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Abstract

Background: Single nucleotide polymorphisms (SNPs) are locations at which the genomic
sequences of population members differ. Since these differences are known to follow patterns,
disease association studies are facilitated by identifying SNPs that allow the unique identification of
such patterns. This process, known as haplotype tagging, is formulated as a combinatorial
optimization problem and analyzed in terms of complexity and approximation properties.

Results: It is shown that the tagging problem is NP-hard but approximable within | + In((n2 - n)/
2) for n haplotypes but not approximable within (I - &) In(n/2) for any &> 0 unless NP — DTIME(n'cg
log n).

A simple, very easily implementable algorithm that exhibits the above upper bound on solution
quality is presented. This algorithm has running time O(n_2P (2m - p + 1)) < O(m(n? - n)/2) where p

< min(n, m) for n haplotypes of size m. As we show that the approximation bound is asymptotically
tight, the algorithm presented is optimal with respect to this asymptotic bound.

Conclusion: The haplotype tagging problem is hard, but approachable with a fast, practical, and
surprisingly simple algorithm that cannot be significantly improved upon on a single processor
machine. Hence, significant improvement in computatational efforts expended can only be
expected if the computational effort is distributed and done in parallel.

Background

Much of the population-wide variation of the human
genome can be attributed to single nucleotide polymor-
phisms (SNPs), which are changes in single base pairs
within the genome. SNPs are of specific interest because
they allow disease association studies; this means that the
involvement of genes in particular diseases can be studied
by the analysis of SNP alleles within these genes [1]. For

the study of population genomics, SNPs can be used to
measure linkage disequilibrium, an indication of how much
more (or less) likely, compared to chance, certain combi-
nations of neighboring SNP alleles are [2,3].

After the completion of the Human Genome Project
emphasized the importance of SNPs to study the location
of disease genes, the SNP Consortium project produced a
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genome-wide map of more than 1.4 million SNPs [4].
Due to linkage disequilibrium, the distribution of possi-
ble alleles at SNPs is not uniformly random, and some
combinations of neighboring alleles occur more often
than others. Such a combination of SNP alleles is called a
haplotype, and a given set of SNPs can give rise to a wide
variety of haplotypes.

It is an important problem to identify a subset of SNPs
within a haplotype that allows the unique identification
of all possible allele variations within a haplotype. If such
a subset can be found, a haplotype can be uniquely iden-
tified by knowing only the allele values at a few SNP posi-
tions. SNPs that satisfy this requirement are called
haplotype tagging SNPs (htSNPs).

The problem of identifying a minimal set of htSNPs is
known to be NP-hard. NP-hardness means that there cur-
rently does not exist a way of solving the problem opti-
mally with reasonable computing resources. Even though
it is strongly believed among theoretical computer scien-
tists that this state of affairs will prevail, NP-hardness does
not exclude the possibility of finding an adequate solu-
tion with a reasonable effort. The validity of this last state-
ment hinges on the definitions of the adequacy of a
solution and what constitutes reasonable effort. We will
define reasonable effort to be polynomial time computa-
bility, while adequacy will be achieved by an approxima-
tion algorithm, the solution of which is provably no
worse than a certain factor r times the optimal.

In recent years, a number of algorithms for calculating
htSNPs were developed. Due to the high computational
complexity of the problem, these algorithms were either
stochastic or, when deterministic, only applicable to hap-
lotypes with a few hundreds to thousands of SNPs. At
present, this is not a limitation, since there are few sam-
ples that contain these many SNPs. Given the speed of
progress and innovation in the biosciences it will, how-
ever, be only a matter of time until brute-force approaches
will no longer be feasible. Stochastic algorithms do not
have this limitation; due to their nature they can give only
probabilistic bounds on the results achieved. We believe
that approximation algorithms are a viable alternative to
both stochastic and brute-force approaches. The advan-
tage over the former is that the bounds on the results are
guaranteed to hold; the advantage over the latter is that
approximation algorithms can be executed in polynomial
time.

The theoretical question of how many SNPs are required
to tag a given number of haplotypes was investigated,
using Boolean algebra, by Wiuf et al. [5]. The number of
htSNPs required for association studies was investigated
by Thompson et al. [6]. Previous work on exact algorithms
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for identifying htSNPs were based on search strategies
[7,8]; a stochastic algorithm is given by Johnson et al. [9].
Wiuf et al. [5] and Bafna et al. [10] both present polyno-
mial time algorithms that find a minimum cardinality set
of SNPs for the special case that Wiuf et al. call pairwise
compatible and Bafna et al. call complete LD, i.e., the four
gamete test by Hudson and Kaplan [11] fails for any pair
of SNPs. We will in this exposition focus on the general
unrestricted case.

Results
The main results are summarized as follows.

Theorem 1 The haplotype tagging problem is NP-hard and

n’—n
approximable within 1+In(

), but NP-hard to approxi-

mate within cln(n/2) for ¢ > 0 and not approximable within (1

- &)In(n/2) for any &> 0 unless NP < DTIME(nloglogn), [f we
bound n from above by a constant g, the problem is APX-com-
plete.

We have that cIn(n/2) = Q(In n) and 1 + In((n2 - n)/2) =
O(In n), by which we can see that the approximation
bound is asymptotically tight. We present an algorithm

with running time O(%p (2m - p + 1)) where p = min(n,

m), for the MHT problem that exhibits the above approx-
imation bound. This algorithm is easily implemented, the
detailed pseudo code listing presented in this paper con-
tains only 22 lines.

A second algorithm is presented that can be seen as an
instance of a schema that lets us approach a family of hap-
lotype tagging problems including the problem of tagging
the haplotypes using a set of SNPs with minimal diameter.
This latter result addresses the problem of selecting practi-
cal "window" size bounds in approaches where such are
needed (Bafna et al. [10]).

Discussion

For 250 million samples (approximately the current pop-
ulation of the USA) the size of the set of tags returned
would be at most 39 times larger than the optimum. If we
assume that our computer is capable of doing 35 trillion
operations per second (the world's currently fastest paral-
lel supercomputer, NEC's Earth Simulator, is capable of
this), and we wish to search among 1 million SNPs, the
computation using the algorithm presented in this paper
would only take about 41 days. If we happen to know that
an optimal solution uses at most 1000 of these SNPs (28
is an absolute lower bound for 250 million samples), we
would be done in about 2 hours. Hence, to approach truly
large scale experiments, the authors believe that imple-
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mentations would likely come from the field of parallel
algorithms.

Our analysis of the minimum haplotype tagging problem
(MHT) relies on a relationship we establish to the mini-
mum set cover problem (MSC). Exploiting this relation-
ship, we can relate variants of the MSC problem to MHT.
This we can do as we describe an algorithm that trans-
forms a MHT instance into a MSC instance, solves this
instance, and transforms this solution into a solution of
the MHT problem. We can form variants of this algorithm
by substituting particular variants of the MSC algorithm
in this process. Below we list MSC variants, their known
approximation properties, and if substituted into our
algorithm schema, the corresponding resulting MHT
problem that it solves.

e Minimum Exact Cover. This problem is approximable
within 1 + In m [12] and the associated tagging problem
is to find a minimum set of SNPs such that the sets of hap-
lotype pairs each of the SNPs distinguishes are as disjoint
as possible.

¢ Maximum Coverage by at most k sets. This problem is
approximable within e/(e - 1) [13] and not approximable
withine/(e-1) - O(1) [14] fore> 1. The associated tagging
problem is the problem of discerning a maximum
number of haplotypes with at most k SNPs.

e Minimum k-redundant Coverage is the problem of cre-
ating a minimum cover such that each element is covered
at least k times. This problem is approximable within b - k
+ 1 [15] for a constant b. The associated tagging problem
is the problem of requiring each SNP in a minimum tag-
ging set to discern between at least k pairs of haplotypes.

e Minimum Diameter Coverage is the problem of finding
a cover where the greatest distance between two elements
in the cover is minimal. This problem is in general not
approximable within a constant, but approximable
within 2 if the distance measure observes the triangle ine-
quality and no better approximation is possible [16]. The
associated tagging problem is to find a tagging set of SNPs
such that the maximal pairwise distance is minimal.

e Minimum Cluster Diameter Coverage is the problem
where we assume that the cover can be partitioned into k
clusters and the objective is to minimize the greatest dis-
tance between two elements in the same cluster. This
problem is approximable within 2 for any fixed k and
upper bound of cluster size [ if the distance measure satis-
fies the triangle inequality [16]. The associated tagging
problem is to find k disjoint sets of maximally I SNPs such
that the greatest distance between two SNPs in the same
set is minimized.
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¢ Maximum Dispersion Cover is the problem of finding a
cover that maximizes the min imum pairwise distance
between elements in the cover. This problem is NP-hard
and assuming P # NP, no polynomial time approximation
with bounded error guarantee exists [16]. The correspond-
ing tagging problem is to find a set of SNPs that lets us dis-
cern between all haplotypes such that the minimum
distance between two of these SNPs is maximized. We see
that this problem is the most difficult to solve of all the
problems considered in this exposition.

All these variations can be implemented by substituting
the corresponding cover algorithm for the greedy set cover
algorithm in the MHT algorithm schema. Approximation
bounds and non-approximability results for the above
variations can be used to establish the same for the result-
ing variation of the haplotype tagging problem analo-
gously to what we do for the minimum set cover problem.

Conclusion

Although the haplotype tagging problem is hard, it can be
approached with a simple, fast and practical algorithm.
The contribution of this work is not only yet another fast
and simple algorithm for the tagging problem, but also
the proof that this algorithm delivers a solution with the
asymptotically best error bound possible.

Furthermore, the algorithm schema we present via the
connection to the minimum set cover problem is applica-
ble to not only the original problem as it is defined in our
analysis, but is applicable to a family of related problems,
which address problems presented in published research.

As the algorithms presented are asymptotically optimal
with respect to approximation bounds, meaning that
solution quality cannot be significantly improved upon in
polynomial time, efforts in tackling truly large scale prob-
lem instances should concentrate on distributing the
computational efforts in parallel.

Methods

Let H = {hy, h,,..., h,} be a set of haplotypes with associ-
ated SNP markers at positions S = {1, 2,..., m}, and let S'
be a subset of S. We define h,;[S'] to be the string consisting
of marker values of haplotype h; found at the positions in
S'. We can view H as an n x m matrix over the set of possi-
ble SNP alleles values. Assuming that they are bi-allelic, H
becomes a Boolean matrix. The problem of discerning a
set of haplotypes by a minimum cardinality set of SNPs,
alternatively the problem of predicting SNPs for a set of
haplotypes using a minimal set of SNPs, which we will
call the minimum haplotype tagging problem (MHT), can
be formulated as follows.
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Problem 1 (MHT) Let H, S and h; be as above. Find a mini-
mum cardinality set S' = S such that h;[S'] = hy[S'] implies i = j.

We now define some formal concepts and present results
that we will use in the analyses that follow.

Formal concepts
We formally define a minimization problem # as a 3-
tuple (p, s, m) where

¢ p is the polynomial time computable characteristic func-

tion of the set of problem instances Ip,

® 5(x) is the set of feasible solutions for instance x and its
characteristic function is computable in polynomial time
for any y such that |y| < O(|x|7) for some g € N,

e m is the polynomial time computable natural number
measure we wish to minimize.

In other words, the problem % is: given instance x such
that p(x) = 1, find y e s(x) such that m(y) < m(z) for any z
€ s(x). We then let m*(x) = m(y) denote the optimum
value for instance x.

The problem of deciding whether a given tuple (x, k) is in
L(P)={(xRk)|p(x) =1 Arm*(x) <k} we will call the deci-
sion problem associated with #, and, overloading nota-
tion slightly, denote by L( P ).

Let f and g be two functions, and let £, and #, be two
problems. If for all x Ip we have that f(x) e IPz and

forally e Sp, (f(x)) we have that g(x, y) e Sp, (x) we say

that the tuple (f, g) is a reduction from P, to P, .If both f
and g are computable in polynomial time, we write #; <,

%, and call (f, g) a polynomial time reduction. Note that

g is the identity on the solution for a reduction between
decision problems.

In the following, we will rely on the result that an optimi-
zation problem % as defined above is NP-hard if the
associated decision problem is NP-complete [[17], Theo-
rem 1.2], and this can be established by finding a polyno-
mial time reduction from a known NP-complete problem.

We now turn to the approximation properties of minimi-
zation problems. For instance x and solution y of minimi-
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zation problem %, we define the performance ratio of y
and the optimal to be

m(y)

Rp(x,y) = ()

and say that y € s(x) is an Rp (x, y)-approximate solution

for instance x. Let A be an algorithm that computes
A (x) e s(x) for instance x of £ . We say that A is an
approximation algorithm and A is an r(|x|)-approxima-

tion algorithm if Rp (x, A (x)) < r(]x|) for all instances x

such that s(x) # & The class of optimization problems for
which there exists a polynomial time r-approximation
algorithm where r is a constant is called APX.

Definition 1 [[17], Definition 8.3] Let P} to P, be two opti-
mization problems as defined above, and let f and g be two

functions. Let x be any instance x € 17;] and y any y €

Sp, (f(x)) and enumerate requirements on f and g as follows.

1. f(x) e I,D2 and g(x, y) € Sp, (x) are computable in polyno-

mial time,

2. 5p ()= D= sp, N EIZ

3. Rp, (f(x).y)<r= Rp (x,8(x,y)) <1+ a(r-1) for con-

stant o > 1 and constant rational v > 1.

If there exist functions f and g that fulfill requirements 1, 2,
and 3 then the tuple (f, §, @) is an AP-reduction from P to

P, and we write P <,p P, .

Using AP-reductions, we can define completeness and
hardness for classes of approximation problems analo-
gously to how we do for problem complexity classes. In
particular, a problem # is said to be APX-hard if P’ <,
P forall £’ in APX. If P itself is in APX, we say that P
is APX-complete. By transitivity of AP-reductions, given
P1 <ap P>, we have that P, is APX-hard if P is APX-
complete. We will rely on this result in the analyses that
follow.

Analysis roadmap
We will proceed in the analysis with two goals in mind.

¢ Proving NP-hardness, and
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e proving approximation bounds.

Our strategy is to "bracket" the problem of interest in a
sequence of problems. As we choose the sequence end-
points such that we know the desired properties of these,
we use reductions to propagate these results to the prob-
lems of interest.

We will prove NP-hardness of Problem 1 by reduction
from the Minimum Set Cover problem (MSC). In fact,
L(Pysc) <p L(Pynr) <, L(Pysc)- In order to prove the
approximation properties we show that the reductions
used in the NP-hardness proofs can be used to construct
AP-reductions. We show that L(Pysc) <ap Punr <ap Pusc
with @ = 1. We further show that the existence of a
bounded version of MSC that is in APX naturally leads to
the existence of APX version of MHT. Since the bounded
MSC problem is known to be APX-complete, we have that
the bounded version of MHT is APX-complete. Require-
ment 3 in Definition 1 lets us conclude that a lower
approximation bound for MSC can be used via the AP
reductions to produce a lower approximation bound for
MHT as well.

The optimization problems

The two problem formulations below are such that all
instances can be seen as an n x m binary matrix B and the
measure 1 for a feasible solution I is defined as m(I) = |I|.
Hence, in the following, the problem definitions only
consist of the specification of the function s for the
instance B.

We can reformulate the "Minimum Haplotype Tagging"
Problem 1 as follows.

Problem 2 (MHT) s(B) = {Ic {1, 2,.... m}|b;# b;= bj[I] #
blll}

The following problem is the "Minimum Hitting Set"
problem which we will use as a known starting point in
our analyses.

Problem 3 (MSC) s(B) = {I c {1, 2,..., n}|V; e {1, 2,..,
m} 2 € by>0}.

Johnson [12] presents a greedy 1 + In m-approximation
algorithm for MSC(B). Furthermore, if we bound m from
above by a constant K, the MSC problem becomes APX-

1 1
complete and approximable by Zszl 75 [18].

NP-hardness
Lemma 1 L(MSC) SPL(MHT) SPL(MSC).
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Proof: (sketch) We will in the following represent the
reduction from L(P ) to L(P”) by two polynomial time
computable functions f and g such that

(x,8(x. k) € L(P) < (f(x) k) € L(F).

L(MSC) <, L(MHT): Let the Boolean n x m matrix B be the
transposed of an instance of the MSC problem such that
s(BY) # & Note that we can represent the integers between
0 and n - 1 using a bit-string of minimal length [log, n].
Let b(i, j) denote the jth bit of this representation of the

2n,m+ log, n |

integeri, 0 <i<n. LetB'= {bl]} be the (2n) x

i=1,j=1

(m + [log, n]) matrix constructed as follows.

0 forl1<i<nl<j<m
by b(imodn,j) form<j<m+[logyn |
Yii-n);j forn<i<2n1<j<m
Then f,,;7(B) = B' is an 2n x m + [log, n] instance of the
MHT problem. We now have to show the existence of

&t Define d(i, j) ={k‘b;k # b;-k}. Note that any solu-

tion S' of the MHT problem has to contain an element of
d(i, j) for any pair i # j. From the construction of B' we can
see that any solution S' has to contain S" = {i|m <i <m +
[log, n]} and that S" is sufficient for any (i, j) such that i
mod n #j mod n. Disregarding the cases of i = j, we are left
with the cases 1 <i<n and j = 2i. For these cases we have
that d(i, 2i) = {k|b;,= 1}. We then have that S' has to con-
tain S" for (i, j) such that i mod n # j mod n, and S' has to
intersect d(i, j) = {k|b;,= 1} for 1 <i<nandj = 2i, the latter
meaning S' has to contain a solution of the MSC problem
instance Bt. Noting that the d(i, 2i) N S§" = & we see that
as |S'| = |S"| + k we have that g,,7(x, k) = k - [log, ] is the
&t We are looking for. As both f,,;;r and g, are com-
putable in polynomial time, we have the sought reduc-
tion.

L(MHT) <, L(MSC): Let the n x m matrix B be an instance
of the MHT problem. Let d(i, j) = {k|by,# by, }. Let C be the
n' x m Boolean matrix representation of C = {d(i, j) = 2|1
<i<j<n}, where n' < (n2-n)/2. Further, let f,,;o(B) = C,
and let g,,sc(x, k) = k. It is again not hard to convince one-

self that sy1(B) = sysc(fusc(B))- Then (fyse Susc) is the
sought reduction.
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As we know that L(MSC) is NP-complete we have by
Lemma 1 that L(MHT) is NP-hard. We also have that any
solution of MHT is of size at most the size of the instance
it is a solution of. This lets us conclude that there exists a
polynomial time verifier for L(MHT) languages, meaning
that L(MHT) is in NP and hence NP-complete by the
above lemma. This in turn lets us state the following the-
orem.

Theorem 2 L(MHT) is NP-complete and MHT is NP-hard.

Approximability properties

Lemma 2 Let P; and P, be two minimization problems and
let f and g be two functions that satisfy requirements 1. and 2.
from Definition 1. Let h(x) 2 0 for x e Ip, . If mep (g(x, )

= mp, (y) - h(x) for all x e Ipl and for all y e Sp, (f(x)),
then (f, g 1) is an AP-reduction from P to P, .

Proof: We only need to check the requirement

Rp, (f(x),9) ST = Rp, (x,8(x,7)) < 7.

We have that both #; and £, are minimization prob-

lems. Then,
mp,(v)  _ mp (8(x,¥)) + h(x)
mp, (f(x)) mp, (x) + h(x)
h(x)
I ()
i ()(1+ 1)
mp, (x)
Since m;;l (x) < Mp, (g(x, y) we have that
h(x) h(x)

which in turn means that

mp, (x)  mp, (8(x,7))

1+ 7}1(96)
mp, (8(x)) _
h(x)

i ()

1+

This in turn means that
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h(x
mp (g(eyy) " EENOH o)
mp () )+
i ()
__mp, ()
mp, (f(x))

We can conclude

mep, (¥) L (8(x7)) <
mp, (f(x)) mp, (x)

A similar argument can be used to prove the general case.
i.e., not only for minimization problems.

Lemma 3 MSC <,, MHT <,, MSC

Proof: Recall fy,r and f,5- constructed in the proof of
Lemma 1. We see from their construction that require-
ments 1. and 2. in Definition 1 all are met by the pairs
(vrrr 8unr) and (fyser 8usc) if we let gype(x, y) =y - S,
where S" is defined as in the discussion of the reduction
from L(MSC) to L(MHT) in the proof of Lemma 1, and

Zusclx y) =v.

Let hy;y(x) = [log, n] and let h,,4-(x) = 0. We then see that
both reductions together with the corresponding & match
the conditions of Lemma 2, which completes our proof.

The good news

le—i’l

Theorem 3 MHT is approximable within 1 + In(

).
Proof: The theorem follows from that if B is an n x m
instance of MHT, then f,,-(B) is them x n', n' < (n2- n)/2
instance of MSC. MSC is known to be approximable
within 1 + In m for n x m instances, and since we know
from Lemma 3 that we have an AP-reduction from MHT
to MSC with « = 1 we have that MHT is approximable
2
).

n —n

within 1 + In(

The bad news
Let MHT' be the version of MHT where we bound n from
above by a constant.

Theorem 4 MHT" is APX-complete.

Proof: From Lemma 3 it follows that MSC' <,, MHT' <,;,
MSC', where MSC' is the version of MSC where we bound
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m by a constant for n x m instances. From Theorem 3 it fol-
lows that MHT" is in APX, and as MSC' is known to be
APX-complete [18], the theorem follows.

Theorem 5 It is NP-hard to approximate MHT within cln(n/
2) for any constant ¢ > 0 and MHT is not approximable within
(1 - &)In(n/2) for any &> 0 unless NP < DTIME(nloglogn),

Proof: We know [19] that it is NP-hard to approximate
MSC within ¢In m for any constant ¢ > 0. We also know
[14] that MSC is not approximable within (1 - &)In(n) for
any constant £> 0 unless NP = DTIME(nloglog). From the
proof of Lemma 3, we know that MSC <,, MHT with « =
1, meaning that

TMHT(V) <r— mMPiS(g(er)) <r
myprr (f(x)) Mys (%)
If x is an m x n' instance of MSC, then f,,;;r(x) as defined
in the proof of Lemma 3 is a 2n' x (m + [log, n]) instance
of MHT. If we have a r(n)-approximation algorithm for

MHT, we have a r(2n')-approximation algorithm for MSC,
and the theorem follows.

Algorithms

We present here two polynomial time algorithms for solv-
ing the MHT problem that exhibit the approximation
bound found above. The first algorithm is based on the
transformation to the minimum set cover problem. This
allows us to guarantee the performance bounds. The sec-
ond algorithm does not compute a transformation explic-
itly, but accomplishes the same effects directly. The
second algorithm is much simpler to implement, uses sig-
nificantly less space and has the same asymptotic running
time as an optimal implementation of the first.

The advantage of the algorithm with the explicit transfor-
mation to the minimum set cover problem is that it lets us
produce algorithms for a family of haplotype tagging
problems as presented in Section.

Let B be an n x m instance of the MHT problem such that
each row is unique. The first algorithm is essentially
applying an implementation of f,,;- followed by the
application of an algorithm for the set cover problem. To
understand how this works, consider that each set in the
collection represented in matrix form by f,,s-(B) is associ-
ated with one column (representing a SNP) in B. We can
form (n2- n)/2 pairs of row indices such that their respec-
tive rows in B are different. Let each of these pairs be asso-
ciated with a unique identifier. Each set in f,,5-(B)
contains the unique identifiers of the row pairs that differ
in the associated column in B. The objective of the MHT
problem is to find a minimum number of columns
(equivalently sets in f,,4-(B)) such that they together dis-

http://www.biomedcentral.com/1471-2105/7/8

cern between all pairs of rows (cover all the unique row
pair identifiers).

Johnson's 1 + In m greedy approximation algorithm [12]
iteratively selects the set that covers the most uncovered
elements and adds it to the initially empty solution. This
is done until all elements are covered. It is well known
that a greedy algorithm for the unweighted set cover prob-
lem on the collection C can be implemented to run in

O(ZC€C|C| < O(m(n? - n)/2) time [[20], Exercise

37.3.3]. We state without proof that it is also not hard to
implement f,,,. to run within the same bounds. Hence the

promised first algorithm consisting of running the imple-
mentation of f, ;- and applying the greedy set cover algo-

rithm has running time O(ZCEC|C| < O(m(n? - n)/2)

and exhibits the promised approximation bound. We will
in the following refer to this algorithm as MHT.

The second algorithm is based on the following observa-
tion. Selecting the set that covers the most uncovered ele-
ments in the algorithm above is equivalent to selecting the
column that discerns between the most pairs of previously
undiscerned rows. Hence we can achieve the same effect
as the first algorithm by recursively partitioning the set of
rows in B by at each iteration selecting the column that
refines the partition the most. This more direct algorithm
we will call D-MHT. Pseudo code for it is given below.

The function delta(i, L) computes the number of pairs of
rows in B indexed by elements in L that can be discerned
by using column i in B, i.e., delta(i, L) = s(I - s) where s =
2 € ;b;and I = |L|. The function part(b, L) splits L into two
lists, one that contains the indices of rows in B that have a
1 in column b and one that contains the indices of rows
that have a 0 in column b. The function append(LL", LL")
appends LL" to the list LL'. Note that delta(i, L) and part(b,
L) run in O(|L|) time, and that append() runs in O(1)
time. We note that these running times can also be
achieved for the general case of B being a matrix D-
MHT(B)

(1) P«o

(2) LL « NULL

(3) Ue{1,2,..,m}
(4) insert((1, 2,.., n), LL)
(5) while |LL| <n

(6) a<«0
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(7) b0

(8) foreachi e U

9) 5«0

(10) foreach L € LL
(11) s« s +delta(i, L)
(12) ifs>a

(13) a<s

(14) bei

(15) P« P--- {b}

(16) U<« U-{b}

(17) LL'< NULL

(18) foreachL e LL
(19) LL" < part(b, L)
(20) append(LL", LL")
(21)  LL« LL'

(22) return (P)

containing natural numbers, with the size of the range of
values in each row being within n, making the D-MHT
algorithm a general partitioning algorithm useful for
among others pattern discovery.

The loop 5-21 in D-MHT is performed p = |P| times. As
one element gets added to P for each iteration of this loop,

the loop 8-14 gets executed Zle(m— i+1) =p(2m-p +
1)/2 times. As delta(i, L) is O(|L|), and LL is a partition of
n numbers, we have that loop 10-11 is >, € ;;O(|L]) =
O(n). Hencelinel1 is O(np(2m - p + 1)/2). Similarly, 20 is
O(np(2m-p + 1)/2) and 21 is O(n). It follows that the run-
ning time of the algorithm is

p
O (m—i+1)n) = O(%p(Zm—p+1))

i=1
where p = |P|. We see that p < min(n, m) by the fact that
each column chosen splits at least one element in L and
that for n elements, the maximal number of times just one
element in L can be split is n. Also, we cannot choose

http://www.biomedcentral.com/1471-2105/7/8

more than m columns. Also, O( n_2p (2m-p + 1)) is monot-

onously increasing with p < m. If m <n we have that

O(”—zp(zm —p+1)) < O(%Qm —m+1))

= O(n(m? +m)/2).

If on the other hand m > n, then we have that

O(”—zp(zm —p+1))< O(%Qm —n+1)).

Now assume that m > n > 1, and look at the ratio of the
running times of D-MHT and MHT respectively. This ratio
is given as

_ 2n(nm) - n*(n-1) __2n n

(mm)(n—1)

Again using that m > n, we see that

n?(2m—-n+1)

(n-1 m

m(n® —n)

2n_£<2n<

(n-1) m (n-1)

for n > 1. Indeed, as n — o the above approaches 2.

Now assume that 1 <m < n. Then we have that the same
ratio is

n(m’ +m) _ (nm)(m+1) _(m+1) _
(mn)(n-1) (n-1)
The ratio above is maximal when m =n, 1 whenm =n- 2,

and we see a linear increase of the reciprocal of the ratio
with the quantity n - m. Knowing that p < min(n, m) yields

m(n® —n)

2
"—2”(2m—p+1) < g =m)

We hence conclude that the direct algorithm has the same
worst case asymptotic running time as the one based on
the optimal implementation of the minimum set cover
problem. The direct algorithm is simpler to implement,
might run faster in short solution cases, and has signifi-
cantly smaller space requirements as we do not need to
construct the set cover instance. Also, it might be of inter-
est to weight SNPs. While including weights is trivial in
the D-MHT algorithm, implementing an O(mn) version of
the minimum weighted set cover problem can prove to be
a difficult task. This is because the unweighted algorithm
depends on a data structure that allows remove-max,
remove, and insert in constant time but depends on keys
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to lie in a known, finite, and small set. However, a O((mn)
In(mn)) implementation is readily available.

A third algorithm can be constructed by applying the best
suited of the two algorithms presented above. The analysis
suggests that one could choose MHT over D-MHT when-
everm>n - 2.
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