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Abstract
The higher utilization of fruits and vegetables is well known to cure human maladies 
due to the presence of bioactive components. Among these compounds, thymoqui-
none, a monoterpene and significant constituent in the essential oil of Nigella sativa L., 
has attained attention by the researchers due to their pharmacologies perspectives 
such as prevention from cancer, antidiabetic and antiobesity, prevention from oxida-
tive stress and cardioprotective disorder. Thymoquinone has been found to work as 
anticancer agent against different human and animal cancer stages including propa-
gation, migration, and invasion. Thymoquinone as phytochemical also downregulated 
the Rac1 expression, mediated the miR-34a upregulation, and increased the levels of 
miR-34a through p53, as well as also regulated the pro- and antiapoptotic genes and 
decreased the phosphorylation of NF-κB and IKKα/β. In addition, thymoquinone also 
lowered the metastasis and ERK1/2 and PI3K activities. The present review article 
has been piled by adapting narrative review method and highlights the diverse as-
pects of thymoquinone such as hepatoprotective, anti-inflammatory, and antiaging 
through various pathways, and further utilization of this compound in diet has been 
proven effective against different types of cancers.
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1  | INTRODUC TION

The higher utilization of fruits, vegetables, spices, and herbs has 
been used as practical strategy to prevent from the different 
types of human cancers and other maladies such as diabetes, 
cardiovascular disease, obesity due to the presence of bioac-
tive compounds. Among these phytochemicals, thymoquinone 
from Nigella sativa has been found to be very effective against 
various human maladies such as cancer insurgence, diabetes 
prevalence, obesity, inflammation, cardiovascular disease, and 
oxidative stress, as well as also several infectious microbial dis-
eases. It also prevents the cardiotoxicity induced by doxorubicin 
through suppression of the carcinogenesis activity, membrane 
lipid peroxidation, destruction of the Fe-NTA-induced oxida-
tive stress, and inhibition of the eicosanoid production (Farah 
& Begum, 2003; Yimer et al., 2019). Nigella sativa has attracted 
healers in ancient civilizations and researchers in recent times. 
Traditionally, it has been used in different forms to treat many 
diseases including asthma, hypertension, diabetes, inflammation, 
cough, bronchitis, headache, eczema, fever, dizziness, and influ-
enza. Experimentally, it has been demonstrated that N.  sativa 
extracts and the main constituent of their volatile oil, thymo-
quinone, possess antioxidant, anti-inflammatory, and hepato-
protective properties (Khader & Eckl, 2014). Being anticancer 
agent, it suppresses the proliferation, migration, and invasion 
stages and mediates the miR-34a upregulation through p53, 
and downregulates the Rac1 expression. Thymoquinone regu-
lates pro- and antiapoptotic genes, and reduces the NF-κB and 
IKKα/β phosphorylation and ERK1/2 and PI3K activities (Imran 
et al., 2018).

Uncoupling protein-1 (UCP-1) is the index protein of the brown 
adipose tissue. In recent study conducted by group of researchers, 
they found that thymoquinone treatment to the experimental sub-
jects, which significantly increased the serum total antioxidant ca-
pacity, caused reduction in waist circumference, body weight, and 
body mass index (Mousavi et al., 2018; Namazi et al., 2018; Tüfek 
et al., 2015).

Glucagon-like peptide-1 (GLP-1) analogs have been found to 
improve the glycemic control, while administration of streptozo-
tocin is used to induce the diabetes in experimental subjects. In di-
abetic rats, supplementation of thymoquinone by using oral route 
in dose-dependent manner exhibited elevation in plasma GLP-1 
levels by lowering the hypergaphy (Harphoush et  al.,  2019; Lee 
et al., 2019; Lee, Kim, et al., 2019). In diet-induced obesity mouse 
model, supplemented thymoquinone at the rate of 20 mg/kg BW 
per day prevented diabetic phenotype via lowering the glucose 
concentration, fasting insulins, serum cholesterol, triglycerides, 
and inflammatory markers resistin and MCP-1, improving the glu-
cose tolerance and insulin sensitivity, and enhancing the phos-
phorylated Akt level, whereas it phosphorylated SIRT-1 in skeletal 
muscle and phosphorylated SIRT-1 and AMPKα in liver (Shpetim 
et al., 2017).

2  | HE ALTH PERSPEC TIVES

2.1 | Cancer insurgence

Thymoquinone being potent anticancer agent significantly lowers 
the hypoxia-inducible factor-1α (HIF-1α) expression, inhibits interac-
tion between HSP90 and HIF-1α, and boosts HIF-1α protein degra-
dation in hypoxic cancer cells. It also suppresses the downstream 
genes of HIF-1α, exhibited alterations in concentrations of lactate, 
glucose, and ATP levels, which further linked with disturbance of an-
aerobic metabolic and induction of apoptosis (Lee, Kuo, et al., 2019; 
Lee, Kim, et al., 2019). Thymoquinone also suppresses the cancer cell 
stages and the activation of PI3K/Akt pathway in oral squamous cell 
carcinoma (Ren & Luo, 2019). Moreover, thymoquinone administra-
tion in AGS cell lines also lowers the cell propagation rate and causes 
the induction of apoptotic cell death, and downregulates the VEGF-A 
gene expression (Rashid et al., 2019). In recent silico docking study 
by Sumathi and their coworkers, apoptotic targets such as MDM2, 
Trail-R, Bak, Bax, Bcl-2, and DNA repair target PARP were effectively 
docked by thymoquinone treatment. The docking with PARP induced 
cell death, exhibited cell cycle arrest in the late apoptotic stage, and 
induced DNA damage. In addition, downregulation of PARP gene ex-
pression was also reported after thymoquinone treatment (Sumathi 
et al., 2019). In another investigation, Ndreshkjana et al. (2019) sum-
marized the anticancer effects of thymoquinone in combination with 
5-fluorouracil (5-FU) against colorectal cancer cell lines via various 
mechanisms such as (a) deregulation of gene expression, (b) elimina-
tion of CD133 + CSC population, (c) downregulation of PI3K/AKT 
and WNT/ß-catenin pathways, (d) eradication of propagated 3D 
tumor cell spheres at subtoxic doses, (e) inhibition of cell adhesion, 
and (f) reduction of transcriptional activity of ß-catenin, respectively 
(Ndreshkjana et al., 2019). Thymoquinone also downregulates the 
expressions of containing plant homeodomain (PHD) and really in-
teresting new gene (RING) finger domains 1 DNMT1,3A,3B, (UHRF1), 
HDAC1,4,9, G9A, KMT2A,B,C,D,E, and KDM1B genes in Jurkat cells 
and MDA-MB-468 cancer cell lines (Qadi et al., 2019). Multiple re-
searchers and investigators determined the potent role of thymoqui-
none in combination with cyclophosphamide by applying different 
concentrations (0.5 mM-10 μM) against Her2 + breast cancer cells 
through inhibiting the proliferation through the accumulation of 
cells in sub-G1 (5.49%) and G1 (57.72%), whereas 12% cells were 
shifted from G2/M phase. On other side, combination of both com-
pounds (0.5 mM-20 μM) showed 16.6% of arresting cells in sub-G1 
and only 3.54% cells were remained in G2/M phase. Nonetheless, 
alleviation in PI3K/Akt signaling pathway via upregulating the PTEN 
and downregulating the Akt phosphorylation, and also reduction in 
expression of cyclin D1 were observed after both compounds’ ad-
ministration in Her-2 cells (Aumeeruddy & Mahomoodally, 2019; 
Bimonte et al., 2019; Khan et al., 2019). In different human cancer 
cell lines (T98 and LnCaP) and mouse embryonic fibroblast cell lines 
(3T3), thymoquinone dose-dependently lowered the cell numbers 
and induced apoptosis via activating the caspase-9 (Kus et al., 2018). 
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A study described by the Subburayan and their colleagues found 
that human glioma cells treated with thymoquinone showed inhibi-
tion in cell growth via inducing Par-4 expression, which triggers cel-
lular senescence and prostate apoptosis response-4 (Par-4) tumor 
suppressor protein expressions. Enhancement in cellular size, G1 
phase arrest, β-galactosidase staining, and expression of senescence 
markers (p21, p53, Rb), and reduction in cyclin E, lamin B1, and cy-
clin depended kinase-2 (CDK-2) were reported after thymoquinone 
treatment (Table 1; Figures 1 and 2).

Further, overexpression of Par-4 significantly increases the 
expression of p53 and its downstream target p21, and increases 
β-galactosidase-positive cells, while siRNA/shRNA-mediated 
knockdown of Par-4 reverses the thymoquinone-induced effects 
(Subburayan et al., 2018). In glioblastoma cells, thymoquinone also 
significantly suppresses the tumorigenic processes through prolifer-
ation, invasion, migration, counteract carcinogenesis, and angiogen-
esis (Chowdhury et al., 2018; Gruber et al., 2018; Johnson-Ajinwo 
et al., 2018). Anticancer effects are improved when it was combined 
with genistein bioactive compound against thyroid cancer cells. Both 
compounds momentously lowered the vascular endothelial growth 
factor-A, cell viability, messenger RNA expression levels of human 
telomerase reverse transcriptase, and nuclear factor kappa B genes, 
and also enhanced the tensin homolog and cyclin-dependent kinase 
inhibitor 1 (p21) mRNA expression levels and active CASP-3 protein 
level (Ozturk et al., 2018).

Hatiboglu and their colleagues explored the in vitro cytotoxic ef-
fect of thymoquinone dose-dependently on B16-F10 melanoma cell 
of mice, and intracerebral melanoma in vivo enhanced the cytotoxic-
ity through inducing the apoptosis and DNA damage, enhancing the 
intracellular reactive oxygen species, suppressing the p-STAT3, and 
regulating the proapoptotic and antiapoptotic proteins (Hatiboglu 
et  al.,  2018). The significant and momentous enhancement in hip-
pocampal neurons is linked with increment in the doublecortin ex-
pression on both gene and protein levels, and reduction in caspase-3 
expression and the cleavage of poly-ADP ribose polymerase, which 
were observed after thymoquinone treatment. On other side, thy-
moquinone has not shown any affect on gene expression of syn-
aptophysin, synapsin, AKT, NGF, NF-kB, p53, and Bax, and protein 
expression of nNOS and BDNF (Beker et al., 2018). A study reported 
by Diab-Assaf et al.  (2018) supplemented thymoquinone in HTLV-
1-negative (CEM and Jurkat) malignant T lymphocytes and HTLV-
1-positive (C91-PL and HuT-102) malignant T lymphocytes, which 
prevented the proliferation, induced apoptosis, enhanced the DNA 
fragmentation, decreased Bcl-2α and TGF-α expressions, and en-
hanced p53, TGF-β1, and p21 levels (Diab-Assaf et al., 2018).

A peer group of researchers and investigators investigated the 
effect of thymoquinone with different doses (2 and 4 mg/kg) dose-
dependently against MDA-MB-231 triple negative breast cancer in 
experimental mouse via inhibiting CXCR4 expression, tumor growth, 
and tumor vascularity along with suppressing the brain, lung, and 
bone metastases. Moreover, thymoquinone also suppresses the 
NF-κB binding to the CXCR4 promoter and downregulation of 
the nuclear factor kappa-light-chain-enhancer of activated B-cell 

(NF-κB) activation (Ahmad et al., 2018; Shanmugam et  al.,  2018). 
Breast cancer cells lines (MDA-MB-231 and MCF-7) treated with 
thymoquinone to experimental subjects exhibited cell cycle arrest 
at sub-G1 phase, and induced cell death (Kommineni et al., 2019). A 
peer group of researchers (Ekinci et al., 2018; Samarghandian et al., 
2019) in another study evaluated the anticancer role of thymoqui-
none against human lung cancer cell line (A549 cells) via lowering 
the viability, inducing apoptotic cell death, enhancing the Bax/Bcl-2 
ratio, upregulating the p53 expression, and activating the caspase-3 
and caspase-9, respectively (Ekinci et  al.,  2018; Samarghandian 
et al., 2019). Similarly, thymoquinone significantly upregulated the 
p53, downregulated the Bcl2, and induced apoptosis in MCF-7 cells 
(El-Far et al., 2018). Haron and their coworkers in another study in-
vestigated that thymoquinone suppressed the growth of Hep3B at 
IC50 < 16.7 μM for 72 hr, induced cell cycle arrest at the G1 check-
point and non-phase-specific cell cycle arrest, and activated the 
caspases-3/7 (Haron et  al.,  2018). Temozolomide in combination 
with thymoquinone has synergistic cytotoxic effect on U87MG cells 
through lowering the cell invasion and matrix metalloproteinases 
2, 9 (Pazhouhi et al., 2018). In addition, clinical data have been re-
ported on in vitro studies to explore the role of thymoquinone as 
an anticancer agent. In vitro, thymoquinone in renal cell cancer lines 
(ACHN &786-O) of xenograft model markedly suppressed the met-
astatic capacity through AMPK/mTOR signaling pathway, inhibited 
the migration and invasion, induced autophagy, and suppressed the 
EMT dose-dependently (Zhang et al., 2018).

3  | ANTIDIABETIC ROLE

In recent study, thymoquinone has been found as potent antidiabetic 
agent in healthy male volunteers via decreasing the concentrations 
of the cholesterol and triglycerides, and enhancing the high-density 
lipoprotein, glucose-induced insulin secretion, and insulin sensitivity 
(Pelegrin et al., 2019). Daily administration of Nigella seed extracts 
with diverse doses, that is, 100, 200, and 400 mg/kg, by gavage to 
streptozotocin-induced diabetic rat caused improvements in athero-
genic index and reductions in serum glucose and lipids. Improvement 
in vasorelaxant responses, reduction in VCAM-1 and LOX-1 expres-
sions (vascular cells of aortic tissue), and enhancement in eNOS in 
mRNA expression level and function were reported after thymoqui-
none treatment (Abbasnezhad et al., 2019). Thymoquinone markedly 
decreased the fasting plasma glucose (FPG) and glycemic status in 
experimental volunteers (Askari et al., 2019). In another investiga-
tion, it has been reported that thymoquinone significantly prevented 
male Wistar experimental rats from streptozotocin-induced diabe-
tes via lowering blood glucose level, and increasing insulin levels, 
and catalase and GSH activities. Furthermore, thymoquinone also 
enhanced the mean pancreatic islet diameter, and percentage of 
insulin immunoreactive parts, which improved the histopathologi-
cal picture and hepatic glycogen contents (Abdelrazek et al., 2018). 
Safhi et al. (2019) investigated the effect of thymoquinone alone 
and combination of thymoquinone + fluoxetine in depressive type 2 
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TA B L E  1   Health-endorsing perspectives of thymoquinone

Disorders Mechanisms References

Anticancer Lowered the hypoxia-inducible factor-1α (HIF-1α) expression, suppressed the 
interaction between HSP90 and HIF-1α, and inhibited the downstream genes of 
HIF-1α

Altered the lactate, glucose, and ATP levels

Lee, Kuo, et al. (2019), Lee, Kim, 
et al. (2019)

Suppressed the activation of PI3K/Akt pathway Ren and Luo (2019)

Decreased the cell propagation rate and induced apoptotic cell death
Downregulated the VEGF-A gene expression

Rashid et al. (2019)

Docked apoptotic targets such as Bak, Bax, MDM2, Bcl-2, Trail-R, and DNA repair 
target PARP

Exhibited cell cycle arrest in the late apoptotic stage
Downregulated the PARP gene expression

Sumathi et al. (2019)

Alleviated PI3K/Akt signaling pathway
Upregulated the PTEN expression
Downregulated the Akt phosphorylation
Lowered the expression of cyclin D1

Aumeeruddy and 
Mahomoodally (2019), 
Bimonte et al. (2019), Khan 
et al. (2019)

Reduced the cell numbers and induced apoptosis via activating the caspase-9 Kus et al. (2018)

Lowered the vascular endothelial growth factor-A, cell viability, messenger RNA 
expression levels of human telomerase reverse transcriptase, nuclear factor kappa B 
genes

Increased the tensin homolog and cyclin-dependent kinase inhibitor 1 (p21) mRNA 
expression levels and active CASP-3 protein level

Ozturk et al. (2018)

Anti-diabetic Lowered the concentrations of the triglycerides, low-density lipoprotein, cholesterol
Enhanced high-density lipoprotein, glucose-induced insulin secretion, and insulin 

sensitivity

Pelegrin et al. (2019)

Improved the vasorelaxant responses of aortic rings to Ach. Increased eNOS in mRNA 
expression level and function, but lowered VCAM-1 and LOX-1 expressions

Abbasnezhad et al. (2019)

Lowered fasting plasma glucose and glycemic status Askari et al. (2019)

Lowered blood glucose level and increased insulin levels, catalase, and GSH activities
Improved the histopathological picture and hepatic glycogen contents

Abdelrazek et al. (2018)

Lowered glucose concentrations and glycated hemoglobin Rani et al. (2018)

Oxidative stress Reduced the concentrations of alanine transaminase, total bilirubin, aspartate 
transaminase, and total protein

Decreased the expression of iNOS and caspase 3 proteins
Enhanced the thioredoxin protein expression

Atteya et al. (2015)

Lowered the butyrylcholinesterase, alkaline phosphatase concentrations, and lipid 
peroxidation

Enhanced the total antioxidant capacity and total thiol molecule

Hassanein and El-Amir (2018), 
Nili-Ahmadabadi et al. (2018)

Lowered nitric oxide, p53, and Bax expressions
Increased Bcl2 mRNA expression (heart tissue) and total antioxidant capacity

Jalili et al. (2018)

Enhanced the concentrations of antioxidant enzymes such as superoxide dismutase 
and glutathione peroxidase

Increased activation of Nrf2/heme oxygenase 1 (HO-1) signaling pathway

Hu et al. (2019)

Antiobesity Elevated plasma GLP-1 levels by lowering the hypergaphy Harphoush et al. (2019), Lee, 
Kuo, et al. (2019), Lee, Kim, 
et al. (2019)

Anti-inflammatory Reduced the escape latency time and the time spent in the target quadrant
Lowered the mRNA expression of IL-1β, IL-6, monocyte chemoattractant protein-1, 

and cyclooxygenase-2

Guan et al. (2018)

Lowered serum IL-1β level and oxidative stress index, and enhanced the total 
antioxidant capacity.

Dur et al. (2016)

Lowered the nuclear factor kappa-light-chain-enhancer of activated B cells, inducible 
nitric oxide synthase expressions, and tumor necrosis factor-alpha levels

Enhanced the concentrations of glutathione peroxidase activity, glutathione 
peroxidase activity, and total antioxidant status

Zeren et al. (2016)

(Continues)



1796  |     BUTT et al.

diabetic rats. Similarly, momentous reduction in immobility time, in-
creased latency to immobility, glucose concentrations, enhancement 
in locomotor activity, and reduction in antioxidant enzymes, TBARS, 
and restoration of GSH activities were reported after thymoquinone 
treatment. Thymoquinone in combination with fluoxetine considera-
bly decreased the inflammatory marker (IL-6, IL-1β, and TNF-α) levels 
(Safhi et al., 2019). It also has been established that different doses 
of thymoquinone, that is, 20, 40, and 80 mg/kg metformin (150 mg/
kg), and their nanoformulations (20, 40, and 80 mg/kg for thymoqui-
none and 80 mg/kg for metformin) induced to diabetic experimental 

rats lowered glucose concentrations and glycated hemoglobin dose-
dependently (Rani et  al., 2018). Atta et  al.  (2018) determined that 
thymoquinone at 50 mg/kg BW for 12 weeks administrated to dia-
betic Wistar male rats induced by intraperitoneal infusion of strep-
tozotocin, 65 mg/kg through stomach gavage, prevented them from 
the diabetes-caused cardiac complications via declining the plasma 
nitric oxide level and enhancing superoxide dismutase antioxidant 
enzyme. It also downregulated the expression of cardiac-inducible 
nitric oxide synthase, and upregulated the erythropoietin genes, nu-
clear factor-erythroid-2-related factor 2 (Nrf2) protein, and vascular 

Disorders Mechanisms References

Cardioprotective Reduced the infarct size, cardiac lactate dehydrogenase (LDH), and creatine 
kinase-MB (CK-MB) levels

Xiao et al. (2018)

Enhanced the levels of p53 and Bax Sezen et al. (2018)

Lowered the congestion, edema, and pycnotic nuclei
Increased the expression of antiapoptotic protein Bcl-2

Adalı et al. (2016)

Inhibited angiotensin II (Ang II)-induced VSMCs' cell cycle progression, cyclin D1 
expression

Altered p21 expression and reduced MMP-9 expression, ROS production, and NADPH 
oxidase activity

Restored Ang II-inhibited expression of p-AMPK, PPARγ, and peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α) proteins

Pei et al. (2016).

Hepatoprotective Prevented from the elevation in liver enzymes
Enhanced the concentrations of superoxide dismutase levels and ameliorated the 

histopathological alterations

Noorbakhsh et al. (2018), 
Tekbas et al. (2018), Zeinvand-
Lorestani et al. (2018)

Lowered the concentrations of AST, ALT, ALP, and TBARs. Sayeed et al. (2017)

Decreased the myeloperoxidase (MPO) activities, malondialdehyde (MDA) level, and 
NO production

Upregulated eNOS and downregulated iNOS and NOSTRIN expressions

Abd-Elbaset et al. (2017)

Enhanced total antioxidant capacity, reduced hepatic TNF-α, increased IL-10, lowered 
BAX protein, and enhanced Bcl /expression

Awad et al. (2016)

Neuroprotective Enhanced the expression of 4 antioxidant, neuroprotective proteins: biliverdin 
reductase A, glutaredoxin-3, mitochondrial ion protease, and 3-mercaptopyruvate 
sulfurtransferase

Decreased the expression of inflammatory cytokines, IL-6, IL-2, IL-4, IL-10, and IL-17a
Downregulated the chemokine (CC motif) ligand 3 (CXCL3), chemokine (CC) motif 

ligand 5 (CCL5), and complement factor B (CFB)

Cobourne-Duval et al. (2018)

Induced apoptotic cell death and Aβ formation Cascella et al. (2018), 
Farkhondeh et al. (2018), 
Fouad et al. (2018)

Decreased intracellular ROS generation, mitochondrial dysfunction, and apoptotic 
events

Lowered mitochondrial membrane potential (Δψm)

Firdaus et al. (2018)

Prevented rotenone-induced motor defects and changes in the Parkin, dynamin-
related protein-1 (Drp1), dopamine, and TH levels in the substantia nigra (SN) and 
striatum (ST) of dopaminergic areas

Ebrahimi et al. (2017)

Reproductive Reproductive toxicity of male rats induced by cadmium chloride (CdCl2) but 
ameliorated the deleterious effects of CdCl2 probably by activating testicular 
endocrine and antioxidant systems

Parhizkar et al. (2016), Sayed 
et al. (2014)

Improved sperm quality, testicular histology and oxidative/antioxidative status, and 
serum levels of LH, testosterone, and E2.

Hassan et al. (2019)

Lowered the nitric oxide level, enhanced the motility (total motility and progressive 
motility), germinal thickness, morphology, count, viability of sperm cells, and 
testosterone hormone

Miah et al. (2018), Salahshoor 
et al. (2018)

TA B L E  1   (Continued)
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F I G U R E  1   Thymoquinone and its derivatives
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F I G U R E  2   Scheme of anticancer potential of thymoquinone (modified from Khan et al., 2017)
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endothelial growth factor. It also showed inhibition on C-reactive 
protein, E-selectin level, and interleukin-6 along with normalized 
plasma cardiac markers (creatine kinase and troponin), respectively 
(Atta et  al.,  2018; Ozer et  al.,  2018). Likewise, thymoquinone also 
prevented mature male Wistar rats from streptozotocin-induced 
diabetes via decreasing blood glucose concentrations and enhancing 
the insulin level (Abdelrazek et al., 2018). In another investigation 
performed by Safhi et al. (2019), significant reduction in blood glu-
cose level, TBARS level, inflammatory marker (IL-1β, IL-6, and TNF-α) 
levels, and immobility time, and enhancement in concentrations of 
antioxidant enzymes, latency to immobility, and locomotor activity 
were reported in depressive type 2 diabetic rats after thymoquinone 
treatment (Safhi et al., 2019). Different researchers and investigators 
explored the potential role of thymoquinone, metformin, and their 
nanoformulations against the streptozotocin–nicotinamide-induced 
diabetic rats by applying different doses (20, 40, and 80  mg/kg), 
(150 mg/kg) and their nanoformulations (20, 40, and 80 mg/kg for 
thymoquinone and 80  mg/kg for metformin) via lowering glucose 
level and glycated hemoglobin (Negi et al., 2018; Rani et al., 2018). 
Multiple mechanisms are involved in antidiabetic role of thymoqui-
none (30 mg kg−1 day−1) against experimental subjects such as reduc-
tion in levels of glucose, glycosylated hemoglobin levels, urea and 
creatinine, NF-κB levels, and liver enzyme concentrations (aspartate 
aminotransferase, alanine aminotransferase, and gamma-glutamyl 
transpeptidase activities), respectively (Usta & Dede, 2017). In an-
other findings, obesity was induced through diet and enhanced the 
blood glucose and insulin levels, decreased the insulin sensitivity, en-
hanced the cholesterol and triglyceride concentrations, lowered the 
protein expression of phosphorylated Akt, and increased NADH/
NAD + ratio and serum levels of inflammatory markers MCP-1, and 
resistin. Obesity is further accompanied by reduction in phosphoryl-
ated SIRT-1 in skeletal muscle, phosphorylated SIRT-1, and AMPKα 
in liver. Supplementation of thymoquinone (20 mg kg−1 bw−1 day−1) 
bioactive compounds to obese rats reverted these changes in the 
experimental rats (Karandrea et al., 2017). In adult male Wistar rats, 
diabetes was induced by streptozotocin, while orally supplemented 
thymoquinone (35 mg kg−1 day−1) to the experimental subjects ex-
hibited improvement in the glucose–insulin homeostasis-related pa-
rameters, lipid profile parameters, integrity of pancreatic islets, and 
hepato-renal functional and histomorphological statuses and en-
hanced the upregulated survivin, insulin-producing β cells, endothe-
lial cluster of differentiation 31, vascular endothelial growth factor, 
total glutathione, interleukin-10 (IL-10), and superoxide dismutase. 
Additionally, thymoquinone in the pancreatic tissues of STZ diabetic 
rats also downregulates the IL-1β, caspase-3, and TBARS levels (El-
Shemi et al., 2018).

3.1 | Oxidative stress

Acetaminophen (APAP) has been found to induce hepatotoxicity via 
depleting the concentration of glutathione enzyme, which further 
led to lipid peroxidation and subsequent liver injury. Thymoquinone 

in combination with curcumin prevented rats from liver injury 
through lowering the concentrations of alanine transaminase, total 
bilirubin, aspartate transaminase, and total protein. Additionally, re-
duction in iNOS and caspase 3 protein expressions and increment in 
the thioredoxin protein expression were also reported (Atteya et al., 
2015). Intraperitoneal administration of diazinon (16  mg/kg) sub-
jected to experimental subjects significantly showed enhancement 
in concentration of butyrylcholinesterase, alkaline phosphatase, 
alanine aminotransferase, nitric oxide, aspartate aminotransferase, 
lipid peroxidation, and (ALP), and also depleted the total antioxidant 
capacity and total thiol molecule (Nili-Ahmadabadi et al., 2018). In 
human retinal pigment epithelium (RPE) cells, induction of oxidative 
stress by hydrogen peroxide promotes the age-related macular de-
generation, whereas administration of thymoquinone was found to 
improve the cell viability, induce apoptosis, lower reactive oxygen 
species and malondialdehyde, and also increase the concentrations 
of glutathione peroxidase and superoxide dismutase along with en-
hancement in activation of Nrf2/heme oxygenase 1 (HO-1) signaling 
pathway (Hu et al., 2019) . Thymoquinone works as potent antioxi-
dant via decreasing the concentration of production of peroxides, 
alanine aminotransferase, and aspartate aminotransferase enzymes 
(Hassanein & El-Amir, 2018) . Jalili and their coworkers in previous 
investigations found that thymoquinone in combination with mor-
phine treated with experimental animals markedly caused reduction 
in nitric oxide, p53, and Bax expressions, and enhancement in Bcl2 
mRNA expression (heart tissue) and total antioxidant capacity (Jalili 
et al., 2018).

In experimental subjects, intraperitoneal administration of thy-
moquinone at the rate of 10  mg/kg significantly prevented those 
from the oxidative damage via enhancing the levels of antioxi-
dant enzymes such as superoxide dismutase and catalase activity 
(Zeinvand-Lorestani et  al.,  2018). Similarly, fipronil (10  mg/kg bw) 
treated with male Wistar rats considerably increased the concen-
tration of aspartate transferase, γ-glutamyl transferase, uric acid, 
urea, creatinine, lactate dehydrogenase, alanine transferase, and 
alkaline phosphatase, as well as also reduced the glutathione per-
oxidase, superoxide dismutase, and catalase enzymes in the renal, 
hepatic, and brain tissues. On other side, thymoquinone (10  mg/
kg bw) supplied to these rats reverted these changes (Abdel-Daim 
et al., 2018). Cardiotoxicity induced by intraperitoneal administra-
tion of doxorubicin (15 mg/kg) enhanced the creatinine kinase-MB, 
lactate dehydrogenase, and aspartate aminotransferase, whereas 
orally administrated thymoquinone with different doses at 10 and 
20  mg/kg BW caused momentous reductions in lactate dehydro-
genase, creatinine kinase-MB, aspartate aminotransferase, and in-
flammatory cytokine (IL-2), as well as also increased the antioxidant 
enzyme concentrations (Alam et  al.,  2018). Multiple investigations 
by different researchers also determined hepatoprotective role of 
thymoquinone in male Wistar rats. They investigated that thymo-
quinone (30  mg/kg) to male Wistar rats suppressed the expres-
sion of apoptotic effectors, lowered the ALT level, and attenuated 
endoplasmic reticulum stress parameters (Bouhlel et al., 2018; 
Cascella et  al.,  2018). Intraperitoneally supplemented aluminum 
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trichloride (10 mg kg−1 day−1) and D-galactose (60 mg kg−1 day−1) to 
experimental rats induced neurobehavioral and neuropathological 
alterations, whereas intragastrically administrated thymoquinone 
(20  mg  kg−1  day−1) improved cognition, increased antioxidant en-
zymes level and B-cell lymphoma-2 levels, and decreased the ace-
tylcholinesterase activities and nitric oxide in whole brain (Abulfadl 
et al., 2018). A study described by Chen and their followers explored 
the preventive role of thymoquinone by applying the intragastric 
administration (30 mg/kg) against spinal cord injury in rats through 
enhancing the Basso, Bresnahan, and Beattie score, lowering the 
water contents, tumor necrosis factor α, IL-6 and IL-18, interleukin 
(IL)-1β, and oxidative stress, inhibiting the COX-2 protein expression 
and prostaglandin E2 activity, and activating the PI3K, PPAR-γ, and 
p-Akt protein expression (Chen et al., 2018).

During partial hepatectomy, thymoquinone at the rate of 30 mg/
kg treated with rats prevented those from ischemia/reperfusion 
via reducing the alanine aminotransferase, increasing antioxidant 
enzymes, attenuating the endoplasmic reticulum stress parame-
ters, and repressing the expression of apoptotic effectors along 
with improving the mitochondrial function (Bouhlel et al., 2018). 
Similarly, Meral has determined that intraperitoneal (i.p.) injection 
of thymoquinone at 10  mg/kg momentously caused reductions in 
expression of miR-206b-3p, oxidative stress, and necrosis in the liver 
tissue in Ehrlich acid solid tumor model-induced male BALB/c mice 
(Meral et al., 2018). Atorvastatin is used to induce hepatic injury in 
male Sprague Dawley rats, which is linked with reduction in liver 
enzymes, protein carbonylation, malondialdehyde lipid peroxidation 
marker, and caspase 3 activity enhancement in reduced glutathione 
and catalase (Hassan et al., 2018). Supplementation of doxorubicin 
(15 mg/kg, i.p.) enhanced the serum enzyme marker, that is, creati-
nine kinase-MB, lactate dehydrogenase, and caused enhancement in 
oxidative stress marker lipid peroxidation, aspartate aminotransfer-
ase along with reductions in antioxidant enzymes, and enhancement 
in inflammatory cytokine (IL-2) while thymoquinone (20 mg/kg b/w, 
p.o.) reverted these changes (Alam et al., 2018).

4  | ANTI- INFL AMMATORY ROLE

Cerebral small vessel disease is covering a variety of abnormality-
related small blood vessels that degrade the cognition, which further 
leads to stroke. Thymoquinone phytochemical is working as an anti-
inflammatory agent and prevented spontaneous hypertensive rats 
from the cerebral small vessel disease through various mechanisms 
such as reduction in systolic blood pressure, escape latency time, and 
the time spent. It also significantly increased along with momentous 
reduction in mRNA expression of IL-6, monocyte chemoattractant 
protein-1, IL-1β, and cyclooxygenase-2 in brain of spontaneous hy-
pertensive rats. Moreover, thymoquinone significantly enhanced the 
concentrations of antioxidant enzymes, and lowered the MDA level 
(Guan et al., 2018). Thymoquinone has anti-inflammatory effects on 
cerulein-induced acute pancreatitis of male Wistar albino rats via de-
creasing serum IL-1β level and oxidative stress index, and enhancing 

the total antioxidant capacity (Dur et al., 2016). Induction of acetyl-
salicylic acid to male Wistar Albino rats caused gastric ulcers and 
enhanced the inducible nitric oxide synthase expressions, nuclear 
factor kappa-light-chain-enhancer of activated B cells, and tumor 
necrosis factor-alpha levels along with reductions in antioxidant en-
zymes. On other side, administration of thymoquinone to experimen-
tal subjects reverted these changes (Zeren et al., 2016). A group of 
researchers and investigators (Amin & Hosseinzadeh, 2016; Boudiaf 
et al., 2016) found that thymoquinone exhibited suppression in the 
fMLF-induced superoxide production and granule exocytosis in neu-
trophils, attenuation in specific and azurophilic granule exocytosis in 
fMLF-stimulated neutrophils, reduction in cell surface expression of 
gp91(PHOX) and CD11b, impaired the phosphorylation on Ser-304 
and Ser-328 of p47(PHOX), and release of myeloperoxidase (Amin & 
Hosseinzadeh, 2016; Boudiaf et al., 2016). A study found that thy-
moquinone treated with lipopolysaccharide (LPS)-stimulated BV-2 
murine microglia cells lowered NO2(−) with an IC50 of 5.04  μM, 
pro-inflammatory cytokines IL-6, IL-12p40/70, CCL2/MCP-1, 
CCL12/MCP-5, and G-CSF, and attenuated MCP-5 and MCP-1 pro-
tein (10 μM) (Taka et al., 2015). During macrophage process, TNF-α 
promotes the rheumatoid arthritis while supplementation of thy-
moquinone (1-5  μM) significantly suppressed the IL-8 production, 
TNF-α-induced IL-6 and VCAM-1, ICAM-1, and cadherin-11 (Cad-11) 
expression. Further, it also suppresses the phospho-JNK expression, 
TNF-α-induced phospho-p38, and apoptosis-regulated signaling ki-
nase 1 (ASK1) (Faisal et al., 2015; Umar et al., 2015). Wang and their 
colleagues determined the preventive dose-dependent role of thy-
moquinone against LPS-stimulated BV2 microglial cells via inhibiting 
IL-1β, TNF-α, NO, and PGE2 production, and suppressing the NF-κB 
activation, and PI3K and Akt phosphorylation (Wang et al., 2015). 
When thymoquinone is applied to pancreatitis male Wistar rats, it 
influenced the apoptosis-associated speck-like protein (ASC) com-
plex of NOD-like receptor pyrin domain-containing 3 (NLRP3) ex-
pression, and received momentous reduction in the serum lipase (L)/
amylase (A) ratio and oxidative stress, and enhancement in mRNA 
expression of IL-18, IL-1β, and TNF-α in antioxidant enzymes. In 
addition, thymoquinone also lowered the upregulation of mRNA 
and the protein expression of ASC and caspase-1 (Periyanayagam 
et  al.,  2015). Likewise, thymoquinone exerts anti-inflammatory af-
fect on acute bacterial prostatitis (ABP) induced by pseudomonas 
aeruginosa in experimental subjects via decreasing the concentra-
tions of prostate tissue MDA and NO levels, and enhancing the lev-
els of antioxidant enzymes (Alemi et al., 2013; Rifaioglu et al., 2013).

5  | C ARDIOVA SCUL AR ROLE

In Langendorff-perfused rat hearts, thymoquinone has significant 
impact on myocardial ischemia/reperfusion (I/R) injury through low-
ering infarct size, creatine kinase-MB levels, and cardiac lactate de-
hydrogenase, promoting autophagy, improving cardiac function, and 
suppressing enedoxidative stress and apoptosis (Xiao et al., 2018). 
Moreover, thymoquinone also prevents Wistar albino rats from the 
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myocardial ischemia/reperfusion via enhancing the levels of p53 
and Bax (Sezen et al., 2018). Adli and their coworkers investigated 
that supplementation of thymoquinone (40 mg kg−1 day−1) to adult 
male Wistar Albino rats prevented rats from the cisplatin (15 mg/
kg dose)-induced myocardial injury, which further caused reduction 
in edema, congestion, and pycnotic nuclei in myocardial fibers, and 
enhancement in antiapoptotic protein Bcl-2 level (Adalı et al., 2016). 
Diabetes and their associated diseases are linked with the propa-
gation of vascular smooth muscle cells, whereas thymoquinone 
dose-dependently prevented rats from these complications through 
multiple mechanisms such as inhibition of cyclin D1 expression, an-
giotensin II (Ang II)-induced VSMCs' cell cycle progression, alteration 
in p21 expression, reduction in MMP-9 expression, ROS produc-
tion, and NADPH oxidase activity, and enhancement in superoxide 
dismutase activity. Restoration of Ang II-inhibited expression of p-
AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α 
proteins, and PPARγ were reported dose-dependently after thy-
moquinone treatment (Pei et al., 2016). Detremmerie et al. (2016) 
investigated the role of thymoquinone in isolated arteries by caus-
ing the endothelium-dependent augmentation of contractions and 
augmenting the production of cIMP (Detremmerie et  al.,  2016). 
Thymoquinone also prevented Wistar rats induced by isoproter-
enol (125 mg/kg) by applying the different oral doses such as 12.5, 
25, and 50 mg/kg through multiple mechanisms such as enhance-
ment in SOD and myocardial ratio and reduction in lactate dehy-
drogenase and thiobarbituric acid levels from the myocardial injury 
(Ahmad & Beg,  2013; Randhawa et  al.,  2013; Tufail et  al.,  2020). 
Cyclophosphamide is used to induce cardiotoxicity in experimental 
subjects by enhancing the concentrations of serum lactate dehy-
drogenase, urea, cholesterol, triglycerides, creatine kinase, creati-
nine, tumor necrosis factor-α, total nitrate, and thiobarbituric acid 
reactive substances. It also reduced the glutathione, glutathione 
peroxidase, catalase, and adenosine triphosphate levels. On other 
side, thymoquinone at the rate of 50 mg/L in drinking water to ex-
perimental subjects reverted these changes (Nader et al., 2010; Nagi 
et al., 2011). Similarly, thymoquinone treated with rats with reper-
fusion injury showed momentous improvements in left ventricular 
function, attenuation in mitochondrial oxidative damage, reduction 
in myocardial infarct size and lactate dehydrogenase, enhancement 
in antioxidant enzymes, reduction in number of apoptotic cardio-
myocytes, suppression of p53 acetylation, enhancement of mito-
chondrial function, upregulation of SIRT1 level, and reduction in 
production of H2O2, respectively (Lu et al., 2018). A study conducted 
by Gonca and Kurt showed that intraperitoneal supplementation of 
thymoquinone (10 mg/kg) to anesthetized rats prevented rats from 
the myocardial ischemia and ischemia- and reperfusion-induced 
ventricular arrhythmias via multiple pathways such as reduction in 
infarct size, arrhythmia scores, and incidence of ventricular tachy-
cardia and ventricular fibrillation (Gonca & Kurt, 2015).

The supplementation of thymoquinone at the rate of 
10  mg  kg−1  day−1 in the drinking water normalized the levels of 
SK(Ca), eNOS, the components of the angiotensin system, and 
IK(Ca), and restoration of EDHF-mediated relaxations and NO− in 

the mesenteric artery of middle-aged rats (Idris-Khodja & Schini-
Kerth, 2012). Thymoquinone phytochemical is also capable of low-
ering the aortic MDA and attenuating the atherogenesis in a rabbit 
model of atherosclerosis (Ragheb et al., 2011). Thymoquinone also 
decreases the oxidized low-density lipoprotein receptor-1 (LOX-1) 
gene, protein expression, macrophages and pro-inflammatory cy-
tokine level in apolipoprotein E knockout (ApoE−/−) male mice (Xu 
et al., 2018). In earlier study conducted by Lu and their colleagues, 
thymoquinone showed significant impact on rat hearts and neona-
tal rat (myocardial ischemia injury) caused momentous improvement 
in left ventricular function, reduction in myocardial infarct size, lac-
tate dehydrogenase production, elevation of antioxidant enzymes, 
inhibition of p53 acetylation, enhancement of mitochondrial func-
tion, upregulation of SIRT1 expression, and reduction in number of 
apoptotic cardiomyocytes (Lu et al., 2018). Moreover, thymoquinone 
(0.2 ml/kg) in combination prevented experimental rats (Wistar al-
bino) after myocardial ischemia from the lung injury and lowered the 
levels of p53 and Bax (Sezen et al., 2018).

6  | HEPATOPROTEC TIVE ROLE

Thymoquinone exerted protective effect on paraquat-induced 
hepatotoxicity in adult male mice. Supplementation of 20  mg/kg 
thymoquinone prevented rats from the elevation in liver enzymes, 
enhanced the concentrations of superoxide dismutase levels, and 
ameliorated the histopathological alterations induced by paraquat 
(Noorbakhsh et al., 2018Tekbas et  al.,  2018; Zeinvand-Lorestani 
et al., 2018). It also significantly lowers the concentrations of AST, 
ALT, ALP, and TBARs (Abd-Elbaset et al., 2017; Sayeed et al., 2017). 
Likewise, thymoquinone formulated in liposome prevented experi-
mental subjects from the cyclophosphamide-induced liver toxicity 
and higher serum bilirubin concentration (Laskar et al., 2016). In non-
alcoholic steatohepatitis (NAFLD) liver of rats, thymoquinone (10, 
20 mg/kg) lowered the MDA level, enhanced total antioxidant ca-
pacity, reduced hepatic TNF-α, increased IL10, lowered BAX protein, 
and enhanced Bcl expression (Awad et al., 2016). Elevation in liver 
enzymes such as aspartate aminotransferase, alanine aminotrans-
ferase, lactate dehydrogenase, total bilirubin, alkaline phosphatase, 
and gamma-glutamyltransferase was reported in female rats after 
inducing the hepatotoxicity by tamoxifen. It also used to prevent rats 
from the lipid peroxidation and leakage of antioxidant enzymes, and 
enhance the tumor necrosis factor-alpha in the liver, whereas thymo-
quinone supplementation (50  mg/kg/BW) reverted these changes 
(Suddek,  2014). Induction of carbon tetrachloride to experimental 
rats caused momentous elevation in alanine aminotransferase ac-
tivity, reductions in glutathione concentrations, reductions in the 
NAD(P)H-quinone oxidoreductase activities and messenger RNA 
(mRNA) levels of glutathione S-transferase and microsomal epoxide 
hydrolase, and reduction in the glutathione and cysteine levels. On 
other side, thymoquinone application in corn oil (5 mg/kg) reverted 
these changes (El-Sayed, 2011; Erdemli et al., 2018). It also enhances 
the antioxidant enzyme levels (superoxide dismutase, glutathione 
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level, catalase, glutathione peroxidase, and glutathione reductase) 
in liver tissues in experimental subjects (Mabrouk, 2017). In Wistar 
rats, thymoquinone application (500  mg  kg−1  day−1) provides pro-
tection against intraperitoneally administrated cisplatin (12  mg/
kg/body weight)-induced hepatotoxicity via enhancing the antioxi-
dant enzyme activities, that is, reduced glutathione contents, and 
decreasing MDA, TNF-α, iNOS, and IL-1β (Al-Malki & Sayed, 2014). 
Zafeer and their coworkers investigated the role of thymoquinone 
(10  μM) by providing the protection against the cadmium-induced 
oxidative stress in the liver of Swiss albino rats through attenuating 
the protein oxidation and rejuvenating the depleted antioxidants of 
cellular fraction (Zafeer et  al.,  2012). Similarly, aflatoxin in experi-
mental subjects also known to induce hepatotoxicity via enhancing 
the concentrations of liver enzymes, that is, ALT, ALP, and AST along 
with malondialdehyde levels, and reduce the glutathione concen-
trations, whereas thymoquinone administration to mouse reverted 
these changes (Nili-Ahmadabadi et al., 2011). In addition, intraperi-
toneal supplementation of acetaminophen (500 mg/kg) significantly 
increased the concentrations of hepatic lipid peroxides, total nitrate/
nitrite, and serum ALT, and lowered the hepatic reduced glutathione 
and adenosine triphosphate in a time-dependent manner. On other 
side, different doses of thymoquinone (0.5, 1, and 2 mg kg day−1) to 
experimental mouse provide prevention against acetaminophen-
induced hepatotoxicity dose- and time-dependently via lowering the 
serum alanine aminotransferase activities (Nagi et al., 2010).

7  | NEUROPROTEC TIVE ROLE

Traumatic brain injury and microglial activation are pathological mark-
ers that lead to several neural disorders, that is, Alzheimer's disease 
and Parkinson's disease. Higher concentrations of free radicals and 
pro-inflammatory cytokines are released during the chronic activa-
tion of microglia. Thymoquinone (12.5 μM for 24 hr) phytochemical 
work as preventive agent when treated with interferon-gamma (IFN-
γ)-activated BV-2 microglial cells and lipopolysaccharide (LPS) by mo-
mentously enhancing the expression of 4 antioxidant, neuroprotective 
proteins: glutaredoxin-3, biliverdin reductase A, 3-mercaptopyruvate 
sulfurtransferase, and mitochondrial ion protease, as well as also low-
ering the expression of inflammatory cytokines, IL-6, IL-2, IL-4, IL-10, 
and IL-17a, respectively. Additionally, thymoquinone also downregu-
lated the chemokine (CC) motif ligand 5, chemokine (CC motif) ligand 
3, and complement factor B (CFB) (Cobourne-Duval et al., 2018).

Thymoquinone has protective role on arsenic (10  mg/kg/body 
weight; p.o.)-induced toxicity in hippocampi of Wistar rats. It mo-
mentously decreased the mitochondrial dysfunction, mitochondrial 
membrane potential (Δψm), intracellular ROS generation, and apop-
totic events (Firdaus et al., 2018). Different researchers and investi-
gators found that different doses of thymoquinone at the rate of 2.5 
and 10 mg/kg in rats exhibited neuromodulatory effect via inducing 
apoptotic cell death and Aβ formation resulting from glutamate ad-
ministration (Cascella et al., 2018; Farkhondeh et al., 2018; Fouad 
et al., 2018). Thymoquinone also prevents rats from the progression 

of Parkinson's disease induced by rotenone. The supplementation of 
thymoquinone at the rate of 7.5 and 15 mg kg day−1, po, in male Wistar 
rats prevented rotenone-induced motor defects and caused changes 
in the dynamin-related protein-1, parkin, dopamine, and TH levels in 
the striatum and substantia nigra of dopaminergic areas (Ebrahimi 
et al., 2017). Similarly, encapsulated thymoquinone in polylactic co-
glycolic acid chitosan nanoparticles considerably enhanced the lo-
comotor activity and grip strength and lowered the ischemia infarct 
volume in the middle cerebral artery-occluded rats (Xiao et al., 2016). 
Ramachandran and Thangarajan (2016) investigated that effective 
role of solid lipid nanoparticles encapsulated thymoquinone (10 and 
20  mg/kg) against 3-nitropropionic acid-induced huntington's dis-
ease animals via multiple mechanisms such as improving the muscle 
strength, movement, rigidity, and memory performances, attenuat-
ing the levels of NO, LPO, and protein carbonyls in 3-NP-induced 
animals, controlling the mitochondrial SDH inhibition, restoring the 
antioxidant defense system, and alleviating anticholinergic effect 
upon 3-NP induction. Moreover, thymoquinone also plays effec-
tive role against 3-NP toxicity by protecting the striatal structural 
microelements (Ramachandran & Thangarajan,  2016). In experi-
mental rats, orally administrated thymoquinone (5  mg  kg−1  day−1) 
enhanced the neuron density in contralateral hippocampal regions 
(CA1, CA2-3, and CA4) and lowered malondialdehyde level (Gülşen 
et al., 2016). With acrylamide-induced neurotoxicity in both in vitro 
and in vivo of male Wistar rats, thymoquinone dose-dependently 
(2.5, 5, and 10 mg/kg IP) significantly decreased abnormalities and 
lowered the level of MDA in cerebral cortex (Mehri et  al.,  2014). 
Thymoquinone also rescued dopaminergic neurons and decreased 
the release of lactate dehydrogenase, increased the mitochondrial 
membrane potential, enhanced lysosomal degradation, and inhibited 
mitochondria-mediated apoptotic cell death (Radad et  al.,  2015). 
Thymoquinone (10 mg/kg) supplemented to male Wistar albino rats 
with spinal cord injury (SCI) lowered the histological features of spi-
nal cord damage (Üstün et al., 2014). In animals, pentylenetetrazole 
(50 mg/kg) has been used to induce generalized seizures and mortal-
ity, prolong the onset of seizures, and lower the polyspike and epilep-
tiform discharges and high-grade seizures. It also caused reduction 
in calmodulin-dependent protein kinase II (CaMKII), suppression in 
phosphorylation of cAMP response element-binding protein (CREB) 
in cortex and hippocampus, and decline in gamma-aminobutyric acid 
B1 receptor (GABAB1R) levels. It also enhanced the Bax, decreased 
Bcl-2 expression, and activated caspase-3. Thymoquinone in com-
bination with vitamin C reversed these changes (Ullah et al., 2015). 
In unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned 
rats, diverse concentrations of thymoquinone (5 and 10 mg/kg BW) 
caused reduction in the number of neurons on the left side of the 
substantia nigra pars compacta, nitrite, and MDA level, and im-
proved turning behavior (Sedaghat et al., 2014). In primary cultured 
cerebellar granule neurons, supplemented thymoquinone with dif-
ferent doses (0.1 and 1  μM) lessened the β-amyloid peptide 1–40 
sequence by preventing neurotoxic effects and neural cell death 
(Ismail et al., 2013). Multiple evidences and findings are reported by 
different researchers and investigators and found preventive role 
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against Alzheimer's amyloid-β peptide (Aβ)-induced neurotoxicity in 
in vitro study in rat primary neurons. There are multiple pathways 
such as attenuation of Aβ1-42-induced neurotoxicity, suppression of 
mitochondrial membrane potential depolarization, inhibition of reac-
tive oxygen species production, suppression of Aβ1-42 aggregation, 
and restoration of synaptic vesicle recycling inhibition (Alhebshi 
et al., 2013; Kanter, 2011; Khan et al., 2012).

8  | REPRODUC TIVE ROLE

Cadmium chloride is used to induce reproductive toxicity in male 
rats, while thymoquinone administration prevented the deleteri-
ous effects of cadmium chloride via activating testicular endocrine 
and antioxidant systems (Parhizkar et al., 2016; Sayed et al., 2014). 
Similarly, orally administrated lead (20  mg body weight) has been 
known to cause toxicity in male albino rats and lowered the sperm 
count, testis and epididymal weights, motility and viability, and 
serum FSH, LH, testosterone, and estradiol levels. It also lowered 
the testicular antioxidant molecules, caused enhancement in sperm 
abnormalities, downregulated the aromatase gene expression, acti-
vated the caspase-3 apoptotic pathways, decreased the MDA and 
NO levels, and also exhibited the germinal epithelium sloughing, 
complete seminiferous tubules hyalinization, and hypocellularity. 
Moreover, thymoquinone treated with experimental rats reverted 
these changes (Hassan et al., 2019).

Moreover, morphine at the rate of 20 mg/kg applied to the ex-
perimental male mice caused momentous reductions in testis weight, 
germinal thickness, count, testosterone level, viability, morphology, 
and motility of sperm and enhancement in nitric oxide. On other side, 
different doses of thymoquinone (2, 10, and 20 mg/kg) and thymo-
quinone (2, 10, and 20 mg/kg) in combination with morphine (20 mg/
kg) lowered the nitric oxide level, enhanced the motility (total motility 
and progressive motility), germinal thickness, morphology, count, vi-
ability of sperm cells, and testosterone hormone (Miah et al., 2018; 
Salahshoor et al., 2018). It also improved the sperm fertility rate and 
prevented anomalies. Moreover, thymoquinone treatment momen-
tously enhanced the spermatogenic cells, mean volumes of testis, ley-
dig cells, and seminiferous tubules (Tüfek et al., 2015). From another 
model, diabetic Wistar male rats induced by intraperitoneal injection 
of STZ (65  mg/kg) enhanced the malondialdehyde and nitric oxide 
level, upregulated the NF-κB and nitric oxide, and lowered the anti-
oxidant enzyme concentrations in testicles of diabetic rats, whereas 
oral-administrated thymoquinone reverted these changes in subjects. 
Additionally, it also showed reductions in epididymal sperm count 
and improvement in low plasma testosterone level (Mabrouk & Ben 
Cheikh, 2016; Rathore et al., 2020).

8.1 | Antiarthritic action

In adjuvant-induced arthritis, thymoquinone treatment pro-
vides protection against rheumatoid arthritis via reducing the 

expressions of IL-1b and TNF-a in adjuvant-induced arthritis 
(Vaillancourt et al., 2013). Moreover, ovalbumin-induced asthma 
in mice displayed elevated levels of leukotrienes-B4, C4, Th-2 cy-
tokines, and eosinophils in bronchoalveolar lavage fluid. TQ deal-
ing perfected the pathological perturbations closely associated 
with airway inflammation by suppressing lipoxygenase (5-LOX) 
and NF-kb. El-Gazzar et al. conveyed the initiation of suppres-
sive NF-kb homodimer obligatory to the promoter in LPS-induced 
rat basophil cells, RBL-2H3 (El Mezayen et al., 2011; El Gazzar 
et al., 2007). However, Sethi et al. observed that NF-kb inhibition 
is attributed to additional TNF-a-induced Ik-b degradation and 
phosphorylation along with p65 translocation (Sethi et al., 2008). 
Additionally, IL-6 induced STAT3 phosphorylation in U266 mul-
tiple myeloma cells was found to be inhibited by TQ along with 
c-Src and JAK-2 activation. The study further revealed the inter-
action of cyclin D1, apoptotic proteins, surviving, Mcl-1, and vas-
cular endothelial growth factor in the U266 cells. TQ-interceded 
decrease in peroxynitrite (NO–2) remained initiate in parallel 
with the weakening in iNOS protein manifestation. Further, the 
anti-inflammatory activity of TQ was evaluated on 96 cytokines. 
TQ was found to diminish expression of Cxcl10 and different cy-
tokines induced by LPS. TQ was also found to attenuate activated 
microglia and delay the onset of inflammation-associated neuro-
degenerative diseases (Kodappully Sivaraman Siveen et al., 2014; 
Taka et al., 2015).

8.2 | Effects of thymoquinone in 
respiratory diseases

Bronchial asthma is linked with airway inflammation and leu-
kotrienes. Thymoquinone has been found to prevent from the 
deleterious effects induced by chemicals and environmental 
toxins. It also protects the lungs by exposing the toluene in rats 
(Kanter,  2011). Thymoquinone also prevents the deleterious ef-
fects of bleomycin on lung tissues of rats through lowering the 
pulmonary fibrosis development and activated NF-kb overex-
pression, as well as corrected emphysema in inflammatory cell 
infiltration, air alveoli, and lymphoid hyperplastic cell initiation 
(El-Khouly et al., 2012). It also works as an effective agent against 
cyclophosphamide-persuaded pulmonary impairment in rats (El-
Khouly et al., 2012). Similarly, thymoquinone as bioactive com-
pound has been found to reduce the levels of TNF-a, LDH, MDA, 
and total protein (Suddek, 2014). A study described by El Gazzar 
and colleagues investigated ameliorative role of thymoquinone 
against allergic airway inflammation via hampering Th-2 cytokine 
initiation, cell infiltration and hyperplasia, IL-4, IL-5, and IL-13, 
and also initiated the IFN-a production (El Gazzar et al., 2006). 
It also attenuated the inflammation via lowering the COX-2 ex-
pression and PGD-2 production (El Mezayen et al., 2006). In OVA 
experimental subjects, thymoquinone inhibited the lipoxygenase 
expressions, deteriorated the levels of LTB-4 and LTC-4, and low-
ered the Th2 cytokines (El Gazzar et al., 2006).
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9  | CONCLUSION

Thymoquinone is a phytochemical compound found in the plant 
Nigella sativa. Evidently, thymoquinone is chemically known as 
2-methyl-5-isopropyl-1, 4-benzoquinone, an active principal com-
ponent of the volatile oil that exhibits wide spectrum of health-
endorsing properties such as anti-inflammatory, hepatoprotective, 
antimicrobial, antitumor, antimutagenic, antiepileptic, neuroprotec-
tive, and nephroprotective, respectively. Health-associated per-
spectives of this bioactive compound led to medical applications. 
In several anti-inflammatory and degenerative disorders such as 
cancer, thymoquinone also has been known to modify the multi-
ple molecular and signaling pathways. Most important aspects of 
thymoquinone such as hepatoprotective, anti-inflammatory, and 
antiaging have been highlighted through various pathways, and fur-
ther utilization of this compound in diet has been proven effective 
against different types of cancers.
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