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Fast and accurate calculations of the electrostatic features of highly charged biomolecules such as DNA,
RNA, and highly charged proteins are crucial and challenging tasks. Traditional implicit solvent methods
calculate the electrostatic features quickly, but these methods are not able to balance the high net
biomolecular charges effectively. Explicit solvent methods add unbalanced ions to neutralize the highly
charged biomolecules in molecular dynamic simulations, which require more expensive computing
resources. Here we report developing a novel method, Hybridizing Ions Treatment (HIT), which hybri-
dizes the implicit solvent method with an explicit method to realistically calculate the electrostatic
potential for highly charged biomolecules. HIT utilizes the ionic distribution from an explicit method
to predict the bound ions. The bound ions are then added in the implicit solvent method to perform
the electrostatic potential calculations. In this study, two training sets were developed to optimize
parameters for HIT. The performance on the testing set demonstrates that HIT significantly improves
the electrostatic calculations. Results on molecular motors myosin and kinesin reveal some mechanisms
and explain some previous experimental findings. HIT can be widely used to study highly charged biomo-
lecules, including DNA, RNA, molecular motors, and other highly charged biomolecules. The HIT package
is available at http://compbio.utep.edu/static/downloads/download_hit.zip.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In computational biology, electrostatic calculation of biomole-
cules is fundamental and challenging. The electrostatic interac-
tions play significant roles in protein folding [1], protein stability
[2,3], protein–protein interactions [4–6], protein-DNA/RNA inter-
actions [7,8], and many other areas of study. However, in vivo,
water, ions, and small biomolecules make the proteinaceous envi-
ronment extremely complicated for electrostatic calculations. The
highly charged biomolecules (including DNAs, RNAs, and motor
proteins) utilize ions surrounding their surfaces to balance the
net charges so that they can well interact with other molecules.
The trapped ions directly affect the electrostatic surfaces, which
have significant impacts on the interactions between biomolecules.
Currently, two types of models handle the ions and water mole-
cules surrounding biomolecules: implicit solvent models and
explicit solvent models. The most popular implicit solvent meth-
ods include the Poisson-Boltzmann (PB) model [9] and Generalized
Born (GB) model [10]. In implicit solvent models, biomolecular
electrostatic features are calculated by treating ions implicitly
[9,11,12]. Explicit solvent models such as TIP3P and TIP4P, widely
used in Molecular Dynamic (MD) simulations, handle ions and
molecules explicitly [13]. Explicit solvent models neutralize the
highly charged biomolecules by adding unbalanced amounts of
positive and negative ions into a system. Implicit models, such as
DelPhi [14,15], are widely used to calculate electrostatic potential,
electric field lines and electrostatic surfaces for biomolecules.
However, traditional implicit solvent models treat the solvation
as neutral with the same amounts of positive and negative ionic
charges, which causes bias in the electrostatic calculations of
highly charged biomolecules and causes unrealistic interaction
analyses. Improving implicit models to handle highly charged bio-
molecules remains a challenge.

Highly charged biomolecules have been studied for decades for
their special functions, such as the motion of motor proteins [16–
18], tRNA binding of ribosomes [19], and roles of cell aging-related
proteins [20,21]. In living cells, binding of oppositely charged ions
by proteins is a principal, common phenomenon related to
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Fig. 1. Process of generating the training dataset. A: Schematic presentation of 1000
frames of ions; B: Ionic cloud distribution of the combination of 1000 frames from
A; binding sites are marked by black circles; C: Cubic partition of the ionic cloud.
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enzyme-activations [22] and conformational changes of proteins
[23]. The classic implicit model does not consider those bound ions
and thus cannot balance the net charges of the highly charged bio-
molecules. The loss of bound ions not only unbalances the system’s
net charge; it also leads to biased electrostatic calculations sur-
rounding the ionic binding sites. To perform realistic electrostatic
calculations of highly charged biomolecules, we developed a novel
method, which adds the bound ions explicitly and hybridizes with
implicit ions to compensate for the net charges in highly charged
biomolecular systems.

The bound ions in binding sites are crucial for electrostatic cal-
culations of highly charged biomolecules. Such bound ions are not
represented in the implicit solvent models. Many methods have
been developed to predict such bound ions or the corresponding
cavities: Variational Implicit-Solvent Model successfully captures
the surface of local hydrophobic cavities for ligand-receptor bind-
ings [24–26]; BION (bound ion prediction method) program [27]
implements electrostatic features and geometric information to
predict bound ions. Here we report developing a novel algorithm
that utilizes information fromMD simulations to identify ion bind-
ing sites. Explicit solvent models treat ions explicitly in calcula-
tions such as MD simulations. Therefore, the trajectories from
MD simulations with explicit models contain the dynamic infor-
mation of the bound ions. However, it is difficult to determine
which ions are bound ions based on a single frame from simula-
tions. Combining all frames from a simulation trajectory into an
ionic cloud distribution and properly analyzing it may lead to iden-
tification of the binding sites and explicit ions addition. In this
report, we introduce a novel method that uses the information
from the explicit solvation modeled MD simulations to identify
binding sites around highly charged biomolecules. Because this
method hybridizes the explicit ions on binding sites and implicit
solvent models to calculate the electrostatic potentials of the
highly charged biomolecules, we named it Hybridizing Ions Treat-
ment (HIT). We tested this method by using NAMD [28] and Delphi
to do the explicit solvent simulations and implicit solvent calcula-
tions, respectively; HIT significantly improved the performance of
pure implicit models on highly charged biomolecules.

The method was optimized against two training sets and
applied to a testing set with two biological applications: A cardiac
myosin-actin complex with a net charge of �77e and a kinesin-5
(cut7)-ab-tubulin complex with a net charge of �36e. Both net
charges were calculated by pdb2pqr [29]. Myosin is a superfamily
of motor proteins known for their role in muscle contraction [30],
especially in heart diseases [31–33]. We studied myosin-actin
complex: b cardiac myosin [34] and part of a cardiac actin filament
[35]. Usually, an actin filament is assembled by globular-actin (G-
actin), tropomyosin (TM), the troponin complex (Tn) [36], and
myosin binding protein C (MyBP-C) [37]. In this study, the TM,
G-actin and myosin motor domains were assembled and applied
for MD simulations and related analysis by HIT. Kinesin [5,38] is
a superfamily of motor proteins moving along microtubules that
are crucial for mitosis [39] and were recently identified as an
important target for cancer treatment [40]. In our study, the yeast
kinesin-5 (cut7) motor domain with an ab-tubulin heterodimer
complex was selected [41]. The success of the testing set revealed
that our method could be widely applied to highly charged biomo-
lecules to obtain reliable electrostatic calculations. By taking
advantage of explicit and implicit solvent models, this novel
approach utilizes a hybrid method to realistically simulate the
solution environment surrounding biomolecules, which is a
promising direction for simulations of highly charged biomole-
cules. Such a method advances future drug design, DNA/RNA sim-
ulations, protein–protein interactions, and other computational
biophysics research fields.
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2. Methodology

2.1. Dataset

2.1.1. Training sets
To optimize our program, two training sets were designed to

mimic the sodium distribution surrounding biomolecules in saline
solution (150 mM NaCl). One training set was generated by a ran-
dom generation algorithm (Random ions training set); the other
was achieved by MD simulation (NAMD training set).

Random ions training set: To model this 150 mM NaCl concen-
tration into the training dataset, 90 randomly generated sodium
ions were placed in a 100 Å � 100 Å � 100 Å box (Fig. 1A), which
includes 8 bound sodium ions (8/90 < 10% for bigger solvent box).
In the generation process, the minimal distance between sodium
ions was set as 5 Å due to the exclusion of same charged ions. 82
randomly generated ions represented free ions while the 8 bound
ions represented the ions that were trapped on the surface or in the
cavities of the biomolecules. After this, the simulation started for
1000 steps. Each step allowed free ions to move anywhere in the
box and restrained bound ions in 5 Å � 5 Å � 5 Å cubic binding
sites. The frames for every step were saved (Fig. 1A). All 1000
frames were combined into an ionic cloud distribution for further
analysis (Figs. 1B and 2C and D), where the binding sites were
marked by black circles. This ionic cloud distribution is the Ran-
dom ions training set NAMD training set: In Visual Molecular
Dynamics (VMD) [42], a 100 Å � 100 Å �100 Å solvated box with
150 mM NaCl was generated, which included 90 sodium ions and
90 chlorine ions. In this model, 8 sodium ions were randomly
selected to be restrained, simulating 8 bound ions in 8 binding
sites. After that, MD simulation was achieved by 1000 steps mini-
mization and 0.5 ns (2 fs/step) MD simulation. Temperature was
set as 300 K, and the pHwas set as 7.0. The CHARMM [43] was used
for force field, and the periodic boundary conditions were applied
to the system. The frames were saved per 100 fs. After simulation,
the ionic cloud distribution for all ions were saved as the NAMD
training set.

2.1.2. Myosin and kinesin testing sets
In myosin testing set, five G-actins, a TM (PDB: 5NOJ), and a b-

cardiac myosin motor domain (PDB: 6FSA) were assembled based



Fig. 2. Myosin-actin complex (A) and Kinesin-tubulin dimer complex (B) and their
sodium ionic cloud distribution. In A, blue chain represents cardiac myosin motor
domain, yellow chain represents tropomyosin; the others are G-actin. In B, blue
chain represents kinesin-5 (cut7) motor domain, red and orange chains represent
ab-tubulin heterodimer. C and D are the sodium ionic cloud distribution of myosin
complex (A) and kinesin complex (B) within 10 ns simulation (1000 frames). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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on the rigor-like state model (PDB: 5JLH) (Fig. 2A). The hydrogen
atoms were added by VMD. The myosin-actin complex was
immersed in a rectangular solvated box (TIP3P). The net charge
of myosin-actin complex model is �77 e. To ensure 150 mM NaCl
and to neutralize the system, 570 Na+ and 493 Cl- were added to
the system. In NAMD simulations, the pH was set as 7.0 and the
temperature was set as 300 K. The CHARMM was used for force
field, and the periodic boundary conditions were applied to the
system. The number of steps for energy minimization was
20,000, and the MD simulation was run for 10 ns (1 fs/step). After
simulation, the sodium ions within 10 Å from proteins in 2000
frames (5000 steps/frame) were assembled as an ionic cloud distri-
bution in the myosin testing set (Fig. 2C).

Similarly, a complex formed by an ab-tubulin heterodimer and
a kinesin motor domain (kinesin-5 cut7) were selected as the kine-
sin testing set (PDB: 5MLV) (Fig. 2B). The hydrogen atoms were
added by VMD. The complex was immersed in an explicit solvated
box (TIP3P). To ensure 150 mM NaCl and to neutralize the system,
143 Na+ and 107 Cl- were added to the system. The MD simulation
setting is same as that of the myosin testing set. After simulation,
the sodium ions within 10 Å of proteins in 2000 frames (5000
steps/frame) were assembled as an ionic cloud distribution in the
kinesin dataset (Fig. 2D) Only sodium ions within 10 Å of protein
were selected because some ions located far from biomolecules
are relatively rigid due to lack of strong electrostatic forces, . If
all ions were selected, they could generate substantial noise
(Fig. S1), affecting the accuracy of the calculation.

2.2. Algorithm

Our Hybridizing Ions Treatment (HIT) method utilizes the fre-
quency of ion occurrence around biomolecules to identify possible
binding sites and to place explicit ions at the centroids of calcu-
lated binding sites to compensate for the net charge. Ion binding
sites are around the molecule surfaces or inside the molecule cav-
ities, where ions are trapped. After MD simulation, overlapping the
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frames of ions (Fig. 1A and B) into ionic cloud distributions gener-
ated some dense positions, which represented the binding sites
with occurrences of high frequency of bound ions (Figs. 1B, 2C
and D). The centroids in the dense positions were the locations
for placing explicit ions. The entire process included 4 steps:
preparation, initial, clustering, and optimal: clustering step is the
supplement for initial step, and optimal step is the supplement
for clustering step. The training sets were generated by uniform
distribution (random ions training set) and MD simulation (NAMD
training set) for accuracy of testing and parameter optimization.
The testing sets were generated by MD simulations of myosin-
actin complex and kinesin-tubulin complex.

2.2.1. Preparation: The combination of all frames and the solvate box
cutting

First, the target ions in each frame were assembled as ionic
cloud distributions. To find the frequency of occurrence in the dif-
ferent areas, each ionic cloud distribution was randomly and
equally divided into cubes (Fig. 1B).

2.2.2. Initial step: Ions counting and cube sorting
The ions were counted in all cubes, and the number of ions was

used to sort the cubes from the maximum to the minimum. Then,
all cubes were marked according to rank (1st, 2nd, 3rd, . . .. . . cube)
(Fig. 2 (ion counting and cube sorting)).

After sorting, a particular number of top cubes were selected
according to the net charge of the protein and charge of the target
ions (Eq. (5)). Cubes with high average number of ions (Eq. (1))
indicate binding sites. The centers of top cubes were the positions
for placement of explicit ions.

Nions i ¼ ni

Nframe
ð1Þ

Where the Nion_i represents the average number of ions in ith cube,
and the ni and Nframe represent the total number of ions in ith cubes
and the number of frames, respectively.

2.2.3. Clustering step: Clustering
If selection of the binding sites is based on only the initial step, a

single binding site might cover multiple close cubes; redundancy
and incorrect calculations will occur (Fig. 5A). Redundancy is two
or more calculated binding sites near one original binding site;
incorrect calculation is the wrong calculated binding site. To solve
this problem, the close cubes were grouped into a cluster that con-
tained 1–27 (3 � 3 � 3) cubes: The first cube in a new cluster was
designated the initial cluster cube (Rule 1). The clustering com-
plied with the following rules and ran based on cube rank (Fig. 3
(clustering)).

Rule 1: If a cube is not near any initial cluster cubes of previous
clusters, a new cluster will be generated, and this cube will be the
initial cluster cube in the new cluster. For example, the first cube in
the rank is the initial cluster cube in the first cluster.

Rule 2: If a cube is near initial cluster cubes of previous clusters,
the cube will be clustered into the corresponding cluster, which
will contain the highest-average-number-of-ions initial cluster
cube.

Rule 3: The clustering will stop when the average number of
ions is lower than the average of all cubes.

After clustering, clusters are sorted based on the average num-
ber of ions (Eq. (2)) from maximum to minimum and marked
according to the rank. The initial cluster cubes of top clusters are
selected as binding sites, where the explicit ions will be placed at
the center.

Nion j ¼ nj
Nframe

ð2Þ



Fig. 3. Diagram of ion counting, cube sorting and clustering process. The number indicates the ions contained in the cube. Note that all numbers are invented for
demonstration, and the 4 � 4 � 4 cutting of the solvate box is for better visualization. In real cases, cubes are much smaller.
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Where the Nion_j represents the average number of ions in the jth

cluster, and the nj and Nframe represent the number of ions in the
jth clusters and the number of frames respectively.

The centers of the top initial cluster cubes are the positions for
placing explicit ions based on the clustering step (Fig. 4).
2.2.4. Optimal step: Centroid optimization
Using the centroids of top clusters is preferable to using the

center of initial cluster cubes. The calculation of the centroid of
the cluster is the optimal step, which is based on the weight ratio
of cubes in clusters.

The centroid of a cluster is calculated based on the weight ratio
R (Eq. (3)). The centroid of cluster (X, Y, Z) is calculated by Eq. (4)

Ri ¼ ni

Nt
i 2 ½1;27� ð3Þ

Where Ri is the weight ratio of the ith cube in the cluster while the
ni, Nt represents the number of ions in the ith cube and the total
number of ions in the cluster.

X ¼
Xn

i¼0

RiXi;Y ¼
Xn

i¼0

RiYi;Z ¼
Xn

i¼0

RiZin 2 ½1;27� ð4Þ

Where X, Y, Z are the coordinates of the centroid of cluster. Ri is the
weight ratio of the ith cube in the cluster, and Xi, Yi, Zi are the coor-
dinates of the center of the ith cube belonging to the cluster. The
centroids of top clusters are the positions for placing explicit ions
based on the optimal step (Fig. 4).
Fig. 4. Diagram of the differences between center of th
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2.2.5. The number of clusters selections
Due to their sizes and charge distributions, the ionic binding

sites may attract different numbers of ions. The distribution curves
of average number of ions on the testing set (Fig. S2) were not con-
sistently as distinct as those of the training set (Fig. 6 A) when clus-
ters were classified into two groups: true binding site predictions
(high average number of ions) and false binding site predictions
(low average number of ions). However, in real situation, the true
and false binding sites are not always distinct like training sets. In
this case, the net charge compensation is satisfied preferentially.
That is, the number of selected clusters multiplied by the charge
of the target ion should equal the opposite net charge of the system
(Eq. (5)). The average number of ions represents the possibility of
occurrence of ions. Cluster selection should follow the rank of
the average number of ions of clusters from the maximum to the
minimum.

nei ¼ Ntc

Nti
ð5Þ

Where the nei is the number of explicit ions. In other words, it is the
number of clusters that should be selected. Ntc and Nti are respec-
tively the net charge of the system and the charge of the target ions.
However, the number of bound ions sometimes is smaller than the
nei: When the surface of the protein is nearly neutral, some of the
‘‘bound” ions may be semi-bound ions, which are not always bound
at their binding sites. HIT provides the average number of ions (oc-
cupancy) in each binding position (cluster), which can be utilized to
set threshold and to select certain number of bound ions.
e initial cluster cube and centroid of the clusters.



Fig. 5. The original binding sites are marked as red (A, B and C) while the calculated binding sites after initial (A), clustering (B), and optimal (C) steps are marked as green,
pink, and blue. Average error (D) is calculated by the average distance between each original binding site and corresponding calculated binding site, where the error of the
point loss (A) is calculated by the average distance of two random points in the 100 Å � 100 Å � 100 Å 3D area. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. Average number of ions of top 20 clusters per frame with different cube sizes of 2.0 Å, 2.5 Å, 2.7 Å, 3.0 Å, 3.3 Å, 3.5 Å, 4.0 Å, 4.5 Å, 5.0 Å, 5.5 Å, and 6.0 Å, and the average
error (B) based on different cube size of the range from 2.0 Å to 6.0 Å with an interval of 0.1 Å.
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2.3. Training

2.3.1. Cube size optimization
The selection of cube size was tested from 2 Å to 6 Å with an

interval of 0.1 Å in a random ion training set. The distance between
the calculated binding site and the corresponding original binding
site was regarded as the error. The average error of eight binding
sites based on different cube sizes was used for comparison to
determine the optimal cube size in HIT.
2.3.2. The simulation time and accuracy
The sensitivity of HIT on MD simulation time was trained by a

NAMD training set and a kinesin dataset. The NAMD training set
was split into 0.1 ns, 0.2 ns, 0.3 ns, 0.4 ns and 0.5 ns simulations
to test the minimal simulation time for HIT to successfully find
all binding sites. The result of HIT on 10 ns MD simulation of the
kinesin dataset was used as the reference to compare the result
of HIT on 1.0 ns, 2.0 ns, . . .. . . 8.0 ns, 9.0 ns simulation of kinesin.
805
This experiment was applied to show the stability of HIT on MD
simulation time and minimal necessary simulation time for HIT
in real cases.
2.4. Testing

After the training, the optimized program was applied on the
testing set to verify the program’s functions in real biological cases.
For a myosin dataset with the net charge of �77e, 77 sodium ions
were placed at the centroids of top of 77 sodium clusters to neutral-
ize the net charge. The myosin motor domain together with sur-
rounding explicit ions were separated from the actin filament by
20Å for better visualization of electrostatic surface and electrostatic
field lines [14,44–46]. Similarly, the 36 sodium ions were placed at
the centroids of the top of 36 sodium clusters in the kinesin dataset.
The subsequent steps are as same as that of myosin dataset.

The electrostatic potential maps of myosin-actin complex and
kinesin-tubulin complex were generated by Delphi. The electro-



Fig. 7. The diagram of binding area and cube size selection (Eq. (6)).

Fig. 8. Average error of the calculated 8 binding sites for different simulation times
of NAMD training set.
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static potential on the surface was visualized by Chimera. To visu-
alize interactions, electric field lines were rendered by VMD.
3. Results and discussion

3.1. Accuracy

The program was optimized based on the training set.
3.1.1. Comparison among initial, clustering, optimal steps based on
random ions training set

In Fig. 5A, B, and C, the red balls represent the center of the orig-
inal binding sites while the green, pink and blue balls represent the
calculated binding sites based on the results after the initial step,
clustering step, and optimal step respectively. There were eight
binding sites in the training set, where the distance between each
calculated binding site and the corresponding original binding site
was regarded as the error of the binding site. Fig. 5D demonstrates
the average errors of the 8 binding sites after initial, clustering, and
optimal steps.
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The initial step (Fig. 5A) has two problems: redundancy and
incorrect calculation. Redundancy is two or more calculated bind-
ing sites near one original binding site; incorrect calculation is the
wrong calculated binding site. Both redundancy and incorrect cal-
culation problems are caused by the unexpected partition of bind-
ing sites in the ionic cloud distribution. When the ionic cloud was
cut into cubes, some original binding sites were approximately
equally divided into several cubes. In this case, these cubes yielded
a similar average number of ions for each cube (Eq. (1)) and were
comparable in rank. The initial step took these cubes, which should
have been a single binding site, as several binding sites, causing the
redundancy problem (Fig. 5A). Further, the redundant cubes also
took the place of other binding sites with a lower average number
of ions in each cube, causing incorrect calculations (Fig. 5A). Some
binding sites were divided into too many cubes, diluting the aver-
age number of ions, causing the low-ranking outcome, and result-
ing in the incorrect calculations. To avoid such problems, adjacent
cubes should be clustered to represent binding sites.

The clustering step successfully recognized all 8 binding sites,
as shown in Fig. 5B. it is Because the clustering step combined
adjacent cubes, covering each binding site into an individual clus-
ter. After that, using the initial cluster cube (the first cube in a new
cluster) of its cluster to represent corresponding binding site
avoided redundancy and incorrect calculations. The clustering step
was stopped when the average number of ions in cubes was lower
than the average of that of all cubes, avoiding over-clustering.
However, a distance between each calculated binding site was
apart from the corresponding original binding site. The method
was further optimized to reduce the error by the optimal step.

The optimal step is based on an ion’s distribution in clusters. It
uses the centroids of clusters to represent the calculated binding
sites. The ion’s distribution in clusters is represented by the weight
ratio of cubes. The original binding sites were fully covered by cal-
culated binding sites after the optimal step (Fig. 5C). In Fig. 5D, the
average error after the optimal step (0.18 Å) is far smaller than that
after the clustering step (1.33 Å), which demonstrates that this
optimal step significantly improves the accuracy of the method.

3.1.2. Cube size optimization based on random ions training set
Cube size is an important parameter for cutting the ionic cloud.

The average error was benchmarked based on the cube sizes from
2.0 Å to 6.0 Å with an interval of 0.1 Å (Fig. 6B). The cube sizes
2.0 Å, 2.5 Å, 2.7 Å, 3.0 Å, 3.3 Å, 3.5 Å, 4.0 Å, 4.5 Å, 5.0 Å, 5.5 Å



Fig. 9. Electrostatic surface representation of myosin dataset in front (A and B) and
back side (C and D), in which A and C represent the electronic surface without
explicit sodium ions (yellow balls) by the traditional method, and B and D represent
the electronic surface with explicit sodium ions by the HIT. The images are rendered
by Chimera with a color scale from �1.0 to 1.0 kT/e. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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and 6.0 Å were selected to show the average number of ions in the
top 20 clusters (Fig. 6A). Fig. 6A shows that the average number of
ions of the first 8 clusters is far higher than the others. The curves
classified the clusters into true binding site predictions (high aver-
age number of ions) and false binding site predictions (low average
number of ions). The average number of ions of the top 8 clusters is
close to 1.0, revealing that each of these clusters, representing its
corresponding binding site, always contains at least an ion trapped
in the area, which is consistent with our setting in the training set.
By contrast, clusters with much lower average number of ions (the
tail of curves in Fig. 6A), which clustered the non-binding-site-
related cubes, should be abandoned.

The ideal cube size should satisfy the full coverage of binding
site by clusters. That is, the average number of ions in each clusters
of calculated binding sites should be 1.00, and the area should be
the same as the binding sites. In the experiment, the minimal aver-
age error appeared during the cube sizes from 2.6 Å to 3.5 Å
(Fig. 6B). In the training set, the minimal distance between ions
is 5 Å, so the side length of a cubic binding site is 10 Å. Thus, the
best selection of cube size should be 3.3 Å (Fig. 7) to satisfy the full
coverage of binding sites by clusters (Eq. (6)).

L ¼ 2� D
3

ð6Þ

Where the L is the optimal length of a cube (cube size) and D rep-
resents the minimal distance between ions. The theoretical optimal
cube size of 3.3 Å appeared in the range from 2.6 Å to 3.5 Å, consis-
tent with the experiment. In Fig. 6A, the average number of ions of
the top 8 clusters with cube sizes from 2.7 Å to 5.0 Å show stable
lines slightly over 1.0, while the curves of cube sizes smaller than
2.5 Å or over 5 Å are very unstable. The instability is caused by
defective clustering due to the improper cube sizes. In summary,
the cube size of 3.3 Å is the optimal selection, which was used for
analysis of the testing set.

3.1.3. Effects of simulation time on the accuracy
Since HIT is based on the ionic information fromMD simulation,

the running time of MD simulation is crucial for HIT to get reliable
results. In theory, the MD simulation should be as long as possible
to get accurate results for applying HIT. However, running an infi-
nite MD simulation is impossible and impractical. Hence, the nec-
essary simulation running time is needed for applying HIT. Here,
we applied the NAMD training set to test how long the MD simu-
lations could provide enough information for HIT to successfully
identify all binding sites. The number of successfully identified
binding sites divided by the total number of original binding sites
is the accuracy (Fig. 8). The wrong calculated binding sites are
regarded as incorrect calculations (Fig. S3). In the case of the real
kinesin dataset, we used the 36 calculated binding sites from HIT
based on 10 ns simulations of kinesin as references (Fig. S4). The
number of calculated binding sites from HIT based on certain sim-
ulation running time, divided by the total number of original bind-
ing sites was the coverage (Fig. S4).

Two incorrect calculations happened in the 0.1 ns simulation,
and one incorrect calculation happened in the 0.2 ns simulation
(Fig. S3A and B). After 0.3 ns simulation, all binding sites were
identified correctly by HIT method (Fig. S3C, D and E). The average
error was reduced from 11 Å to 0.73 Å (Fig. 8) with an increase in
simulation time from 0.1 ns to 0.5 ns. This result shows that HIT
needs only 0.3 ns in simulation to achieve 100% accuracy. In the
real case (Fig. S4), HIT achieved stable results (70%-75% coverage)
when the simulation was longer than 4 ns (Fig. S4). The 25%-30%
coverage loss occurs when the surface of the protein is nearly neu-
tral, so that some of the ‘‘bound” ions may be semi-bound ions,
which are not always bound at their binding sites. Before 4 ns,
the coverage increased with the simulation time; after 4 ns, while
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the coverage stayed stable. Thus, HIT is not sensitive to simulation
time after 4 ns. The necessary simulation running time of kinesin
dataset (4 ns) is different from that of the NAMD training set
(0.3 ns) because the binding sites in the NAMD training set are
stable and strong. Although in real cases such as the kinesin data-
set, not all the binding sites are stable and strong, HIT still achieved
70%-75% coverage and stabilized after 4 ns. Therefore, to get reli-
able results from HIT, 4 ns simulation is enough, but longer simu-
lation is always recommended.
3.2. Testing and applications

Two biological applications were tested with HIT, including a
myosin-actin complex and a kinesin-tubulin complex. Although
no atoms were constrained or fixed in the MD simulations, both
complexes were still relatively rigid during the simulations
(Fig. S5). The movement of the centers of the myosin-actin com-
plex was 4.78 Å, and that of kinesin-tubulin complex was only
4.14 Å (Fig. S5), which is much smaller than the side length of
the expected binding sites (10 Å Fig. 7). Before the electrostatic cal-
culation, the 20 Å separation on the interface (Figs. 9–12) was
applied on both the myosin-actin complex and the kinesin-
tubulin complex. The figures were visualized by Chimera [47].
3.2.1. Compensation for net charge
As shown in Figs. 9 and 10, the comparison between the electro-

static surfaces calculated by the traditional method and by HIT
shows that HIT significantly improved the electrostatic calcula-
tions. In Fig. 9A and C, the actin filament is highly negatively
charged although some positive ions should be bound surrounding
the actin filament. The lack of the bound positive ions causes
unpredictable errors and bias in electrostatic calculations. By con-
trast, HIT (Fig. 9B and D) added the bound ions based on the ionic
cloud distribution, neutralizing the actin filament. Similarly, as
shown in Fig. 10, HIT improved the electrostatic calculation of
the highly negatively charged tubulin dimer. Without HIT calcula-



Fig. 10. Electrostatic surface representation for kinesin dataset in front (A and B)
and back side (C and D), in which A and C represent the electronic surface without
explicit sodium ions (yellow balls) by the traditional method, and B and D represent
the electronic surface with explicit sodium ions by the HIT. Images were rendered
by Chimera with a color scale from �1.0 to 1.0 kT/e. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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tions, the electrostatic potential was calculated without any bound
ions compensating for the highly charged system. For such highly
charged systems, it is unrealistic to have no bound ions. We
selected five positions (Fig. S6) to quantitatively compare the elec-
trostatic potential calculations without and with HIT. These five
Fig. 11. Electrostatic surface representation of the interface between myosin motor dom
without explicit sodium ions (yellow balls) by the traditional method, and B and D rep
rendered by Chimera with a color scale from�1.0 to 1.0 kT/e. (For interpretation of the re
article.)
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points’ potential values were calculated by DelphiForce [48]. The
results show that the average potential error was reduced from
0.93 to 0.53 kT/e in kinesin testing set by HIT (Fig. S6). Such bound
ions added by HIT improve the electrostatic potential calculations
and make it more realistic.

Fig. 11 illustrates the details on the interfaces of myosin-actin
complex. The myosin binding interface is positive, and the actin fil-
ament binding interface is highly negative. Such electrostatic dis-
tributions generate the attractive forces between the myosin
motor domain and the actin filament. With the traditional method,
the interface of myosin is positive, as shown in blue regions in
Fig. 11A and C. HIT added bound ions, which enlarged the positive
area on the interface of myosin (Fig. 11B and D). Such bound ions
may enhance the binding forces between the myosin and actin fil-
ament. The actin filament was highly negatively charged, and HIT
added bound ions, shrinking the negative binding surfaces on the
actin filament. In previous studies, the adjustment of the binding
process is controlled by myosin binding protein and is widely
accepted C [33]. It is thought to happen during the prepower stroke
state [30,49]. The shrunk negatively charged surface may be also
related to the adjustment of the binding process, making the bind-
ing more specific.

Fig. 12 illustrates the details on the interfaces of the kinesin-
tubulin dimer complex. In the traditional method (Fig. 12A and
C), the interface of the kinesin motor domain is positively charged,
and that of the tubulin dimer is negatively charged. The oppositely
charged interfaces generate intensive binding forces. As with the
effects on myosin, HIT enlarged the positive area on the kinesin
interface by adding bound ions (Fig. 12B and D), strengthening
the binding force on the interface. However, the additional bound
ions shrank the positively charged area of the interface of the tubu-
lin dimer, enhancing the specificity of the binding site.

3.2.2. The interactions between myosin motor domain and actin
filament

The myosin motor domain and actin filament were separated by
20 Å for better visualization of electrostatic field lines (Fig. 13). The
electrostatic figures were rendered by VMD. The density of the
electrostatic field lines represents the strength of interactions
ain and actin filament in two directions. A and C represent the electronic surface
resent the electronic surface with explicit sodium ions by the HIT. The images are
ferences to color in this figure legend, the reader is referred to the web version of this



Fig. 12. Electrostatic surface representation for the interface between kinesin motor domain and tubulin dimer in two directions. A and C represent the electronic surface
without explicit sodium ions (yellow balls) by the traditional method while B and D represent the electronic surface with explicit sodium ions by the HIT. The images are
rendered by Chimera with a color scale from�1.0 to 1.0 kT/e. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 13. Electrostatic field line for the interface of myosin motor domain with tropomyosin (Left enlarged view) and actin (Right enlarged view). Yellow balls represent
explicit sodium ions added by the HIT. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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between proteins. The actin filament includes G-actin and tropo-
myosin (TM). The interfaces between myosin motor domain and
TM show intensely attractive interactions (Fig. 13 Left), but the
interfaces between the myosin motor domain and G-actin yield
much weaker interactions (Fig. 13 Right). In previous TM studies
[50], the opinion about the movements of TM includes three states:
open, close, and block states. They are thought to be regulated by
Ca2+ activating troponin (Tn) to shift the position of TM. In some
studies, myosin induces another movement of TM, which is about
10� [35] or 23 Å [51], after myosin binding to actin filament. The
interactions between myosin motor domain and TM provide evi-
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dence of myosin-regulated movement of TM [51]. By contrast,
there are no distinct electrostatic interactions between myosin
motor domain and G-actins (Fig. 13 Right), which are regarded as
the main binding sites for myosin motor domain. Julian von der
Ecken showed that the HLH motif of myosin enters the hydropho-
bic groove between actins to generate strong binding force [52].
Additionally, the main binding part of cardiomyopathy loop (CM-
loop) is also primarily stabilized by hydrophobic interactions
[52]. With support from the electrostatic studies, the electrostatic
force does not dominate the interaction between myosin and G-
actins.



Fig. 14. Electrostatic field line for the interface of kinesin motor domain with a-tubulin (Left enlarged view) and kinesin motor domain with b-tubulin (Right enlarged view).
Yellow balls represent explicit sodium ions added by the HIT. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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3.2.3. The interactions between the kinesin motor domain and the
tubulin dimer

The kinesin motor domain and tubulin dimer were separated by
20 Å to better visualize the electrostatic field lines (Fig. 14). There
were two intensely attractive interactions between cut7 kinesin
motor domain and the tubulin dimer. One was on the interface
of cut7/a-tubulin and the other was on the interface of cut7/b-
tubulin. The binding strengths of cut7/a-tubulin and cut7/b-
tubulin were similar. This is consistent with the distribution of
charges on the interface of the kinesin motor domain and the tubu-
lin dimer, as shown in Fig. 11B and D. Most kinesins interact with
only b-tubulin [53,54], but kinesin-5 (cut7) interacts with both a-
and b-tubulin. This may imply the bidirectional characteristic of
kinesin-5 (cut-7) [41].

4. Conclusions

Ions are important to balance the net charges of highly charged
biomolecules, and bound ions are crucial for the functions of highly
charged biomolecules, such as DNAs, RNAs, and other biomole-
cules. In computational simulations, treating the ions properly is
challenging essential. In this work, we developed a novel method,
the hybridizing ions treatment (HIT), which hybridizes the implicit
solvent method and explicit method to realistically calculate the
electrostatic potential of highly charged biomolecules.

The implementation of HIT on two multiprotein complexes
shows that this method improved the electrostatic calculations sig-
nificantly. It predicted the positions of bound ions and then utilized
the bound ions to neutralize the biomolecules, thus providingmore
realistic electrostatic calculations. The electrostatic interaction
between the actin filament and the myosin motor domain proved
that the electrostatic interactions between the myosin motor
domain and the TM was stronger than that between the myosin
motor domain and G-actin, revealing the mechanism of the
myosin-regulated motion of the TM, which has been observed
experimentally [35,51]. The interaction between cut7 kinesin
motor domain and the tubulin dimer was calculated; it demon-
strated that the binding strengths of cut7/a-tubulin and cut7/b-
tubulin were similar. Such similar electrostatic binding interactions
may be a reason of the bidirectional motility feature for cut7 [41].

Besides the two applications in this work, application of HIT
would be useful in many other fields related to highly charged bio-
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molecules, including DNAs, RNAs, molecular motors, and other bio-
molecules. In this work, we used Na+ as a test case. The
performance of HIT is independent of ion types because HIT uti-
lizes information about ion distribution from MD simulations to
analyze which ions are bound. Current MD algorithms treat differ-
ent types of ions very reliably; thus, HIT can be expected to handle
other types of ions as well as it did Na+. However, a limitation of
HIT is that it can be applied to only biomolecules that do not have
large conformational changes. For structures with such changes,
more comprehensive algorithms would be necessary to predict
bound ions. In our test sets, protein conformations changed only
a little. Our future work will focus on the problem of biomolecules
that undergo large conformational changes. The supplementary
material and the data in this work (including training set and
results) are available online. The HIT package is available at
http://compbio.utep.edu/static/downloads/download_hit.zip.
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