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ARTICLE INFO ABSTRACT

Keywords: A cerebral stroke is characterized by compromised brain function due to an interruption in cerebrovascular blood
Cerebral stroke supply. Although stroke incurs focal damage determined by the vascular territory affected, clinical symptoms
fMRI

commonly involve multiple functions and cognitive faculties that are insufficiently explained by the focal damage
alone. Functional connectivity (FC) refers to the synchronous activity between spatially remote brain regions
organized in a network of interconnected brain regions. Functional magnetic resonance imaging (fMRI) has
advanced this system-level understanding of brain function, elucidating the complexity of stroke outcomes, as

Brain network connectivity
Machine learning
Behavioral neuroscience
Cognitive neuroscience

Systems neuroscience well as providing information useful for prognostic and rehabilitation purposes.
Neurology We tested for differences in brain network connectivity between a group of patients with minor ischemic strokes
Medical imaging in sub-acute phase (n = 44) and matched controls (n = 100). As neural network configuration is dependent on

cognitive effort, we obtained fMRI data during rest and two load levels of a multiple object tracking (MOT) task.
Network nodes and time-series were estimated using independent component analysis (ICA) and dual regression,
with network edges defined as the partial temporal correlations between node pairs. The full set of edgewise FC went
into a cross-validated regularized linear discriminant analysis (rLDA) to classify groups and cognitive load.

MOT task performance and cognitive tests revealed no significant group differences. While multivariate machine
learning revealed high sensitivity to experimental condition, with classification accuracies between rest and attentive
tracking approaching 100%, group classification was at chance level, with negligible differences between conditions.
Repeated measures ANOVA showed significantly stronger synchronization between a temporal node and a senso-
rimotor node in patients across conditions. Overall, the results revealed high sensitivity of FC indices to task con-
ditions, and suggest relatively small brain network-level disturbances after clinically mild strokes.

1. Introduction commonly involve multiple functions and cognitive faculties that are
insufficiently explained by the focal damage alone (Carter et al., 2012;

Unlike the insidious onset and progressive neurological decline Ovadia-Caro et al., 2013).
observed in most neurodegenerative diseases, a cerebral stroke is char- The brain is organized in a network of connected brain regions that
acterized by instant damage to brain tissue due to a compromise in ce- are spatially dispersed, yet functionally linked (Bullmore and Sporns,
rebrovascular blood supply. Although stroke incurs focal damage 2009; Damoiseaux et al., 2006; Power et al., 2011; Van Den Heuvel and
determined by the vascular territory affected, clinical symptoms Pol, 2010), thus even a well localized stroke can give rise to a complex
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clinical picture of symptoms owing to the highly interconnected orga-
nization of the cerebral cortex. Contemporary brain network connectivity
models go beyond traditional lesion-symptom mapping, and advanced
imaging techniques like functional magnetic resonance imaging (fMRI)
can be used to capture disruptions of connectivity following stroke. fMRI
has shown great promise in probing alterations in brain activity for a
range of neurodegenerative (Cordova-Palomera et al., 2017; Dickerson
et al., 2016; Paulsen et al., 2004) and neuropsychiatric (Kaufmann et al.,
2015; Skatun et al., 2016; Yu et al., 2015) conditions. These techniques
may provide novel understanding of brain function, and potentially,
clinical information used to predict patient recovery, outcome and aid in
tailoring individual rehabilitation strategies.

Functional connectivity (FC) refers to the temporal correlation of
blood-oxygen-level dependent (BOLD) signal between brain regions
(Hampson et al., 2002). Resting state fMRI has revealed the brain to be
organized into functional networks of distributed brain systems, where
an orchestra of synchronous activity underlies even the simplest behav-
iors (Van Den Heuvel and Pol, 2010). Task based fMRI studies have
shown that functional connections at rest are similarly engaged during
various cognitive tasks (Raichle, 2010; Smith et al., 2009) and the in-
crease in joint BOLD activations in spatially dispersed brain regions has
revealed networks engaged during attention (Alnzs et al., 2015; Szcze-
panski et al., 2013), working memory (Compte et al., 2000), language
(Ferstl et al., 2008) and motor task (Hanakawa et al., 2008), as well as
various other cognitive operations.

Most studies relating the effect of stroke on fMRI-based FC to
behavioral deficits have used unconstrained resting state data. Siegel
et al. (2016) showed that FC was superior in predicting certain memory
deficits, whilst visual and motor impairments were best predicted by
lesion topography. Attention and language deficits were well predicted
by both. He et al. (2007) demonstrated that the severity of spatial neglect
was correlated with the degree of disruption within the contralateral
attention network connectivity.

The present work builds on a previous study that examined age dif-
ferences in functional connectivity in healthy controls during 1) an un-
constrained resting-state condition and 2) two load levels of a
constrained multiple object tracking (MOT) task (Dgrum et al., 2017).
Briefly, our previous findings demonstrated that a machine learning
approach based on FC resulted in robust discrimination between a group
of younger and a group of older healthy participants, as well as between
states of rest and effortful attention, with higher sensitivity to age group
observed during continuous tracking compared to resting state. In the
present study, we aim to apply a similar prediction model on data from
44 patients with stroke and 100 healthy controls, in order to test whether
the functional brain data alone would be sufficient to accurately identify
the stroke patients, and whether the group classification varied between
load levels. We also investigated edge-level main effects of experimental
condition and group, as well as their interactions, using repeated mea-
sures ANOVA. Lastly, since edge-level FC ultimately reflects nodal signal
changes, temporal activity on node-level was probed by computing the
standard deviation of signal amplitude (SDSA) (Garrett et al., 2010).
Brain signal variability reflects neural complexity and the ability to
dynamically transition between a range of network states (Garrett et al.,
2011), and a reduction in signal variability has been reported with
advancing age (Grady and Garrett, 2014), in patients with schizophrenia
(Kaufmann et al., 2015), and in acute stroke patients (Zappasodi et al.,
2014), indicating global loss of complexity and neurological dysfunction.

Based on the studies reviewed above and current models of brain
network dysfunction after stroke, we hypothesized 1) that multivariate
classification would yield robust discrimination between a group of sub-
acute stroke patients and healthy controls, as well as between states of
rest and task engagement. Next, we anticipated that 2) FC during task
would yield higher classification accuracy when classifying between stroke
patients and healthy controls. We accompanied the multivariate analyses
with edgewise repeated measures ANOVAs to test for effects of group, task
condition (rest, L1, L2) and their interactions. Lastly, we hypothesized 3)
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decreased SDSA for stroke patients compared to healthy controls, with
group differences more prominent during task compared to rest.

2. Methods and material
2.1. General study design

In this cross-sectional study, stroke patients and healthy controls
underwent MRI examination, including a resting state and task-based
functional image acquisition as well as cognitive and neuropsychologi-
cal assessment.

2.2. Study material and recruitment procedures

Patients were recruited from the stroke units at Oslo University hos-
pital (OUS), Diakonhjemmet hospital and Beerum hospital, Norway. In-
clusion criteria were: (i) age 18 or older, (ii) clinically and radiologically
documented stroke of ischemic, hemorrhagic or subarachnoid origin, (iii)
time of enrolment within 14 days of admittance. Exclusion criteria were:
(i) clinical condition of impaired consciousness leading to inability to
actively participate and maintain wakefulness psychiatric condition (e.g.
schizophrenia, bipolar disorder) as well as alcohol or substance abuse
that potentially could impact the interpretation of the behavioral/im-
aging data, (iii) contraindication for MRI including incompatible metal
implants, claustrophobia or pregnancy.

Clinical assessment quantifying stroke severity was performed ac-
cording to the National Institute of Health Stroke Scale (NIHSS) at the
respective stroke units by an attending physician specialized in internal
medicine, neurology or geriatric medicine at the time of discharge.
Cognition was assessed using the Montreal Cognitive Assesment (MoCA)
test after the patients were clinically stable and before discharge. The
ischemic strokes were classifyed according to the TOAST classification
(Adams et al., 1993). The patients were treated in accordance with na-
tional guidelines (Helsedirektoratet, 2017).

Healthy controls were recruited from social media and newspaper
ads. Inclusion criteria were: (i) age 18 years or older, (ii) absence of
neurologic, psychiatric condition as well as alcohol or substance abuse,
(iii) abnormal radiological findings requiring medical follow-up (e.g.
silent stroke, tumor). From a pool of 341 healthy controls recruited to a
parallel study (Richard et al., 2018), we selected n = 100 adults based on
a group-level matching with the patient sample with regards to age, sex,
education and handedness.

Written informed consent was obtained from all participants, and the
Regional Committees for Medical Research Ethics South East Norway
approved the study protocol.

2.3. MRI acquisition

MRI scans were obtained using a General Electric Medical Systems
(Discovery MR750) 3.0T scanner with a 32-channel head coil at Oslo
University Hospital. fMRI data was acquired with a T2*-weighted 2D
gradient echo planar imaging sequence (EPI) (TR: 2250 ms; TE: 30 ms; FA:
79°; voxel size: 2.67 x 2.67 x 3.0 mm; slices: 43; FOV: 96 x 96 x 129 mm.
We collected 200 volumes for the resting-state condition and 152 volumes
for the two MOT load conditions, after discarding the first five volumes.
We collected a structural scan using a sagittal T1-weighted fast spoiled
gradient echo (FSPGR) sequence (TR: 8.16 ms; TE: 3.18 ms; TI: 450 ms; FA:
12°; voxel size: 1.0 x 1.0 x 1.0 mm; slices: 188; FOV: 256 x 256 x 188
mm,; duration: 288 s), and a T2-FLAIR (TR: 8000 ms; TE: 127 ms, TI: 2240;
voxel size: 1.0 x 1.0 x 1.0 mm; duration 443 s) for lesion demarcation.

2.4. fMRI paradigms
Participants underwent one resting state run and three versions of

MOT, including one blocked and two continuous tracking runs, per-
formed in the MRI scanner during the same session (Alnzas et al., 2015).
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Here we report results from the resting-state and the two continuous load
conditions. The level of attentional demand was set at two load condi-
tions —load 1 (L1) and load 2 (L2) requiring the participants to track one
or two targets, respectively. We restricted the load level to 2 to ensure
that both groups were able to perform at a high level.

The task was presented on a calibrated MR-compatible LCD screen
(NNL LCD Monitor®, NordicNeuroLab, Bergen, Norway) with a screen
resolution of 1920 x 1080 at 60Hz, placed in front of the scanner bore.
The experimental set-up and technical specifications were performed as
described in a previous publication (Alnzas et al., 2015).

Each participant performed two runs of continuous MOT task, one
with tracking load of 1 object, and the other with 2 objects. Each
continuous tracking block lasted 7.5 min and contained 14 trials.
Detailed outline of the task is described in our previous study (Dgrum
et al., 2017). Briefly, 10 identical blue objects were presented on a grey
background screen, and after another 0.5 s the objects started moving.
The first cued object(s), or target(s), turned red after the first 0.5 s, and
remained red for a duration of 2.5 s. The tracking period lasted on
average 32 s (range, 27-37) after which the participants were instructed
to respond to a probe (green object), “yes” or “no” to whether the green
probe was one of the objects originally designated as a target, before a
new target assignment took place. The participants were instructed to
fixate on a central fixation point during the length of the run. Accuracy
and reaction times were recorded.

2.5. Lesion demarcation

Individual lesions were defined based on visible damage and
hyperintensities on FLAIR images as well as guided by independent
neuroradiological descriptions using DWI/FLAIR images. The lesions
were semi-automatically delineated in native space using the Clusterize
toolbox (de Haan et al., 2015) used with SPM8, running under Matlab
R2013b (The Mathworks, Inc., Natick, MA). The FLAIR images were
registered with the high-resolution T1 images using a linear trans-
formation with 6 degrees-of-freedom. Subsequently, each T1 image was
registered to the MNI152 standard space by computing 12
degrees-of-freedom linear affine transformation. To obtain each regis-
tered lesion mask in standard space, the native-to-standard trans-
formation matrices were applied using the nearest neighbor
interpolation. Figure 1 shows a probabilistic lesion heat-map displaying
lesion overlap across patients.

2.6. fMRI analysis

FMRI data was processed on single-subject level using the FMRI
Expert Analysis Tool (FEAT) from the FMRIB Software Library (FSL)
(Smith et al., 2004) including spatial smoothing (FWHM = 6 mm),
high-pass filtering (sigma = 64 s), motion correction (MCFLIRT) and
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single-session independent component analysis (ICA) using MELODIC
(Beckmann and Smith, 2004). In-scanner motion was calculated as the
average root mean square of the displacement from one frame to its
previous frame for each dataset.

We used FSL FIX (FMRIB's ICA-based Xnoisefier) (Salimi-Khorshidi
et al., 2014) to identify and remove noise components at the individual
level (standard training set, threshold: 20), and regressed out the esti-
mated motion parameters from MCFLIRT from the voxel-wise time series.

Next, we employed a group-level PCA approach (Smith et al., 2014) in
MELODIC to estimate group-level spatial maps representing the nodes in
our networks. We used a model order of 40 and discarded 10 noise
components based on the spatial distribution of the component maps
and/or the frequency spectrum of the components' time series (Kelly
et al., 2010), resulting in a final set of 30 components (see Figure 2).
Next, the full set of spatial maps from the group analysis was used to
generate subject-specific versions of the spatial maps, and associated
timeseries, using dual regression (Nickerson et al., 2017). First, for each
subject, the group-average set of spatial maps is regressed (as spatial
regressors in a multiple regression) into the subject's 4D space-time
dataset. This results in a set of subject-specific timeseries, one per
group-level spatial map. Next, those timeseries are regressed (as temporal
regressors, again in a multiple regression) into the same 4D dataset,
resulting in a set of subject-specific spatial maps, one per group-level
spatial map. Here, in order to remove common variance with the
lesion, we included the segmented lesion mask as an additional compo-
nent in individual dual regression runs.

After discarding the estimated time-series from the lesion, we used
the components’ time series for network modeling (Smith et al., 2011).
Here, the spatial maps are considered nodes in an extended brain
network, and the edges are defined as the temporal correlation between
each pair of nodes. Based on our previous work (Kaufmann et al., 2016),
we estimated the temporal correlations using regularized partial corre-
lations with an automated lambda estimation (Brier et al., 2015; Ledoit
and Wolf, 2003). For each individual, this approach resulted in 435
unique edges, each reflecting the strength of a node-by-node connection
represented as indexed by the regularized correlation coefficient from the
current network modeling approach, which were submitted to further
group-level univariate and multivariate analyses (see below).

For each dataset, we also computed the individual level SDSA of each
component's time series as a measure of nodal volatility or strength
(Garrett et al., 2010; Kaufmann et al., 2015).

2.7. Statistical analysis

Demographics, behavioral and clinical data were analyzed in SPSS
(IBM_Corp, 2010). Between-group differences were assessed using Chi
square tests (sex distribution) and linear models (age, neuropsychologi-
cal performance, MOT task performance).

L
- - n
z=30 z=35 7
z=60 z=65 1

Figure 1. Probabilistic lesion heat-map across all stroke patients with coordinates in MNI-space. Colors towards the yellow range indicate higher degree of lesion

overlap across the stroke group.
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Figure 2. The 30 networks derived from the ICA numbered from top left to bottom right. The color scale refers to z-scores, and all maps were thresholded at z > 3.
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In order to assess the predictive value of the FC measures on the
individual level we employed a multivariate machine learning
approach based on our previous work (Alnes et al., 2015; Dgrum et al.,
2017). We used the network edges to classify task condition across and
within groups, and also classified group (case/control) across and
within task conditions, using a regularized linear discriminant classifier
(shrinkage LDA) (Friedman, 1989; Schafer and Strimmer, 2005). To
avoid bias due to the uneven group sizes, we performed the group
classification within a nested loop of 100 iterations, in which we each
time randomly picked healthy controls to match the sample size of the
patient group. The robustness of the models was assessed using
leave-one-out cross-validation to avoid overfitting and permutation
testing across 10,000 iterations to compare the predictive value to
empirical null distributions.

In order to assess the univariate associations at the edge level, we
performed repeated measures ANOVA to test for effects of group, task
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condition (rest, L1, L2) for each edge, and their interactions. We
computed edgewise F-stats and adjusted the alpha level using false dis-
covery rate (FDR) for each test separately with an FDR level q = 0.05 and
a threshold based on the assumption of independence or positive
dependence (Nichols, 2009; Nichols and Hayasaka, 2003).

3. Results
3.1. Sample descriptives

We included 44 patients with ischemic stroke in the present analyses.
Of the 54 patients initially enrolled in the study, 10 were excluded (3
were diagnosed with diseases other than stroke, 3 had stroke-related
visual and/or motor impairments rendering them incapable of perform-
ing the MOT task, 4 were unable to complete the MRI protocol and/or the
neuropsychological tests). Table 1 provides individual patient level
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information regarding lesion location, stroke classification and days be-
tween stroke incident and MRI scan.

Table 2 summarizes key demographics, neuropsychological data and
MOT performance for both groups, as well as stroke severity for the pa-
tient group as assessed by NIHSS. There were no significant group dif-
ferences in any demographic variables, MoCA scores or MOT
performance between patients and healthy controls.

3.2. Group difference in head motion

Independent samples t-tests revealed no significant difference in
motion during rest [mean (SD)controls = -09 (.05), mean (SD)patients = -11
(.08), t =-1.54 p = .13]; during L1 [mean (SD)controls = -11 (.08), mean
(SD)patients = -13 (.09), t = -1.50, p = .14]; and during L2 [mean
(SD)controls = -14 (.14), mean (SD)patients = -15 (.09), t = -.65, p = .52].
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3.3. Classification analysis

Figure 3 shows the confusion matrices from all classification analyses.
The algorithm distinguished resting state from both load conditions with
high accuracy (mean classification accuracy across groups: 95.83%, pperm
< .0001, chance level = 30%). Classification of load conditions revealed
minimal group differences, specifically L1 yielded slightly higher accu-
racy in the control group (L1: 67% Pperm < .0001) than in the stroke
group (L1: 61.36%, pperm < -0001), for load condition L2 classification
accuracy was slightly higher for the stroke group (L2: 63.64%, Pperm <
.0001) than the healthy control group (L2: 58.00%, pperm < .0001).

We further trained the classifier to distinguish stroke patients from
healthy controls based on data from resting state or each of the two load
conditions separately. Briefly, classification performance was low, and,
except for stroke group accuracy at L2, none of the classification tasks

Table 1. Patient sample with classification according to TOAST, lesion location, lesion size and days between stroke incident and MRI scan.

Patient Lesion classification Lesion location Lesion size (in mm®) Days between stroke and MRI
1 Cardioembolism Right temporooccipital cortex 25592 5
2 Large artery atherosclerosis Right cerebellum 1216 1
8 Cardioembolism Right sided subcortical stroke 36624 3
4 Small vessel occlusion Left corona radiata 167416 8
5 Large artery atherosclerosis Right precentral gyrus, right external capsule and left postcentral gyrus 3176 3
6 Large artery atherosclerosis Right frontoparietal cortex 10808 6
7 Cardioembolism Right cerebellum 15232 2
8 Large artery atherosclerosis Pons 4664 5
9 Large artery atherosclerosis Left frontoparietal cortex 7560 8
10 Large artery atherosclerosis Right occipital cortex 7480 8
11 Small vessel occlusion Right basal ganglia 1336 8
12 Large artery atherosclerosis Left cerebellum 9680 11
s Large artery atherosclerosis Left cerebellum 6072 8
14 Large artery atherosclerosis Left occipital cortex 7256 13
i3 Large artery atherosclerosis Right middle frontal gyrus 1456 23
16 Large artery atherosclerosis Right frontal cortex 5000 5
17 Cardioembolism Right frontoparietal cortex 15904 2
18 Cardioembolism Left occipital cortex 3584 8
19 Cardioembolism Left centrum semiovale 2736 7
20 Small vessel occlusion Right basal ganglia 20128 7
21 Stroke of undetermined etiology Left parietal cortex 5584 12
22 Large artery atherosclerosis Left frontal cortex 19624 17
23 Cardioembolism Multiple emboli in right frontotemporoparietal cortex 27848 6
24 Large artery atherosclerosis Right occipital cortex 2392 7
25 Large artery atherosclerosis Three cortical and subcortical emboli left hemisphere 21624 11
26 Small vessel occlusion Left external capsule 1160 7
27 Small vessel occlusion Left thalamus 1736 4
28 Cardioembolism Right precentral gyrus 19384 8
29 Small vessel occlusion Right internal capsule 9720 11
30 Cardioembolism Right cella media 13944 9
31 Small vessel occlusion Right cerebellum 15432 11
32 Cardioembolism Medulla oblongata 2240 11
33 Small vessel occlusion Right cerebellum 12520 9
34 Small vessel occlusion Pons and left splenium of corpus callosum 5712 6
35 Small vessel occlusion Left caudate nucleus 93752 2
36 Cardioembolism Left insula and left corona radiata 10432 11
37 Cardioembolism Left temporal cortex 5072 8
38 Small vessel occlusion Bilateral cerebellum 12840 12
39 Small vessel occlusion Left temporooccipital cortex 19096 16
40 Small vessel occlusion Medulla oblongata and multiple frontoparietooccipital emboli 1552 6
41 Small vessel occlusion Pons 10712 7
42 Stroke of undetermined etiology Right postcentral gyrus and middle frontal gyrus 2504 5
43 Small vessel occlusion Left corona radiata 6152 8
44 Small vessel occlusion Left internal capsule 6728 9
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Table 2. Demographics, stroke severity, and neuropsychologic performance. Standard deviations in parentheses.

Stroke Healthy controls X/t p

N 44 100

Age 63.11 (14.8) 63.12 (11.2) t=.00 .99
Age range 34-87 35-81

Percent male 75.0 60.0 X2 = 3.00 .08
Percent righthanded 92.0 90.90 X2 = .48 .83
Years of education 15.18 (2.0) 15.82 (2.9) t=1.52 L
MoCA 26.91 (2.6) 27.65 (1.7) t=1.75 .09
NIHSS .73 (1.17) NA

MOT accuracy L1 77.7 (24.9) 84.0 (24.0) t=1.42 .16
MOT response time L1 1.13 (0.2) 1.16 (0.2) t=.66 .51
MOT accuracy L2 66.5 (23.9) 71.7 (23.5) t=1.22 .23
MOT response time L2 1.17 (0.3) 1.22 (0.2) t=1.04 .30
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Figure 3. Confusion matrices from various classification tasks. A) Classification of the three conditions (rest, L1 and L2) within the stroke group, the healthy control

group and across groups. B) Classification of the two groups (stroke and healthy controls) within resting state, load 1 and load 2.

performed substantially better than chance level as estimated using
permutation testing. Using resting state data, we achieved 47.09 %
classification accuracy for identifying the stroke group (pperm = .67) and
55.86% accuracy for identifying healthy controls (pperm = .08). Accuracy
when using L1 was 50.3% (Pperm = -40) and 47.02% (pperm = .68) for the
stroke and healthy control group, respectively. Accuracy using L2 was
50.75% (Pperm < -36) for patients and 56.84% (pperm = -04) for controls.

3.4. Edgewise univariate analysis

Figure 4 and Figure 5 summarize the results from the repeated measures
ANOVA testing for A) main effect of condition, B) main effect of group and
C) group by condition interaction effect. Repeated measures ANOVA

revealed 210 edges showing significant main effect of condition. The edges
showing strongest effect of condition were observed between nodes 14-20
(visual-DMN; F =122.62, p < .001), nodes 1-7 (DAN-left frontoparietal; F =
119.53, p < .001), nodes 1-16 (DAN-supramarginal gyrus; F = 117.76, p <
.001), nodes 1-27 (DAN-sensorimotor; F = 113.56, p < .001) and nodes
10-13 (right sensorimotor-DMN; F = 96.78, p < .001).

Among 41 edges showing nominally significant group differences,
one edge remained significant after correction for multiple comparisons
(p < .05, adjusted using FDR). The significant edge connected nodes 23
and 27 (temporal-sensorimotor; F = 23.08, p < .001), and showed a task-
dependent increase in connectivity strength for both groups, with
significantly higher connectivity in the stroke group during resting state
and both task loads.
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Figure 4. Edgewise repeated measures ANOVA. A) Main effect of condition, B) Main effect of group, C) Group by condition interaction effect. Red-crossed boxes
denotes FDR-significant edges; white-crossed boxes denote nominally significant (p < .05) edges.
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Figure 5. Differences in functional connectivity for stroke patients (blue) and healthy controls (green) during the three conditions for A) the 10 edges showing
strongest effect of condition and B) the single edge showing FDR-significant group effect. The values on the y-axes represent the strength of the relevant node-by-node
connection, as indexed by the regularized correlation coefficient from the current network modeling approach.

18 edges showed nominally significant group by condition in-
teractions, however none survived FDR correction.

3.5. SDSA

Figure 6 visualizes the results of the nodewise SDSA analysis.
Repeated measures ANOVA revealed a significant (p < .05, FDR cor-
rected) main effect of condition for 19 nodes. Strongest effect of condi-
tion was observed in node 20 [(inferior frontal gyrus), F = 205.96, p <
.001], node 15 [(DAN), F = 150.00, p < .001], node 13 [(DMN), F =
104.98, p < .001], node 24 [(cerebellum), F = 57.85, p < .001] and node
23 [(temporal lobe), F = 48.64, p < .001]. Briefly, the frontal gyrus, DAN,
DMN and temporal lobe nodes showed a task-related decrease in signal
variability whereas a task-related increase was observed in the cerebellar
node. FDR adjustment revealed no significant main effects of group and
no significant interaction between group and condition on node-wise
SDSA.

4. Discussion

Identifying sensitive imaging markers for early evaluation of severity
and prognosis is important for improving patient stratification and
personalized approaches in stroke care. In an attempt to classify patients
with sub-acute strokes from healthy controls, we used fMRI-based brain
network approaches to estimate indices of brain functional connectivity
during an unconstrained resting state, and during two load levels of a
multiple object tracking task. In line with our previous studies (Dgrum
et al., 2017), the classification analysis successfully distinguished be-
tween resting state and attentive tracking, with accuracies approaching
100% across groups. Despite the high sensitivity to experimental condi-
tion, and contrary to our initial hypothesis, the algorithm was not able to
robustly distinguish between patients and healthy controls. Based on a
notion of effort-dependent aberrations in brain functional organization,
we had anticipated that increasing cognitive demand would increase the
ability to discriminate between groups, however, the results did not
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Figure 6. Visualization of nodewise SDSA for the 30 non-noise components for stroke patients (blue) and healthy controls (green) during resting state and two load

levels of the continuous tracking task.

support this hypothesis as increasing load levels had negligible effect on
classification accuracy.

The results obtained using machine learning based classification were
largely supported by the univariate edgewise analyses. Edge-level find-
ings revealed strong main effects of condition on a range of edges, only
one edge showing significant main effects of group, and no significant
interactions between group and condition. The strong effects of experi-
mental condition were corroborated in our node-wise analysis, showing
robust modulation of task condition on SDSA in 19 of the 30 nodes, but
no significant group differences.

In our previous study (Dgrum et al., 2017), multivariate classification
using the full set of FC indices yielded robust discrimination between
groups of younger and older healthy adults as well as between states of
rest and task engagement, thus providing a sensitive framework in which
to explore age-related changes in neurobiology and their interactions
with cognitive states. Correspondingly - employing the same classifica-
tion analysis - we expected to find robust discrimination between a group
of stroke sufferers and healthy adults. Whereas results in this study
indicate high accuracy when classifying between resting state and two
levels of attentional demand; group discrimination performed at

chance-level. Machine learning and pattern recognition algorithms
enable the capture of multivariate associations beyond traditional uni-
variate analyses and are thus sensitive to differences in spatially
distributed patterns of FC, which may serve as noninvasive biomarkers
for disease. This methodological approach is congruent with the
contemporary view of the brain as an integrative network, and has
proven sensitive to distinguish group differences in multiple disease
states (Arbabshirani et al., 2013; Craddock et al., 2009; Plitt et al., 2015).
Considering the dependency of FC on cognitive context, we hypoth-
esized that a constrained cognitive task paradigm would comprise a more
sensitive context for the study of brain network alterations after a cere-
bral stroke. In our previous study (Dgrum et al., 2017), we found this
paradigm to increase classification accuracy between a group of older
and a group of younger healthy adults, and thus we expected to find a
similar trend in classifying between a group of stroke patients and a
matched cohort of healthy adults. Results did not support this hypothesis,
however, as group classification accuracy revealed no substantial dif-
ferences from resting-state to the two load levels of the attention task.
It is possible that the poor group discriminability can be partly
explained by the relative high functioning of the stroke sample. The
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inherent demands of the study biased patient selection towards less
clinically severe strokes — reflected in an average NIHSS score below 1.
Further, although healthy controls on average performed better than the
stroke group in the cognitive assessment tests as well as during both load
levels of the MOT-task, as indexed by response accuracy, these group
differences were not found to be statistically significant. Thus, neuro-
psychological data corroborated the classification analyses with results
indicating that clinically mild strokes may result in minimal behavioral
and neural network-level effects beyond the area of the lesion. Another,
not mutually exclusive aspect of the patient sample is a high level of
premorbid functioning. It is possible that patients with higher cognitive
capacity are more motivated and able to participate compared with the
general stroke population, and that mechanisms related to their pre-
morbid functioning are involved in explaining the apparent null effect.
This hypothesis needs to be tested in future studies including lower
functioning patients.

Multivariate analysis revealed chance-level discrimination between
the stroke group and the healthy controls. Univariate repeated measures
ANOVAs probing group differences revealed a significant main effect of
group in an edge connecting a temporal and a sensorimotor node where
connectivity strength was stronger in the stroke patients than the healthy
controls.

Whereas group differences were subtle, a strong network response
was observed across groups when participants were engaged in state of
effortful attention. The repeated measures ANOVA identified significant
main effects of task condition in several edges. The DAN was the network
mostly implicated, showing a task-related reduction in connectivity with
nodes in the somatosensory, supramarginal and fusiform cortices, as well
as a task-related increase in connectivity with a left-lateralized fronto-
parietal node. Indicating reduced temporal coherence between task-
relevant and task-irrelevant networks and stronger coherence within
task-relevant networks when participants were in a state of effortful
attention. Our analyses revealed no significant interactions between
group and task condition, suggesting similar task modulation in FC in the
two groups.

Using a similarly heterogenous sample of stroke patients 1-2 weeks
post-stroke incident, Baldassare et al. (2014) found an association be-
tween severity of post-stroke deficits and reduction in interhemispheric
FC between the DAN and sensorimotor networks as well as higher FC
between the usually anticorrelated DAN and DMN. Negative correlation
between the internally oriented DMN and the externally focused DAN
suggests a competitive relationship between these networks, and reduced
anticorrelation or node differentiation has been observed in advancing
age (Dgrum et al., 2016), Alzheimer's Disease (Weiler et al., 2017) and
Parkinson's Disease (Baggio et al., 2015), and might thus reflect neural
network degeneration.

Brain signal variability facilitates transition between network con-
figurations and reflects neural network adaptability and efficiency to
respond to a greater range of stimuli. Lifespan developmental trajectories
conform to an inverted U-shaped curve with less variability in the ex-
tremes of age and higher variability during adulthood (Garrett et al.,
2010; McIntosh et al.,, 2008) similar to the quadratic trajectories
observed for a range of cerebral health measures such as white matter
properties (Westlye et al., 2010; Yeatman et al., 2014) and network
modularity (Zuo et al., 2017). Studies have reported a positive associa-
tion between BOLD signal variability and superior, as well as more
consistent performance on a range of cognitive tasks (Garrett et al., 2011,
2012). Thus, we hypothesized higher signal variability for healthy adults
compared to stroke patients, reflecting healthier neural dynamics.
However, commensurate with edge-level results, our findings revealed
no significant group differences in nodal signal variability, further
corroborating the notion that clinically mild strokes yield minimal
whole-brain neuronal effects.

Whereas group differences were indiscernible, task effects were
substantial, reflected in 19 out of 30 nodes showing significant task
modulation on node SDSA. Strongest effects were observed in task-

Heliyon 6 (2020) e04854

positive frontoparietal networks and the task-negative DMN, as well as
the cerebellum. The effects of task were consistent with findings in our
previous study, where we observed both task-induced increases and de-
creases in signal variability for task-positive nodes, and a uniform
decrease in SDSA for the DMN.

The present study should be interpreted with certain considerations
in mind. The lack of discernable FC alterations between stroke patients
and healthy controls might in part be explained by the patient recruit-
ment procedure, specifically the lengthy and demanding task-fMRI
session requisite for study participation. Considerable demand was
placed on the patients having intact cognitive, motor and visual func-
tions shortly following the stroke incident. As a result, the final patient
selection did not reflect a representative cross-section of stroke patients
admitted to stroke wards, but rather patients with clinically mild strokes
which were exclusively of ischemic etiology, as ischemic strokes are
both more common and less debilitating than hemorrhagic strokes
(Andersen et al., 2009). Further, the stroke patients had lesions of
heterogenous size and localization, which could lead to effects in the
patient group being averaged out and induce variability and bias in the
group ICA. To remove common variance with the lesion proper on the
network modeling, the individual lesion masks were included as an
additional component in the dual regression run which estimated the
time series for each node. Hence, the time series that went into the
network modeling were independent of the time series of the lesion. A
possible methodological explanation for the absence of significant group
differences is the dimensionality of the networks derived from the ICA.
We estimated networks at a model order of 40 components. The ability
to detect group differences in FC may vary as a function of ICA model
order (Abou Elseoud et al., 2011), and future studies in larger samples
may be able to test the sensitivity to group differences across a range of
model orders. Results in this study should be interpreted with care as
even mild strokes induce a cascade of neurobiological responses. The
absence of group findings on node and edge-level as well as behavioral
tests does not infer an absence in neurobiological differences, but reflect
the relative insensitivities of the analyses techniques and suggests that
for a select subset of patients, the immediate effects of a cerebral stroke
can be slight.

In conclusion, the main findings in this study demonstrate that FC
patterns between a group of sub-acute stroke patients and a group of
healthy controls were indiscernible using multivariate machine learning
classification. While we observed high classification accuracy between
data obtained during an unconstrained resting state and data obtained
during a constrained attentive tracking task, this increase in cognitive
demand did not yield an increase in group classification accuracy.
Complimentary node-level analyses corroborated the edge-level findings
converging on minimal whole-brain neuronal effects of clinically mild
ischemic strokes.
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