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Over the past several years, multivariate approaches have been developed that address the problem
of disease diagnosis. Here, we report an integrated approach to the problem of prognosis that uses
protein microarrays to measure a focused set of molecular markers and non-parametric methods to
reveal non-linear relationships among these markers, clinical variables, and patient outcome. As
proof-of-concept, we applied our approach to the prediction of early mortality in patients initiating
kidney dialysis. We found that molecular markers are not uniformly prognostic, but instead vary in
their value depending on a combination of clinical variables. This may explain why reports in this
area aiming to identify prognostic markers, without taking into account clinical variables, are either
conflicting or show that markers have marginal prognostic value. Just as treatments are now being
tailored to specific subsets of patients, our results show that prognosis can also benefit from a
‘personalized’ approach.
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Introduction

The problem of prognosis differs from that of diagnosis in two
important ways. First, the goal of diagnosis is to assign patients
to discrete categories (affected or unaffected), whereas the goal
of prognosis is to provide a probability that a given outcome will
occur. Second, for many diseases that have been characterized
by molecular markers, clinical parameters (such as age or race)
are not relevant to their diagnosis, but are often of substantial
prognostic value. Since recent studies have shown that
diagnosis can be enhanced by multivariate approaches
(Alizadeh et al, 2000; Ramaswamy et al, 2001; Hanash, 2003;
Liang et al, 2005), we set out to develop a strategy that addresses
the challenges unique to prognosis. Our strategy incorporates
information from clinical variables as well as molecular
markers, is not biased by assumptions about the relationships
between variables and outcome, and can be implemented in the
clinic without introducing new and expensive technology.

As proof-of-concept, we developed a prognostic test for
patients initiating kidney dialysis. In the United States alone,
end-stage renal disease (ESRD) affects B100 000 individuals

per year and there are at present B400 000 individuals
undergoing chronic hemodialysis (USRDS, 2006). Of patients
with ESRD, B10% die within the first 3–4 months of initiating
treatment and there is currently no way to predict early
mortality. In general, patients with renal failure have excess
inflammation, and inflammation has been implicated in
cardiovascular events and infection—the two leading causes
of death among ESRD patients (Ridker et al, 2002; Ritz, 2004;
USRDS, 2006). As such, many dialysis-related studies have
focused on cytokines as potential prognostic markers (Kimmel
et al, 1998; Huraib et al, 1999; Zimmermann et al, 1999; Zoccali
et al, 2000; Papagianni et al, 2003; Peng et al, 2005; Tripepi
et al, 2005). To date, no single marker has been discovered that
accurately predicts outcome, and cytokine levels are not used
routinely in the clinical management of dialysis patients. We
set out to develop a model that predicts which patients are
most at risk of dying within the first 15 weeks of initiating
treatment. Critical decisions may be aided by such a model,
including setting priorities for renal transplantation, changing
the frequency or dose of dialysis, and identifying a subset of
patients at whom clinical trials could be directed.
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Results and discussion

Measuring molecular markers using protein
microarrays

To address this problem, we turned to Accelerated Mortality on
Renal Replacement (ArMORR), a prospective study of ESRD
patients that initiate dialysis at any one of 41000 dialysis
centers in 34 US states (Thadhani and Tonelli, 2006). ArMORR
contains detailed demographic and clinical data, as well as
serum samples, for all participants. For this study, we selected
208 consecutive patients who died within 15 weeks of
initiating dialysis to serve as cases, and 260 consecutive
patients who survived for at least 15 weeks to serve as
controls. Serum samples were collected within 14 days of
initiating dialysis.

To identify putative prognostic markers, we searched the
literature for cytokines or other blood proteins whose levels
correlate with kidney disease. We also included proteins
associated with hypertension or diabetes, the two leading
causes of ESRD (USRDS, 2006). From this initial list of
proteins, we chose 14 that are present in the serum of dialysis
patients and for which matched pairs of antibodies, as well as
purified antigens, are commercially available: angiogenin
(Ang), EGF, Fet-A, ICAM, interleukin-12 (IL-12), IL-1a, IL-8,
MIP-1b, RANTES, TNF-b, TNFR2, TNFR1, vascular cell
adhesion molecule-1 (VCAM-1), and VEGF (Supplementary
Table 1).

To facilitate rapid and accurate measurement of all 14
markers in all 468 patient samples, we developed a high-
throughput, multiplexed assay that mimics a sandwich
immunoassay, but in a microarray format. Capture antibodies
were arrayed at high spatial density in each well of 96-well
microtiter plates (Figure 1A), and serum samples were applied
to each array. Captured cytokines were detected using a
cocktail of biotinylated antibodies, which were then visualized
with a fluorescent conjugate of streptavidin. By using a very
bright fluorophore (PBXL-3), we were able to achieve exquisite
sensitivity without requiring enzyme-mediated signal ampli-
fication: most cytokines could be detected at a concentration of
B1 pg/ml. This greatly facilitated the rapid processing of
hundreds of arrays. In addition, multiplexing did not
compromise the assay; biotinylated detection antibodies did
not cross-react with capture antibodies and capture antibodies
did not cross-react with non-cognate antigens when tested
individually.

The absolute concentration of each cytokine in each sample
was determined by relating the fluorescence intensity of
microarray spots to a standard curve, generated for each
cytokine in a multiplexed fashion using one column of each
microtiter plate (Figure 1A and B). This strategy minimized
both plate-to-plate and day-to-day variation, since a separate
standard curve was generated on each assay plate. For
redundancy, each array contained five replicate spots of the
capture antibodies and every sample was analyzed on two
arrays. Overall, the average coefficient of variation was 6.6%
for replicate spots within an array and 11% for replicate
samples on separate arrays.

Using these microarrays, cytokine levels were measured
in all 468 patient samples (Figure 1C and Supplementary

Table 2). A cursory inspection of the data showed that for all 14
cytokines, their distribution in the population of patients who
died closely matched their distribution in the population of
patients who survived (Figure 1D). This is consistent with
previous studies showing that no single marker is predictive of
early mortality. Although it is possible that prognostic
information is embedded in correlations between pairs of
biomarkers, including cross-terms in any analysis would
increase the number of variables from 14 to 182, and thus
substantially increase the false discovery rate. We therefore
focused our efforts on the 14 first-order terms, which are also
more readily interpretable.

We found that standard data-mining methods (Duda and
Hart, 1973), including hierarchical clustering, k-means clus-
tering, nearest-neighbor methods, and principal components
analysis, all failed to distinguish those who died from those
who survived. These methods rely on metrics that quantify the
‘distance’ between patient profiles and hence require arbitrary
rescaling of variables. More important variables are not
weighted appropriately, and hence these methods are wea-
kened by noise and outliers. Decision trees and adaptive
boosting with decision stumps (Freund and Schapire, 1997)
also failed to segregate those who survived from those who
died. While these methods do not require rescaling of
variables, they work by converting continuous variables into
binary data and so discard much of the information embedded
in the quantitative dataset. More importantly, all of these
methods are best suited to classifying samples, but our goal
was to develop a continuous predictor of early mortality. We
therefore turned to regression methods as a way to extract the
relationships between variables and outcome.

Variable selection

To enable a rapid, exhaustive search for the most significant
subset of variables, we started by building linear, additive
models, using logistic regression. The log-odds that a patient
within our study dies is given by the following equation:

log -odds of death ¼ logðPsampleðdeathÞ=PsampleðsurvivalÞÞ

¼ c þ
XM

p¼1

bpxp ð1Þ

where xp is the value of the p-th variable (e.g., age or IL-12
concentration) and c and bp are constants. It is important to
note that the probabilities in equation (1) are calculated with
respect to the patients in our nested case–control study and not
with respect to the general population. We intentionally over-
sampled patients who died (stratified sampling); we correct for
this difference later based on an early mortality rate of 10%.

Since clinical data are routinely collected on each patient,
we started by building an additive model using these data
alone. We focused on 11 clinical parameters previously shown
to be associated with dialysis-related mortality (Teng et al,
2003, 2005; USRDS, 2006): gender, age, race, body mass index,
diastolic blood pressure, underlying disease, method of
vascular access, serum albumin level, serum calcium level,
serum phosphate level, and blood hemoglobin content.
To avoid over-fitting and to construct a model that incorporates
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only as many variables as are necessary, we adopted the
following strategy. If M is the number of variables in the model,
we started with M¼1 and, in an incremental manner,
performed an exhaustive search for the best M-variable model.
We continued to increment M until no M-variable model could
be found in which all of the parameters were significant
(Po0.05 for each bp). Based on this criterion, the best model
was obtained using four clinical parameters: age, diastolic
blood pressure, serum albumin, and method of vascular access
(arm or neck). We then repeated this procedure using the
serum cytokine levels measured on our microarrays. In this

case, we found that the best model was obtained using three
cytokines: angiogenin (Ang), interleukin-12 (IL-12), and
vascular cell adhesion molecule-1 (VCAM-1).

Non-parametric models and non-linearity

Although linear models are easy to implement, there is no
reason a priori why risk should vary linearly with any clinical
or molecular variable. Indeed, there is no reason why any
parametric function should describe these relationships. To
capture non-linearities, we refined our efforts by building
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Figure 1 Serum cytokine levels measured using antibody microarrays. (A) Microarrays of 14 anti-cytokine antibodies, printed in quintuplicate in each well of a 96-well
microtiter plate. Serum samples were applied to each well in columns 1–11 and two-fold serial dilutions of a mixture of the 14 cognate cytokines were applied to the wells
in column 12. (B) Standard curves generated from the purified cytokines in column 12 of the microtiter plate. (C) Serum cytokine levels of 468 patients. For visualization
only, each cytokine was normalized relative to its mean over all the samples and the patients were ordered according to the first principal component of the cytokine
profiles. The outcome of each patient is shown at the top (red: died within 15 weeks of initiating dialysis; black: survived more than 15 weeks). (D) Box-and-whiskers plots
showing the distribution of each cytokine in the two patient populations. The boxes indicate the first, second, and third quartiles and the whiskers indicate the full range of
the data.
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generalized additive models (Buja et al, 1989), in which the
log-odds of death is given by the following equation:

log�odds of death ¼ logðPsampleðdeathÞ=PsampleðsurvivalÞÞ

¼ c þ
XM

p¼1

fpðxpÞ ð2Þ

where fp(xp) is a spline, composed of piecewise cubic
polynomials, with the requirement that two connected
polynomials have the same slope where they meet. Since
any curve can be approximated by a spline, generalized
additive models are not constrained by investigator bias. Since
they are non-parametric, however, there is no straightforward
way to calculate a P-value for each variable. We therefore
relied on our previous variable selection and used non-
parametric methods to refine the models. To avoid over-fitting,
we constrained the nominal degrees of freedom of each spline
to 2. The two degrees of freedom were not concentrated at any
part of the spline, but were instead spread evenly across the
spline. In addition, since minimizing the sum-of-squared error
tends to skew the model to outliers, we took a maximum
likelihood approach. As anticipated, the generalized models
picked up fine features in the relationship between death risk
and each variable, providing further clinical insight. We found
that the death risk increases abruptly when age increases
above B60 years, when diastolic blood pressure drops below
B80 mmHg, and when serum albumin levels drop below
B3.5 g/dl (Figure 2A). These inflection points, which cannot
be identified using linear models, provide therapeutic goals for
clinicians striving to optimally manage diastolic blood
pressure or serum albumin levels.

The same non-parametric method applied to cytokines
shows that the slopes of the splines vary as cytokine levels
change (Figure 2B). Interestingly, we found that high levels of
IL-12 and Ang are associated with low risk of early mortality.
IL-12 is primarily produced by peripheral blood mononuclear
cells such as macrophages (Hsieh et al, 1993) and enhances
the cytotoxic activity of NK cells and the activation of T cells.
The serum level of IL-12 is therefore an indicator of immune
capability, which is often impaired in patients with renal
failure. Similarly, Ang, although originally implicated in tumor
angiogenesis, has been shown to be protective against
bacterial and fungal pathogens (Hooper et al, 2003) and
appears in circulation during the acute phase response to
infection (Olson et al, 1998). Ang also protects against
neutrophil degranulation, a side effect of dialysis (Horl, 2002).

Unlike IL-12 and Ang, increased levels of VCAM-1 were
found to be associated with increased risk of death. VCAM-1 is
normally absent from resting endothelium. Uremia (excessive
urea in the blood stream) induces an increase in the expression
of adhesion molecules on vascular endothelial cells and
shedding of these molecules into the circulation (Serradell
et al, 2002). In addition, VCAM-1 is involved in atherosclerosis
(Nahrendorf et al, 2006). Since cardiovascular events are the
most common causes of death among dialysis patients, it is
possible that antagonizing VCAM-1 will have beneficial
therapeutic effects. Interestingly, the three molecular markers
are produced by and act on different cell populations. This may
explain why a simple additive model is sufficient to capture
their associations with early mortality. Cytokines acting on the

same cell often exhibit synergistic or antagonistic effects
(Natarajan et al, 2006), but IL-12, Ang, and VCAM-1 are, to a
first approximation, independent.

A combined model through kernel smoothing

As a first step toward a unified model, we prepared a scatter
plot in which the two models are presented jointly, with the
clinical predictor on the horizontal axis and the cytokine
predictor on the vertical axis (Figure 3A). These predictors,
which provide the probability of early mortality within the
sample population, were obtained by first calculating the log-
odds of death by adding each variable’s contribution, as well
as the appropriate constant term, c (Figure 2 and equation 2).
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Figure 2 Generalized additive models. (A) Model built using the clinical
variables that represent the best four-variable model. (B) Model built using the
cytokine levels that represent the best three-variable model. The solid lines are
the mean of 100 bootstrap samples and the dashed lines show the variance.
Numerical values for the mean curves are provided as Supplementary
information.
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Log-odds was then converted to a probability by taking the
inverse logit according to the following equation:

predictor ¼ expðlog�oddsÞ=½1 þ expðlog�oddsÞ� ð3Þ

Using only seven parameters, the combined model is able to
separate patient outcomes effectively. While there are outliers
in any human population, the centroids of the two patient

populations are well separated (Figure 3B). Since the goal of
our approach is to provide a continuous predictor of outcome,
we estimated probability densities for death (ĝdeath) and
survival (ĝsurvival) using kernel methods. Kernel methods
amount to convolving discrete data with a Gaussian window
to obtain continuous estimates for densities. In other words,
the density estimate at each location is a weighted average of

C
yt

ok
in

e 
pr

ed
ic

to
r

Clinical predictor Clinical predictor

C
yt

ok
in

e 
pr

ed
ic

to
r

Clinical predictor

C
yt

ok
in

e 
pr

ed
ic

to
r

Probability of death

New
patient

Low
risk

Medium–high
risk

Risk
stratification

Clinical data

Cytokine data

0.9

0.3
0.5
0.7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y 

of
 d

ea
th

Cytokine predictor

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

Clinical predictor

A B

C

E

D

Figure 3 Predictors based on generalized additive models. The clinical and cytokine predictors assign patients probabilities of death with respect to the current study.
(A) Scatter plot of 468 incident dialysis patients, colored according to outcome (red: died within 15 weeks; black: survived more than 15 weeks). (B) Contour plot of the
scatter plot shown in panel A. The ‘x’ indicates the data centroid and the closed curves contain, from inside out, 30, 50, and 70% of the patients, respectively.
(C) Continuous predictor built using a combination of clinical and cytokine data. Numerical values are provided as Supplementary data. (D) Probability of death as a
function of cytokine predictor, plotted at four different values of the clinical predictor. If the clinical predictor is low (0.3 or 0.5), cytokines do not provide substantial
information. If the clinical predictor is high (0.7 or 0.9), however, cytokines provide further risk stratification. (E) Strategy for patient management. New patients
are assigned a risk of mortality based on their clinical parameters. Those that fall in the medium-to-high risk category are further stratified based on their serum
cytokine levels.
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all the discrete samples, with the weight of each sample
decreasing with increase in distance between the sample and
that location.

To ensure that our density estimations are not biased by
sample size, we generated 100 bootstrap data sets (sampling
with replacement) and performed kernel density estimation on
each data set. The final density estimate is the average of all
100 bootstrap density estimates. This procedure is often
referred to as ‘bagging’. Based on ĝdeath and ĝsurvival, and
adjusting for our over-sampling of patients who died, we went
on to compute predictors that give the overall risk of death
among new dialysis patients in the general population, based
on an orthogonal combination of clinical and cytokine data
(Figure 3C). Numerical values for our model are provided as
Supplementary information.

Although a continuous predictor is more appropriate for
prognosis than a binary classifier, there are situations in which
it is useful to classify patients based on their expected
outcome. For example, high-risk patients can be selected for
clinical trials aimed at altering their outcome. To classify
patients, a simple decision boundary can be applied to our
model: patients with a risk of early mortality above the
boundary are projected to die, whereas those below the
boundary are projected to survive. Clearly these projections
will sometimes be incorrect, especially for patients who are
close to the boundary, but model-based selection should prove
more accurate than random selection. In order to assess the
accuracy of our model with respect to binary classification, we
performed five-fold cross-validation, each time using 80% of
the data for model fitting and 20% of the data as a naı̈ve
sample for model testing. The five runs gave near-identical
results, indicating that our approach is robust (Supplementary
Figure 1A and B). At a decision boundary equal to the
overall risk of early mortality (0.10), our model classifies
patients in the general population with 7372.5% (s.e.m.)
sensitivity, 7671.8% specificity, and a positive predictive
value (PPV) of 2571.4% (for definitions, see legend to
Supplementary Figure 1).

When it is desirable to favor specificity over sensitivity, a
decision boundary of 0.20 enables patients to be selected with
reasonable sensitivity (3974.3%) and high specificity
(9471.1%), yielding a PPV of 4376.4% (Supplementary
Figure 1A and B). This strategy can be used to enrich high-risk
cases in a clinical trial by 4.3-fold relative to a trial run without
patient selection, thereby substantially decreasing expendi-
tures. This is particularly relevant given that several recent
trials designed to improve survival among dialysis patients
were negative (Besarab et al, 1998; Eknoyan et al, 2002;
Wanner et al, 2005).

Non-linear relationship between clinical
and molecular variables

In addition to defining non-linear relationships between
variables and outcome, our method also highlights non-
linearity in the relationship between clinical variables
and molecular markers (Figure 3C and D) and suggests a
simple strategy for patient management (Figure 3E). As
highlighted by the combined model, serum cytokine levels

are most useful among patients that are identified as being
at risk based on their clinical variables. If the clinical
predictor is low (left side of Figure 3C), little additional
information is gained by measuring the patient’s cytokine
levels (Figure 3D). If the clinical predictor is high (right side of
Figure 3C), serum cytokine levels markedly improve risk
assessment (Figure 3D). Thus, we find that cytokine levels are
informative, but only in a subset of patients. This may explain
why reports aiming to identify prognostic markers without
taking into account clinical variables are either conflicting
or find that cytokine levels have marginal prognostic
value (Kimmel et al, 1998; Zimmermann et al, 1999;
Tripepi et al, 2005).

Our combined model highlights potentially important
interactions between clinical variables and cytokine levels
that are readily interpretable. At a broad level, patients at risk
of early mortality based on advanced age or vascular access
through the neck are more susceptible to additional insults,
such as excess inflammation (IL-12), infection (Ang), or
cardiovascular compromise (VCAM-1). We can also speculate
on more specific, synergistic interactions between the clinical
and cytokine variables. Low serum albumin levels have been
strongly linked to impaired immune function, bacteremia, and
sepsis in hemodialysis patients (Zeltzer et al, 1997; Katneni
and Hedayati, 2007). In the context of impaired immunity, low
levels of IL-12 and Ang could exacerbate a predisposition to
infection. Similarly, low diastolic blood pressure is thought to
reflect an underlying impairment of cardiac reserve (Poldermans
et al, 1999). Impaired cardiac reserve, superimposed on
endothelial dysfunction and accelerated atherosclerosis (high
VCAM-1), would render patients especially vulnerable to
cardiac-related mortality. Thus, specific cytokine alterations
are particularly important among patients otherwise predis-
posed to related adverse outcomes. This finding converges
with the current trend toward personalized medicine: just as
certain drugs are only effective in specific subsets of patients
(Million, 2006), so too prognostic tests based on molecular
markers may be most informative following patient selection
(Figure 3E). Since commercial assays already exist for Ang,
IL-12, and VCAM-1, our model can be implemented without
introducing new and expensive technology into clinical
laboratories.

The approach taken here can also be applied to other
problems in prognosis. We used protein microarrays to
measure a focused set of molecular markers and logistic
regression to identify the most informative variables. We then
built two generalized additive models, one based on clinical
parameters and the other on molecular markers. By combining
the models in an orthogonal manner and estimating prob-
ability density functions, we computed a continuous predictor
of patient outcome. Importantly, no assumptions were made in
the final model concerning the relationships between variables
and outcome. The result was an easily interpretable model that
suggests new strategies for therapeutic intervention, provides
clear guidelines for patient management, and offers a way to
select patients for clinical trials. We anticipate that the
approach described here will prove useful not only for
prognosis but also for understanding other complex data sets
in which the relationships between variables and outcome are
non-linear or unknown.
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Materials and methods

ArMORR

ArMORR is a nationally representative prospective cohort study
of US patients who initiate chronic hemodialysis at any one of
41000 dialysis centers operated by Fresenius Medical Care, North
America. Clinical data are collected prospectively and entered into a
central database uniformly by practitioners at the point of care.
Likewise, all patient blood samples are uniformly shipped to and
processed by Spectra East (Rockland, NJ), a GCP-accredited central
laboratory.

Protein microarrays

Antibodies were spotted onto aldehyde-displaying glass substrates
using a piezoelectric microarrayer. Ninety-six identical microarrays
were fabricated in a 12� 8 pattern on the glass substrate, and the
glass was subsequently attached to the bottom of a bottomless
96-well microtiter plate using an intervening silicone gasket.
Serum samples were diluted 1:3 with HBS (10 mM HEPES, 10 mM
NaCl, 0.004% NaN3, pH 7.4) supplemented with 1% bovine serum
albumin (w/v) and applied to the arrays. To generate eight-point
standard curves for each cytokine, recombinant cytokines were mixed,
diluted in HBS supplemented with 25% fetal bovine serum, and
applied to the wells in column 12 of the microtiter plate. Captured
cytokines were detected with a cocktail of biotinylated detection
antibodies, followed by a PBXL3 conjugate of streptavidin. Replicate
spots from duplicate wells were averaged and related back to the
appropriate standard curve to obtain the concentration for each
antigen in each sample.

Data preprocessing

For non-cytokine variables, missing data and outliers
(|x�Q2|42(Q3�Q1)) were mostly due to uncorrectable errors in
clerkship, and were replaced with Q2 (Q1, Q2, and Q3 represent the
first, second, and third quartiles, respectively). For cytokines,
undetectable levels were replaced with 1/10 of the lowest non-zero
value measured, while outliers (|x�Q2|45(Q3�Q1)) were replaced
with Q275(Q3�Q1) to minimize their influence on model fitting.
Outliers and missing data represented less than 2.5% of the data.

Generalized additive models

Let xip (1pipN, 1pppM) be the value of the p-th variable of the i-th
patient, and yi be the outcome of the i-th patient: yi¼0 for survival and
yi¼1 for death. Linear additive models were fit using the ‘glmfit’
function of MatLab (The MathWorks Inc.). Variable selection was
based on the p-values of bp’s. To discover non-linearity in the
relationship between variables and outcome, the linear models were
refined by fitting generalized additive models (Buja et al, 1989) of the
form

vðiÞ 	 logðPsampleðyi ¼ 1Þ=Psampleðyi ¼ 0ÞÞ ¼ c þ
XM

p¼1

fpðxipÞ

where c is a constant, and fp(xip) is a smoothing spline. To ensure

uniqueness of the fitting,
PN
i¼1

fpðxipÞ was constrained to be zero for each p.

To avoid over-fitting, the nominal degree of freedom for fp(xip) was
constrained to be two for each p (the trace of the smoother matrix was
set to three by adjusting the smoothing parameter). Minimizing
deviance (�2K(log-likelihood)), the solution was attained by back-
fitting (Buja et al, 1989). To mimic Bayesian posterior calculations, a
collection of B¼100 bootstrap samples was generated from the original
data set and fit to the models. This resulted in a collection of fits, from
which we computed the means and variances of the constants, c’s, and
the splines, fp(xip)’s.

Kernel density estimation

Let v1(i) and v2(i) be the values of the non-cytokine and cytokine
predictors for the i-th patient, respectively. The density of death
cases in the two-dimensional v1�v2 space at point (v1, v2), where
v1 and v2 are the values of non-cytokine and cytokine predictors,
was estimated by

gdeathðu1; u2Þ ¼ g
XN

i¼1

yiKðu1 � v1ðiÞ; u2 � v2ðiÞÞ

and that of survival cases by

gsurvivalðu1; u2Þ ¼ l
XN

i¼1

1 � yið ÞKðu1 � v1ðiÞ; u2 � v2ðiÞÞ

where g and l were normalization factors such that

Z1

0

Z1

0

gdeathðu1; u2Þdu1du2 ¼
Z1

0

Z1

0

gsurvivalðu1; u2Þdu1du2 ¼ 1

and the kernel K was chosen to be Gaussian. Variance of the density
estimates was minimized by bagging (averaging estimates over a
collection of 100 bootstrap samples). We denote the ‘bagged’ estimates
as ĝdeath and ĝsurvival. The probability of death Dpopulation as a function
of v1 and v2 was computed using the following equation:

Dpopulationðu1; u2Þ ¼dĝdeathðu1; u2Þ=½dĝdeathðu1; u2Þþ
ð1 � dÞĝsurvivalðu1; u2Þ�

where d¼0.1 is the overall death rate of hemodialysis patients by the
15th week of therapy. Further details for all methods are provided as
Supplementary methods.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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