
network. The horizontal axis is the number of false positives and the vertical axis is the number of false negatives. The red curve is computed
by simple averaging of the top networks learnt by the search procedure from the original data, while the yellow curve is derived from the same
networks weighted by their probability with respect to the data. The blue curve is the simple average of the single best network learnt by the
search procedure for each of 2500 bootstrap resamples. The results are averages over 60 independent data sets each containing 250 data points.

Figure 5 Effect of double bagging This figure shows the effect of double bagging on learning performance for the ALARM network. The
horizontal axis is the average number of bad edges detected (false positives), and the vertical axis is the average number of good edges not
detected (false negatives). The blue curve is the simple average of the single best network learnt by the search procedure for each of the 2500
bootstrap resamples. The magenta curve is the simple average over 2500 bootstrap resamples of the simple average of the best ten networks
learnt by the search procedure for each resample. The green curve is the simple average over 2500 bootstrap resamples of the Bayesian average
of the best networks learnt by the search procedure for each resample. Each curve is the average of 60 independent data sets each containing
250 data points.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 9 of 18



Effect of bias-correction strategies on model accuracy
To determine the impact of bias introduced by discrete
bootstrap resampling, and the effect of changes to the
scoring function to account for it, we compared ordin-
ary bagging, ordinary bagging with a bias corrected scor-
ing function [10], and Bayesian bagging on the same
ALARM data set with 250 points. The upper panel in
figure 6 shows the false positive/false negative tradeoff
curves for the three bagging approaches. It clearly shows
that the bias corrected scoring metric performs worse
than ordinary and Bayesian bagging. The lower panel in

figure 6, which shows the number of structural errors
(false positives and false negatives) as a function of
threshold choice, reinforces this result. Similar trends
are observed for different dataset sizes and different
choices of scoring functions.
Below we offer a possible explanation for this result.

Ordinary bagging and Bayesian bagging appear to have
very similar performance, with Bayesian bagging outper-
forming ordinary bagging in terms of the number of
structural errors for thresholds above 0.72. Since this
threshold range is likely to be the range of greatest

Figure 6 Effect of bias-correction strategies This figure shows the effect of bias correction strategies on learning performance for the ALARM
network. In the upper panel, the horizontal axis is the number of false positives and the vertical axis is the number of false negatives. In the
lower panel, the horizontal axis is the probability threshold above which an edge is deemed to be present, and the vertical axis is the total
number of errors (false positives plus false negatives). The results are averages over 60 independent data sets each containing 250 data points.
The DPSM scoring metric with l = 1 was used.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 10 of 18



interest, especially in the context of limited data, we
believe that Bayesian bagging is a better choice for
structure learning of Bayesian networks.

Effect of local scoring function
Figure 7 shows the impact of the scoring metric on learn-
ing performance, using Bayesian Bagging on datasets with
250 data points. Similar trends are observed for datasets of

other sizes. Figure 7 makes it clear that MDL/BIC performs
very poorly, and also confirms Hartemink’s result [16] that
BDe performs better than MDL/BIC. Surprisingly, DPSM
with l = 1 performs the best. As the next section shows,
DPSM with values of l less than 1 perform even better.
This surprising experimental result reveals an important
requirement for scoring functions to be effective with bag-
ging, particularly in contexts with limited data.

Figure 7 Effect of local scoring function This figure shows the effect of the scoring metric on learning performance for the ALARM network.
The horizontal axis is the number of false positives and the vertical axis is the number of false negatives. The results are averages over 60
independent data sets each containing either 250 (top panel) or 1500 (bottom panel) data points. Bayesian bagging was used.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 11 of 18



Effect of l for DPSM scoring function
Figure 8 shows the impact of l on the performance of
the DPSM scoring metric on ALARM. Learning perfor-
mance, measured in terms of the false positive/false
negative tradeoff curve continues to improve as l is
reduced until approximately 0.1 to 0.2, below which
learning performance rapidly deteriorates. In subsequent
experiments, we therefore use the DPSM metric with
l = 0.1.
As l values are lowered, the edge density of the Baye-

sian averaged graphs produced from each bootstrap
resample increases. Our results suggest that it is a good
strategy to learn overfitted models from each bootstrap
resample, and to let bagging average out feature prob-
ability estimates of false positive edges to zero. The ben-
efit of learning overfitted models is the reduction in the
number of false negative edges. This explains why apply-
ing a bias correction factor to the scoring metric (see
above) reduces learning performance. While bias correc-
tion ensures that false positive features are minimized, it
increases the number of false negative features because
of its conservatism in adding edges. Thus the total num-
ber of structural errors is higher with bias corrected
scoring functions than with DPSM with l = 0.1.
Our experimental results suggest that when data is lim-

ited, promiscuous scoring functions (such as DPSM with
l < 1) are very effective when combined with Bayesian
bagging over a sufficiently large number of bootstrap
resamples. Both the false positive and false negative rates
decrease as a result of investment of additional computa-
tional resources, and not additional data.

Effect of training set size
Figure 9 shows the impact of sample size on learning
performance, using Bayesian bagging and the DPSM
(l = 0.1) scoring metric. As expected, increasing sample
size improves learning performance. This improvement
is non-linear, with smaller sample sizes showing much
greater relative improvement than larger sample sizes.
For this data set, increases in dataset size up to 500 data
points show the greatest improvements, although it is
possible to learn many edges from datasets with as few
as 125 data points. For the ALARM network, sample
sizes under 500 qualify as limited data scenarios, where
Bayesian bagging with promiscuous scoring functions
offers the greatest benefit in terms of learning
performance.

Comparison to other methods
Figure 10 compares Bayesian Bagging using the DPSM(k =
8, l = 0.1) metric to the methods reported by Friedman
and Koller [13]. Our method is significantly better for small
datasets (N=100). There are three key differences in our
model-averaging approaches. Friedman and Koller use

ordinary bagging with 200 bootstrap resamples, the BDe
scoring function, and an order-based MCMC search algo-
rithm. We use Bayesian bagging with 2500 bootstrap
resamples and a greedy search algorithm with randomized
restarts based on the sparse-candidate algorithm (k = 8),
and the DPSM scoring function with l = 0.1. Figure 10
clearly indicates the reduction in the number of false nega-
tive features in our approach. As we conjectured before, we
attribute this reduction to the construction of overfitted
models in each bootstrap resample run and the use of bag-
ging over 2500 resamples to eliminate false positive fea-
tures. When sample sizes get larger, the extra investment of
computation does not pay off as much, as indicated on the
right hand panel of Figure 10.

Threshold selection using permutation testing
When we attempt to learn a network structure using the
above bagging procedure, the edge frequencies obtained
will range between 0 and 1. We need a global threshold
on edge frequencies to determine whether or not an
edge is to be included in the final model. The optimal
threshold to use is not constant, but depends on the
specific dataset being analyzed. Consequently, in prac-
tice, when learning a network model from data, both
the true model and the optimal threshold to use are
unknown. We need a method to estimate the threshold
that minimizes the number of structural errors made
(false positive and false negatives).
Given randomly permuted (null) data, our bagging

process will compute edge frequencies. Our hypothesis
is that the edge frequencies of incorrect edges are simi-
lar to the edge frequencies obtained from randomly per-
muted data. Consequently, the number of edges found
in a randomly permuted data set that are above a parti-
cular threshold will be indicative of the number of
incorrect edges above that threshold in the network
learnt from the unpermuted data. Our permutation test
determines the likely number of incorrect edges above a
particular threshold by averaging the number of edges
above that threshold across 60 random permutations of
the data. If the data is in fact random, this is clearly a
reasonable estimate. For non-random data, it appears
that the number of edges obtained from the permuted
data overestimates the number of incorrect edges (see
figure 11). Consequently, we believe that the number of
edges in permuted data is a conservative but reasonable
estimate of the number of incorrect edges.
To select a threshold, we compute the difference

between the total number of edges found and the esti-
mated number of incorrect edges found by the permuta-
tion test. A simple threshold, however, does not
discriminate between edges that are way above the
threshold (and very unlikely to be incorrect) from those
just above it (and much more likely to be incorrect).

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 12 of 18



Figure 8 Effect of l for DPSM scoring function This figure shows the effect of l on learning performance for the ALARM network. The
horizontal axis is the number of false positives and the vertical axis is the number of false negatives. The results are averages over 60
independent data sets each containing either 250 (top panel) or 1500 (bottom panel) data points. Bayesian bagging and the DPSM scoring
metric were used.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 13 of 18



Consequently, for edge frequencies (f) above the thresh-
old, we compute an edge likelihood (Lf) from the slope
of total number of edges (Δtf) and the slope of estimated
number of incorrect edges (Δpf) at that edge frequency

L
t p

tf
f f

f


 


with the added constraint that it monotonically
decreases as the threshold decreases. Since neither the
total number of edges nor the number of permuted
edges are smooth functions, we approximate a smooth
result by averaging finite differences over a range of
widths. Figure 12 plots our estimated edge confidence as
a function of the threshold for an instance of the
ALARM network.

Figure 9 Effect of training set size This figure shows the effect of training set size on learning performance for the ALARM network. The
horizontal axis is the number of false positives and the vertical axis is the number of false negatives. The results are averages over 60
independent data sets each containing 250 data points. The DPSM scoring metric with l = 0.1 was used.

Figure 10 Comparison to other methods This figure compares the learning performance of our method (in blue) with the ones presented by
Friedman and Koller in the top two panels on the left side of Figure 11 in [13] (in black).

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 14 of 18



Figure 11 Threshold selection using permutation testing Estimating the number of incorrect edges from the number of edges found in
permuted data sets for the ALARM network. The horizontal axis is the frequency threshold above which an edge is said to be present. The
vertical axis is the number of edges. The dashed blue line is the number of correct edges. The dashed red line is the number of incorrect edges.
The faint purple lines are the number of edges found for each of 60 independent permuted data sets. Overlapping lines are darker in proportion
to the number of lines involved. The solid red line is the average number of edges found in the permuted data sets.

Figure 12 Edge confidence estimation for the ALARM network The horizontal axis is the frequency threshold above which an edge is said
to be present. The left-hand vertical axis is the number of edges. The solid blue line is the total number of edges. The faint purple lines are the
number of edges found for each of 60 independent permuted data sets. The solid red line is the average number of edges found in the
permuted data sets. The solid yellow line is the difference between the total number of edges and the average number of edges in the
permuted datasets. The right-hand vertical axis is the confidence that an edge is real. The solid green line is the confidence associated with an
edge found at the threshold concerned.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 15 of 18



INSURANCE network simulation study
To determine the generality of the above results we per-
formed a similar study using the INSURANCE network.
As was the case for the ALARM network, learning per-
formance using DPSM improves as l decreases, but in
this case the best performance was obtained using BDe.

Application to biological dataset
Figure 13 shows the consensus Bayesian network
obtained by applying our method to the Glioblastoma
dataset [22].
We use bagged gene shaving [23] to extract consensus

gene clusters. Clusters containing genes with an obvious
common biological function were also given a descriptive
name. To generate a Bayesian network, we trichotomized
the signed mean gene for each cluster into low, medium,
and high values. We included additional nodes for clini-
cal covariates of interest, including age, gender, whether
chemotherapy or raditional was given and survival. We
dichotomized survival into short and long survivors at
12 months, but marked as not available all censored sur-
vival times shorter than 12 months.

According to our analysis, survival is linked most clo-
sely with two clinical covariates, age and gender, and
two gene clusters, a cluster of interferon induced genes
and a cluster of growth inhibition genes.

Conclusions and future work
We explored the space of model-averaging strategies in
contexts with limited data with the goal of robustly
learning large Bayesian networks. Our results follows.
1. Is bias-correction a good idea? In contexts with lim-

ited data, Bayesian bagging with scoring functions that
permit the learning of overfitted models is a better strat-
egy than using model-averaging with conservative scoring
functions. In our experiments, bias-corrected scoring
functions with Bayesian bagging have higher number of
structural errors, both in terms of false positives (incor-
rect features) and false negatives (missing features).
2. Which is better: Bayesian bagging or ordinary bag-

ging? Bayesian bagging yields models with more features
than ordinary bagging. At high feature selection thresh-
old values, Bayesian bagging yields better models, espe-
cially when sample sizes are small. As sample sizes

Figure 13 Consensus Bayesian Network of a Glioblastoma Dataset The consensus Bayesian network obtained by applying our method to
the Glioblastoma dataset. The color of each edge indicates the frequency that that edge occurred in the bagged resamples.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 16 of 18



increase, the two approaches are nearly indistinguishable
in performance as measured by the number of false
positives and false negatives. In limited data contexts,
Bayesian bagging is superior to ordinary bagging.
3. How many bootstrap resamples are needed?: Our

experiments show that for features whose true probabil-
ity is close to the threshold for inclusion in the final
model, up to 2500 bootstrap samples are needed for
robust estimation. Previous studies [7,10] have used one
to two hundred bootstrap resamples. Noise features (false
positives) are averaged out by bagging over such a large
ensemble. This improvement comes not at the expense
of false negatives, which are also reduced by the protocol.
4. Which class of scoring functions yield the most accu-

rate models?: For the ALARM network, the DPSM scor-
ing metric with small values of l performed best,
whereas for the INSURANCE network the BDe metric
performed best. What both of these metrics have in com-
mon is that they very readily include additional edges
into the network. A promiscuous scoring metric that pro-
duces overly complex models works well in the context
of bagging because it is more likely to include true edges
with weak support in each resample, hence significantly
reducing false negatives, while the bagging method effec-
tively eliminates the false positives introduced by the
scoring metric.
5. How is a feature selection threshold to be deter-

mined?: We developed a permutation based method to
compute significance thresholds for feature selection in
bagged graphs. In the absence of a true model, the
threshold gives us a bound on the number of false posi-
tive features in the final graph.
6. How many data samples are needed?: Dataset size is

a key determiner of performance of the learning meth-
ods. Our model averaging strategy with bayesian bagging,
and the DPSM scoring function (l = 0.1) with feature
selection using a threshold estimated by permutation
testing, outperforms existing methods and yields excel-
lent models even with samples sizes as low as 125 for the
ALARM network. This result suggests that our model
averaging approach is suitable for biological applications
such as learning regulatory genetic networks, character-
ized by several tens of nodes and training data sets of the
order of a few hundred samples.
One of the open questions is a theoretical characteriza-

tion of the relationship between model complexity and
sample size for Bayesian networks. In this paper, we char-
acterized this relationship empirically for two well-known
networks of moderate complexity. Our model averaging
strategy learns more accurate models than other
approaches when the amount of data is limited relative
to the complexity of the model being learned. In future
work we plan to explore more networks in biological

applications, and refine our protocol for learning high
confidence models with limited data.

List of abbreviations used
AIC: Aikake Information Criterion; BDe: Bayesian Dirichlet metric; BIC:
Bayesian Information Criterion; DPSM: Dirichlet Prior Scoring Metric; GBM:
Glioblastoma Multiforme; MCMC: Markov Chain Monte Carlo; MDL: Minimum
Description Length; TCGA: The Cancer Genome Atlas; UPSM: Uniform Prior
Scoring Metric.

Acknowledgements
This research was supported in part by NIH/NCI grant R01 CA133996 and
the Gulf Coast Center for Computational Cancer Research.
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 13, 2012: Selected articles from The 8th Annual Biotechnology
and Bioinformatics Symposium (BIOT-2011). The full contents of the
supplement are available online at http://www.biomedcentral.com/1471-
2105/13/S13/S1

Author details
1Department of Bioinformatics and Computational Biology, UT MD Anderson
Cancer Center, Houston, Texas 77030, USA. 2Department of Biostatistics, UT
MD Anderson Cancer Center, Houston, Texas 77030, USA. 3Department of
Computer Science, Rice University, Houston, Texas 77005, USA.

Authors’ contributions
BB and DS conceived of the study, and participated in its design and
coordination and helped to draft the manuscript. KA consulted on statistical
considerations. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 24 August 2012

References
1. Heckerman D, Geiger D, Chickering DM: Learning Bayesian networks: the

combination of knowledge and data. Machine Learning 1995,
20(3):197-243.

2. Buntine W: A guide to the literature on learning probabilistic networks
from data. IEEE Transactions on Knowledge And Data Engineering 1996,
8:195-210.

3. Cooper GF, Herskovits E: A Bayesian Method for Constructing Bayesian
Belief Networks for Databases. In 7th Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann;D’Ambrosio BD, Smets P, Bonissone PP
1991:86-94.

4. Friedman N, Nachman I, Pe’er D: Learning Bayesian Network Structure
from Massive Datasets: the ”Sparse Candidate” Algorithm. In Proc.
Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI ‘99). Morgan
Kaufmann;Dubios H, Laskey K 1999:206-215.

5. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP: Causal Protein-
Signaling Networks Derived from Multiparameter Single-Cell Data.
Science 2005, 308(5721):523-529.

6. Mukherjee S, Speed TP: Markov Chain Monte Carlo for Structural
Inference with Prior Information. Tech. Rep. 729 Department of Statistics,
University of California Berkeley; 2007.

7. Friedman N, Goldszmidt M, Wyner A: Data Analysis with Bayesian
Networks: A Bootstrap Approach. Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence (UAI) 1999, 196-205.

8. Rodin AS, Boerwinkle E: Mining genetic epidemiology data with Bayesian
networks I: Bayesian networks and example application (plasma apoE
levels). Bioinformatics 2005, 21(15):3273-3278.

9. Efron B, Tibshirani R: An introduction to the bootstrap. Chapman and Hall,
CRC Press; 1993.

10. Steck H, Jaakkola TS: Bias-Corrected Bootstrap and Model Uncertainty. In
Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT
Press;Thrun S, Saul L, Schölkopf B 2004:.

11. Rubin DB: The Bayesian Bootstrap. The Annals of Statistics 1981, 9:130-134.

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 17 of 18

http://www.biomedcentral.com/1471-2105/13/S13/S1
http://www.biomedcentral.com/1471-2105/13/S13/S1
http://www.ncbi.nlm.nih.gov/pubmed/15845847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15845847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914545?dopt=Abstract


12. Hastie T, Tibshirani R, Friedman J: The elements of statistical learning.
Springer Series on Statistics Springer Verlag; 2001.

13. Friedman N, Koller D: Being Bayesian about Network Structure: A
Bayesian Approach to Structure Discovery in Bayesian Networks.
Machine Learning 2003, 50:95-126.

14. Madigan D, York J: Bayesian graphical models for discrete data.
International Statistical Review 1995, 63:215-232.

15. Giudici P, Green P, Tarantola C: Efficient model determination for discrete
graphical models. Biometrika 2000, 86:785-801.

16. Yu J, Smith V, Wang P, Hartemink A, Jarvis E: Advances to Bayesian
Network Inference for Generating Causal Networks from Observational
Biological Data. Bioinformatics 2004, 20:3594-3603.

17. Cooper GF, Herskovits E: A Bayesian method for the induction of
probabilistic networks from data. Machine Learning 1992, 7:299-347.

18. Yang S, Chang KC: Comparison of score metrics for Bayesian network
learning. IEEE Transactions on Systems, Man and Cybernetics: Part A: Systems
and Humans 2002, 32(3):419-428.

19. Heckerman D, geiger D: Learning Bayesian networks: a unification for
discrete and gaussian domains. Proceedings of the 11th Conference on
Uncertainty in Artificial Intelligence 1995, 274-284.

20. Ripley BD: Pattern recognition and neural networks. MIT Press; 1996.
21. Chickering DM: Learning Bayesian networks is NP-complete. Learning

from data: Artificial Intelligence and Statistics V 1996, 121-130.
22. Network TCGAR: Comprehensive genomic characterization defines

human glioblastoma genes and core pathways. Nature 2008,
455(7216):1061-1068 [http://dx.doi.org/10.1038/nature07385].

23. Broom BM, Sulman EP, Do KA, Edgerton ME, Aldape KD: Bagged gene
shaving for the robust clustering of high-throughput data. IJBRA 2010,
326-343.

doi:10.1186/1471-2105-13-S13-S10
Cite this article as: Broom et al.: Model averaging strategies for
structure learning in Bayesian networks with limited data. BMC
Bioinformatics 2012 13(Suppl 13):S10.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Broom et al. BMC Bioinformatics 2012, 13(Suppl 13):S10
http://www.biomedcentral.com/1471-2105/13/S13/S10

Page 18 of 18

http://www.ncbi.nlm.nih.gov/pubmed/15284094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15284094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15284094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772890?dopt=Abstract
http://dx.doi.org/10.1038/nature07385

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Learning the structure of Bayesian networks
	Bayesian networks
	Learning Bayesian networks from data: scoring functions
	Learning Bayesian networks from data: local search algorithms
	Bootstrap and Bayesian bootstrap
	Estimating a bound on the number of bootstrap resamples

	ALARM network simulation study
	Number of bootstrap resamples required
	Effect of bagging on learning performance
	Effect of double bagging
	Effect of bias-correction strategies on model accuracy
	Effect of local scoring function
	Effect of λ for DPSM scoring function
	Effect of training set size
	Comparison to other methods

	Threshold selection using permutation testing
	INSURANCE network simulation study
	Application to biological dataset
	Conclusions and future work
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


