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Light-sensitivity is important for mollusc survival, as it plays a vital role in reproduction

and predator avoidance. Light-sensitivity has been demonstrated in the adult Pacific

oyster Crassostrea gigas, but the genes associated with light-sensitivity remain unclear.

In the present study, we designed experiments to identify the genes associated with

light-sensitivity in adult oysters. First, we assessed the Pacific oyster genome and

identified 368 genes annotated with the terms associated with light-sensitivity. Second,

the function of the four rhodopsin-like superfamily member genes was tested by using

RNAi. The results showed that the highest level of mRNA expression of the vision-related

genes was in the mantle; however, this finding is not true for all oyster genes. Interestingly,

we also found four rhodopsin-like superfamily member genes expressed at an very high

level in the mantle tissue. In the RNAi experiment, when one of rhodopsin-like superfamily

member genes (CGI_1001253) was inhibited, the light-sensitivity capacity of the injected

oysters was significantly reduced, suggesting that CGI_10012534 may be associated

with light-sensitivity in the adult Pacific oyster.

Keywords: adult oyster, light-sensitivity, RNAi, mantle, rhodopsin-like superfamily member gene

INTRODUCTION

Until recently, four classes of molluscs (Gastropoda, Bivalvia, Polyplacophora, and Cephalopoda)
have been demonstrated as possessing light sensitive organs (Serb and Eernisse, 2008). The light
structure, light type, and light functions of scallops (Land, 1965; Barber et al., 1967; Malkowsky
and Jochum, 2015), chitons (Toomey et al., 2002), snails (Morton, 2000), slug (Morton, 2000), and
nautilus (Kobak and Nowacki, 2007) have been extensively studied. Light-sensitive organs play an
important role in reproduction and predator avoidance for the above molluscs (Wu et al., 2015).
Eyes from molluscan lineages could be used to study convergence and parallel patterns of eye
evolution (Nilsson and Kelber, 2007; Serb and Eernisse, 2008). However, little is known about the
molluscan eyes below the molecular level.

Light-sensitivity in oyster larvae has previously been confirmed (Magalhães et al., 2014; Xu et al.,
2015; Wheeler et al., 2017). After the occurrence of eyespot, the oyster larvae use their left shell to
fix on the surface of rocks and other solid surfaces, and they no longer move after attachment.
Although light-sensitivity does not significantly impact the movement of adult oysters, it may play
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an important role in the growth, reproduction, living habits,
and anti-predatory behavior of these molluscs. In a previous
study, we demonstrated that adult oysters are light-sensitive
(Wu et al., 2015), but the genes associated with light-sensitivity
remain uncertain. RNA interference (RNAi) is a transcriptional
gene-silencing phenomenon mediated by double-stranded RNA
(dsRNA), which can specifically silence target genes (Joga et al.,
2016). Currently, RNAi has been widely used in zebrafish (Acosta
et al., 2005; Chang and Nie, 2008), sea squirt, prawns (Aflalo and
Sagi, 2014; Lezer et al., 2015), and other aquatic organisms. Pacific
oyster was the first species of which the gene function was studied
by RNAi among bivalves (Fabioux et al., 2009; Choi et al., 2013;
Wang et al., 2013; Bo et al., 2014). After the completion of the
whole genome sequencing of the Pacific oyster Crassostrea gigas
(Zhang et al., 2012), RNAi technology was increasingly used in
the oyster (Choi et al., 2013; Wang et al., 2013; Bo et al., 2014).

Rhodopsin, also known as the “visual purple,” is a molecular
complex, consisting of a vitamin A-derived retinal chromophore,
11-cis-retinal, covalently bound to a seven transmembrane
domain protein moiety (Van Hazel et al., 2016) and the largest
class of G protein-coupled receptors (family A, subsequently
referred to as GPCR-A) (Bryson-Richardson et al., 2004).
Rhodopsin is a major component of rod photoreceptors, which
are photosensitive, even under extremely weak light conditions
(Hargrave and McDowell, 1992). The light-activated rhodopsin
is the GPCR catalyzing the exchange of GDP for GTP on the
heterotrimeric G protein transducin (Gao et al., 2017).

In the present study, we analyzed the vision-related genes
in the Pacific oyster genome (Zhang et al., 2012) and studied
the functions of rhodopsin-like superfamily member genes
using RNAi methods combined with real-time fluorescence
quantitative PCR.

MATERIALS AND METHODS

Animal Preparation
Crassostrea gigas (shell height 70–90mm) were obtained
from Yantai, Shandong Province, China (121.39◦E, 37.54◦N)
and maintained at the experiment station of the School of
Agriculture, Ludong University. The oysters were acclimated in
an aquarium tank (80 × 40 × 40 cm, length × width × height)
supplied with filtered seawater at ambient temperature (16 ±

TABLE 1 | The siRNA sequences in this experiment.

Genes Target Points Sense (5′-3′) Antisense (5′-3′)

CGI_10012534 59TP 5′ GGUCCUCACAUUUGCUUAUTT 3′ 5′ AUAAGCAAAUGUGAGGACCTT 3′

57TP 5′ GGAGAGAAAUGGAGAAUAUTT 3′ 5′ AUAUUCUCCAUUUCUCUCCTT 3′

CGI_10007162 757TP 5′ GUGCCGUAAUUUGUAAUAATT 3′ 5′ UUAUUACAAAUUACGGCACTT 3′

539TP 5′ CCGGUUCUUUACUCAAUAUTT 3′ 5′ AUAUUGAGUAAAGAACCGGTT 3′

CGI_10008927 43TP 5′ CGGUCAACGUUCACAAUAUTT 3′ 5′ AUAUUGUGAACGUUGACCGTT 3′

31TP 5′ CCGUGCUUCAAUUUGUUUATT 3′ 5′ UAAACAAAUUGAAGCACGGTT 3′

CGI_10013409 76TP 5′ GUGUGUACAUCUCCAUUAUTT 3′ 5′ AUAAUGGAGAUGUACACACTT 3′

99TP 5′ GGGAUGUGUUAGAUAUUGUTT 3′ 5′ ACAAUAUCUAACACAUCCCTT 3′

1◦C) and salinity (30‰). The oysters were fed with microalgae
Isochrysis galbana (5.0 × 105 cell/mL) daily and allowed to
acclimate for 1 week.

Analysis of mRNA Expression in
Vision-Related Genes
Vision-related genes were selected from the oyster gene set
(Zhang et al., 2012) by examining the functional annotation of
all oyster genes separately. Based on the oyster transcriptome
data (Zhang et al., 2012), the mRNA expression pattern of these
genes was analyzed at 37 different development stages (eggs and
larvae were sampled from the mass spawning of 51 females and 1
male from the family “G3”) and in eight different organs (mantle,
gill, adductor muscle, digestive gland, hemocyte, labial palp, and
female gonad were obtained from one female oyster, male gonad
from F1 offspring of family “G3”). In addition, we also assessed
the genes specifically expressed in the mantle.

The siRNA Design and Synthesis
According to the sequences of four rhodopsin-like superfamily
member genes (CGI_10012534; CGI_10007162; CGI_10008927;
CGI_10013409), two target siRNAs were designed and
synthetized by Sangon Biotech (Shanghai) for each gene.
The RNA interference locations for CGI_10012534 were
labeled as 57TP and 59TP; those for CGI_10007162 757TP
and 539TP; those for CGI_10008927 43TP and 31TP; those
for CGI_10013409 76TP and 99TP. All the following siRNA
sequences were used in this experiment (Table 1).

Flashlight Experiments
Twenty-four hours prior to the start of the experiment, the
oysters were randomly placed, one at a time, into a small
transparent-glass aquarium (30× 20× 15 cm, length× width×

height, respectively) through which air was continually pumped.
When the oyster shells opened, a LED flashlight (light intensity
was 5,000 Lux) was used to shine light onto the oysters’ mantle
and turned off after 40 s (Wu et al., 2015). After repeating
10 times, the light-sensitivity ability value of each oyster was
calculated.light-sensitivitylight-sensitivitylight-sensitivity

The oysters responding to light were classified into three types
that were all regarded as light-sensitivity: (I) individuals not only
opening their shells wider after turning the light on but also
closing their shells after turning the light off, (II) individuals only
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TABLE 2 | The primers used in qPCR experiment.

Primers Sequence (5′
→ 3′) Application

CGI_10012534F GTGCAGGCCGTCATACTCTA The forward primer for CGI_10012534

CGI_10012534R CGCTGTCACCACCAATAC The reverse primer for CGI_10012534

CGI_10007162F TGTTGGCGTTCGCTCTGA The forward primer for CGI_10007162

CGI_10007162R CGTAATGGTCGTGTCTGC The reverse primer for CGI_10007162

CGI_10008927F GTGCAGGCCGTCATACTCTA The forward primer for CGI_10008927

CGI_10008927R CGCTGTCACCACCAATAC The reverse primer for CGI_10008927

CGI_10013409F TGTTAGATATTGTGGCGCTTTG The forward primer for CGI_10013409

CGI_10013409R TCTTGTTCCCATTTGACG The reverse primer for CGI_10013409

Cg-ef1αF GAGCGTGAACGTGGTATCAC The forward primer for reference gene

Cg-ef1αR ACAGCACAGTCAGCCTGTGA The reverse primer for reference gene

TABLE 3 | The vision-related oyster genes in different function categories.

Gene name Gene

number

Gene name Gene

number

Gene name Gene

number

Gene name Gene

number

Rhodopsin 317 Retinol 18 Optic lobes protein 2 Photoreceptor-specific 1

Regulating retinal 3 Cryptochrome 4 Melanopsin 4 Retinal guanylyl cyclase 1

Opsin 9 Retinoic acid 4 Retinoblastoma 1 Sensitivity to red light 1

Cone photoreceptor 1 Visual perception 3 Photoreceptor cell 2 Retinoids 5

Retinaldehyde-binding 12 Visual system 3 Retinal dehydrogenase 2

FIGURE 1 | Expression pattern of vision-related genes (A) and all other oyster genes (B) at different developmental stages and in different organs. Y-axis denotes

expression as an RPKM value, while the X-axis denotes the 37 development stages (sienna bars) and the eight organs of adult oyster (steel blue bars). Development

stages and organs are abbreviated as follows: E, egg; TC, two cells; FC, four cells; EM, early morula; M, morula; B, blastula; RM, rotary movement; FS, free

swimming; EG, early gastrula stage; G, gastrula; T1, trochophore 1; T2, trochophore 2; T3, trochophore 3; T4, trochophore 4; T5, trochophore 5; ED1, early D-larva 1;

ED2, early D-larva 2; D1, D-larva 1; D2, D-larva 2; D3, D-larva 3; D4, D-larva 4; D5, D-larva 5; D6, D-larva 6; D7, D-larva 7; EU1, early umbo larva 1; EU2, early umbo

larva 2; U1, umbo larva 1; U2, umbo larva 2; U3, umbo larva 3; U4, umbo larva 4; U5, umbo larva 5; U6, umbo larva 6; LU1, later umbo larva 1; LU2, later umbo larva

2; P1, pediveliger 1; P2, pediveliger 2; S, spat; Man, mantle; Fgo, female gonad; Amu, adductor muscle; Hem, haemocyte; Dgl, digestive gland; Gil, gill; Lpa, labial

palp; and Mgo, male gonad.

opening their shells wider after turning the light on, and (III)
individuals only closing their shells after turning the light off
(Wu et al., 2015). The light-sensitivity ability value was calculated

as below: The light-sensitivity ability value = number of light-
sensitivity before interference/number of illumination before
interference.light-sensitivity When the light-sensitivity ability
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value reached to 0.8 or more, the tested oyster was regarded as
having the light-sensitivity ability. At last, 48 adult oysters with
the light-sensitivity ability were selected for RNAi experiments
for each gene.

RNAi Experiment
To open the oyster shell without hurting the animal, all oysters
were anesthetized in 8% MgSO4 seawater solution (Wang et al.,
2011) (7:00 p.m., first day). After 12 h (7:00 a.m., second day), the
shells of the oysters were opened. Two siRNAs of each gene were
dissolved in PBS buffer for adductor muscle injection; oysters
in the experimental groups were injected with the following
treatments: 5 µg siRNA + 100 µl PBS, 10 µg siRNA + 100 µl
PBS, or 15 µg siRNA + 100 µl PBS; the adductor muscle tissues
of the oysters in control group were injected with 100 µl of PBS.
After another 12 h (7:00 p.m., second day), these oysters were
placed into a small transparent-glass aquarium, and flashlight
experiments were conducted (repeated 10 times) at the opening
of the oysters’ shells to observe the responses of oysters to the
light.

Real-Time Quantitative PCR Experiments
Three days after siRNA injection (7:00 a.m., fourth day), all
oysters were sacrificed, and their in-mantle (inner mantle) and
out-mantle (outer mantle) tissues were sampled. Total RNAs
were extracted from the in-mantle and out-mantle tissues and
reverse transcribed into cDNA for real-time quantitative PCR
experiments. The mRNA expression levels were identified using
the Trans Start Green qPCR SuperMix UDGKit (TransGen) and
analyzed by the 2−11CT method described previously (Livak and
Schmittgen, 2001; Bustin et al., 2009). The primers of four target
genes and the reference gene (Cg-ef1α; Huvet et al., 2015) used in
the real-time quantitative PCR experiment are listed in Table 2.

Data Analysis
The responses to the light of the oysters in the experimental and
control groups were measured by the relative light-sensitivity
rate. The formula is given below. Relative light-sensitivity
rate = (number of light-sensitivity after interference/number
of illumination after interference)/(number of light-sensitivity
before interference/number of illumination before interference).
In the RNAi experiment, the responses of the oysters in different
groups to the light were compared and tested using independent
t-test.

RESULTS

Vision-Related Genes Were Present in the
Oyster Genome and Showed Higher
Expression in the Mantle
After scanning the genome of Pacific oyster, 368 vision-related
genes were identified, including: rhodopsin-related (Hargrave,
2001; Spudich and Luecke, 2002), opsin-related (Shichida and
Matsuyama, 2009; Terakita et al., 2011), melanopsin-related
(Hankins et al., 2008; Allen et al., 2017), retinol-related, retinal-
related, cones-related (Kawamura and Tachibanaki, 2012),
cryptochrome-related (Kawamura and Tachibanaki, 2012),

retinoic acid-related (Weiler et al., 1998), retinoid-related,
visual perception-related, visual system-related, optic lobes
protein-related (Fischbach and Hiesinger, 2008), photoreceptor
cell-related (Fain et al., 2010), etc. (Table 3). The detailed gene
list is presented in Table S1. Based on the transcriptome of
the Pacific oyster (Zhang et al., 2012), the expression pattern
of all the vision-related genes at different developmental
stages and different organs was constructed. We found that
the highest level of gene expression of the vision-related
genes was in the mantle, compared to that in other organs
(Figure 1A); however, this finding is not true for all oyster genes
(Figure 1B). In addition, we found that four rhodopsin-like
superfamily genes were specifically expressed in the mantle
(Figure 2, the mantle data was the average of in-mantle and
out-mantle).

The siRNA-Mediated Down-Regulation of
Target Genes
The quantitative real-time PCR data were analyzed by the
method of 2−11CT (Livak and Schmittgen, 2001) and showed
in Table S2. After the RNA interference experiment, we observed
that regardless of the targets, the expression level of the
CGI_10012534 gene was lower than that in the control group
(PBS), and the expression was significantly lower when the
siRNA concentration was 15 µg/100 µl. The mRNA level in
the mantle (the data merged from in-mantle and out-mantle)
was decreased 1.74 times at the 57TP location and 1.57 times
at the 59TP location (Figure 3). Comparison of the data for in-
mantle with that for out-mantle revealed a significant gradient
of CGI_10012534 gene expression in the out-mantle with an
increasing dsRNA concentration, and the interference effect was
significant at a concentration of 15 µg/100 µl (Figure 4, in the
red frame; P < 0.05).

FIGURE 2 | The expression pattern of the four rhodopsin-like superfamily

genes. Y-axis denotes expression as an RPKM value and the X-axis indicated

different organs. The organs are abbreviated as follows: Man, mantle; Fgo,

female gonad; Amu, adductor muscle; Hem, haemocyte; Dgl, digestive gland;

Gil, gill; Lpa, labial palp; and Mgo, male gonad.
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FIGURE 3 | The mRNA expression levels of CGI_10012534 gene in the

mantle of oyster after RNAi. Notably, 57TP indicates the siRNA-57 targeted

treatment group, 59TP indicates the siRNA-59-targeted treatment group; PBS

indicates the group treated with phosphate-buffered saline (PBS) (n = 6), T1

indicates the group treated with 5 µg/100 µl siRNA (n = 6), T2 indicates the

group treated with 10 µg/100 µl siRNA (n = 6), and T3 indicates the group

treated with 15 µg/100 µl siRNA (n = 6). Each bar represents the mean of 6

independent experiments performed in duplicate. Different letters indicate

significant difference (P < 0.05).

However, the other three genes (CGI_10013409,
CGI_10008927 and CGI_10007162) did not show any significant
differences (P > 0.05) or gradient differences (Figures S1–S3).
Thus, no further analysis or experiments were performed for
these genes.

The Light-Sensitivity Before and After RNAi
Comparison of the light response of the oyster before and after
RNA interference of the CGI_10012534 gene revealed that the
light-sensitivity of the oyster was generally decreased with an
increasing dsRNA concentration, although the differences were
not significant (P < 0.05) at concentrations of 5 µg/100 µl
and 10 µg/100 µl. In particular, the light-sensitivity of oysters
was significantly reduced (P < 0.05) at a concentration of
15 µg/100 µl not only in the 57-TP but also 59-TP treatment
groups (Figure 5), compared with the PBS group. The reduction
tendency of light response was consistent with the decreasing
tendency of mRNA expression when the dose of dsRNA was
raised gradually.

DISCUSSION

It has been previously assumed that the adult oyster did not need
the ability to sense light, because oysters have a sessile lifestyle
after larva settlement and metamorphosis (Zhang et al., 2012).
Nevertheless, when the oyster filters seawater to obtain food and
oxygen, its shells must be opened. During this period, the oyster
may be vulnerable to attack by predators. In this context, the

FIGURE 4 | The mRNA expression levels of CGI_10012534 gene in the

in-mantle and out-mantle of oysters after RNAi. Notably, 57TP-IM indicates the

siRNA-57 targeted treatment group in the in-mantle, 57TP-OM indicates

the siRNA-57 targeted treatment group in the out-mantle, 59TP-IM indicates

the siRNA-59 targeted treatment group in the in-mantle, 59TP-OM

indicates the siRNA-59 targeted treatment group in the out-mantle, PBS

indicates the group treated with PBS (n = 6), T1 indicates the group treated

with 5 µg/100 µl siRNA (n = 6), T2 indicates the group treated with 10 µg/100

µl siRNA (n = 6), and T3 indicates the group treated with 15 µg/100 µl siRNA

(n = 6). Each bar represents the mean of six independent experiments.

Different letters indicate a significant difference (P < 0.05).

FIGURE 5 | Light-sensitivity changes before and after the RNAi interference of

the CGI_10012534 gene. Notably, 57TP indicates the siRNA-57 targeted

treatment group and 59TP indicates the siRNA-59 targeted treatment group.

PBS indicates the group treated with PBS (n = 6), T1 indicates the group

treated with 5 µg/100 µl siRNA (n = 6), T2 indicates the group with 10 µg/100

µl siRNA (n = 6), and T3 indicates the group with 15 µg/100 µl siRNA (n = 6).

Each bar represents the mean of six independent experiments. Different letters

indicate a significant difference (P < 0.05).

perception of light change could be very important to avoid being
preyed, which may be reason why oysters evolved the ability of
light-sensitivity. In our previous experiment, it has been observed
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that adult Pacific oyster has the ability of light-sensitivity (Wu
et al., 2015).

Rhodopsin is the largest class of G protein coupled receptors
(family A, subsequently referred to as GPCR-A; Bryson-
Richardson et al., 2004) and a major component of rod
photoreceptors; this receptor is photosensitive, even under
extremely weak light conditions (Hargrave andMcDowell, 1992).
So far, there are no reports on the oyster rhodopsin superfamily
genes. In the present study, we first found that the expression
of four rhodopsin genes in the mantle was significantly higher
than that in the other organs. CGI_1001253 gene is one of four
rhodopsin-like superfamily members.

RNAi and light-sensitivity detection experiments revealed
significant differences in the light-sensitivity of the oysters
between the control and treatment groups, and increasing
the concentration of injected dsRNA progressively decreased
the mRNA expression level of the CGI_10012534 gene;
importantly, the light-sensitivity of the corresponding oysters
was also gradually weakened. These results may suggest that the
CGI_10012534 gene is associated with light-sensitivity in the
adult Pacific oyster.

Interestingly, there is a strict linear relationship between the
mRNA expression level of CGI_10012534 gene and the light-
sensitivity of the corresponding oysters in the out-mantle (57TP-
OM), but not in the in-mantle, suggesting that the out-mantle
may play a more important role in light-sensitivity than the
in-mantle.

The eye was defined as any organ with the necessary
components for rudimentary spatial resolution or image-forming
capabilities. There are distinct eye types in molluscs, from the
pit eyes of many gastropods, to the pinhole eyes of the Nautilus,
to the lensed eyes of the cephalopods. Compound eyes are
present in some bivalves, and reflective “mirrors” have been
innovated by other lineages such as scallops (Serb and Eernisse,
2008). In the present study, we could not determine whether
the eye exists in the oyster; however, we obtained preliminary
evidence suggesting that the CGI_10012534 gene may be one
of the genes associated with light-sensitivity. Thus, more direct
evidence should be obtained through transgenic methods (such
as the CRISPR method) in the future.

In addition, in the present study, we attempted to determine
whether the oyster had a reaction to light changes by the
naked eye; however, some behavioral changes could not be
observed if the valve opening magnitude was too small. Recently,
high-frequency non-invasive valvometry technology was used
to record the valve movements for measuring the sensitivity
of the oysters (Charifi et al., 2017). In future, we will find the
fitting point that can combine the high-frequency non-invasive
valvometry with the study of oyster light sensitivity.
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Figure S1 | The mRNA expression levels of CGI_10013409 gene in the mantle of

oyster after RNAi. Notably, 99TP indicates the siRNA-99 target treatment group,

76TP indicates the siRNA-76 target treatment group; PBS indicates the group

treated with phosphate-buffered saline (PBS), T1 indicates the group treated with

5 µg/100 µl siRNA, T2 indicates with 10 µg/100 µl siRNA, and T3 indicates the

group treated with 15 µg/100 µl siRNA. Each bar represents the mean of six

independent experiments performed in duplicate. Different letters indicate a

significant difference (P < 0.05).

Figure S2 | The mRNA expression levels of CGI_10008927 gene in the mantle of

oyster after RNAi. Notably, 31TP indicates the siRNA-31 target treatment group,

43TP indicates the siRNA-43 target treatment group; PBS indicates the group

treated with phosphate-buffered saline (PBS), T1 indicates the group treated with

5 µg/100 µl siRNA, T2 indicates the group treated with 10 µg/100 µl siRNA, and

T3 indicates the group treated with 15 µg/100 µl siRNA. Each bar represents the

mean of six independent experiments performed in duplicate. Different letters

indicate a significant difference (P < 0.05).

Figure S3 | The mRNA expression levels of CGI_10007162 gene in the mantle of

oyster after RNAi. Notably, 539TP indicates the siRNA-539 target treatment

group, 757TP indicates the siRNA-757 target treatment group; PBS indicates the

group treated with phosphate-buffered saline (PBS), T1 indicates the group

treated with 5 µg/100 µl siRNA, T2 indicates the group treated with 10 µg/100 µl

siRNA, and T3 indicates the group treated with 15 µg/100 µl siRNA. Each bar

represents the mean of six independent experiments performed in duplicate.

Different letters indicate a significant difference (P < 0.05).

Table S1 | Vision-related genes in different categories.

Table S2 | The data for mRNA expression levels of CGI_1001253 gene.
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