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Abstract 

Longitudinal trajectories of vital signs and biomarkers during admission remain poorly 

characterized for COVID-19 patients despite their potential to provide critical insights about 

disease progression. We studied 1884 patients with SARS-CoV2 infection from 3/4/2020-

6/25/2020 within one Maryland hospital system and used a retrospective longitudinal framework 

with linear mixed-effects models to investigate relevant biomarker trajectories leading up to 

three critical outcomes: mechanical ventilation, discharge, and death. Trajectories of four vital 

signs (respiratory rate, SpO2/FiO2, pulse, and temperature) and four lab values (C-reactive 

protein (CRP), absolute lymphocyte count (ALC), estimated glomerular filtration rate (eGFR), 

and D-dimer) clearly distinguished the trajectories of COVID-19 patients. Prior to any 

ventilation, log-CRP, log-ALC, respiratory rate, and SpO2/FiO2 trajectories diverge 

approximately 8-10 days before discharge or death. Following ventilation, log-CRP, log-ALC, 

respiratory rate, SpO2/FiO2, and eGFR trajectories again diverge 10-20 days prior to death or 

discharge. Trajectories improved until discharge and remained unchanged or worsened until 

death. Our approach characterizes the distribution of biomarker trajectories leading up to 

competing outcomes of discharge versus death. Moving forward, this model can contribute to 

quantifying the joint probability of future biomarkers and outcomes provided clinical data up to a 

given moment.  

 

Key words: case-control design; longitudinal data; linear mixed effects models; COVID-19 

Abbreviations: ALC, absolute lymphocyte count; COVID-19, Coronavirus disease 2019; CRP, 

C-reactive protein; eGFR, estimated glomerular filtration rate; IQR interquartile range; SARS-

CoV-2, severe acute respiratory syndrome coronavirus 2  
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The pandemic caused by SARS-CoV-2 continues to progress with 134 million global cases and 

over 2.9 million deaths as of April, 9th, 2021.1 Several studies have identified risk factors for 

progression to severe disease or death from COVID-19 (the syndrome caused by SARS-CoV-

2).2-4,5-7 However, these studies have focused largely on baseline demographic (e.g. age, race) or 

clinical variables (e.g. obesity, inflammatory markers) without considering longitudinal trends in 

biomarkers and vital signs. Biomarker and vital signs trajectories leading up to initiation of 

mechanical ventilation, discharge, and death contain valuable information that can guide clinical 

decisions and elucidate the pathobiology of COVID-19. Since different therapeutics may have 

efficacy at different time points in disease progression, understanding patient trajectories before 

and after events such as mechanical ventilation can motivate specific hypotheses about which 

patients are more likely to benefit from specific interventions. Finally, an understanding of 

longitudinal trajectories of clinical features of COVID-19 will inform the development of robust 

and accurate prediction tools to guide resource allocation and inform conversations with patients 

and families. 

  

In this paper, we propose a linear mixed-effects model to retrospectively study individual 

biomarker trajectories preceding the key clinical events of initiation of mechanical ventilation, 

discharge, and death.8 We use a longitudinal case-control design and outcome-specific strata to 

describe population and individual biomarker trajectories preceding clinical events to better 

understand how biomarkers change over time relative to clinical milestones.  

 

METHODS 

Data source 
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The data source for this study was JH-CROWN: The COVID-19 Precision Medicine Analytics 

Platform Registry, which utilizes the Hopkins Precision Medicine Analytics Platform. 4 JH-

CROWN includes data from five hospitals (Johns Hopkins Hospital, Baltimore, MD; Bayview 

Hospital, Baltimore, MD; Howard County General Hospital, Columbia, MD; Suburban Hospital, 

Bethesda, MD; Sibley Hospital, Washington DC) that comprise the Johns Hopkins Medicine 

System. The institutional review boards of these hospitals approved this study as minimal risk 

and waived requirement for informed consent. All patients consecutively admitted with 

confirmed SARS-CoV-2 infection by microbiological testing from 3/4/2020-6/25/2020 were 

included. Time of admission was defined as the time the admission order was written. 

Readmissions are excluded as data represent the initial episode of care for each patient. Data in 

JH-CROWN include demographics, medical history, comorbid conditions, symptoms, vital 

signs, respiratory events, medications, and laboratory results. 

 

Study population 

We studied 1884 patients who died during admission or were discharged prior to data extraction 

on 6/25/2020 with at least one biomarker value reported during admission. Some patients were 

included in prior descriptions of the cohort.4 Ninety-nine patients in the hospital at the time of 

data extraction were excluded. The number of unique patients with reported values varied (Table 

1), with vitals reported more regularly and lab values measured less frequently. We multiplied 

the number of individual patients by length of stay to determine the total patients-days that we 

would expect measurements. For example, 1856 patients had a median of 6 (Interquartile range 

([IQR] 3-11) days with respiratory rate data (28 patients had no respiratory rate data), and of the 

total patient-days we would have expected data, 4.5% had no reported value. 
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Clinical events 

We followed patients from hospital admission until the first of mechanical ventilation, discharge, 

or death. We then followed patients who underwent ventilation until the first of discharge or 

death. Based upon outcome events, we identified four patient strata: those who were (1) admitted 

and discharged without ventilation, (2) admitted and died without ventilation, (3) admitted, 

ventilated during admission, and discharged, and (4) admitted, ventilated during admission, and 

died. Patients with multiple ventilation episodes were followed from initial date of ventilation 

until their final outcome. We compared demographics and clinical characteristics across the four 

strata using Kruskal Wallis tests for continuous variables, ꭓ2 tests for categorical variables, and 

Fisher’s exact tests with Monte Carlo simulation for categorical variables with expected values 

below 5. Clinical outcomes (ventilation, discharge, or death) were treated as independent strata 

indicators in longitudinal models. In effect, we performed a longitudinal case-control study by 

identifying patients based on their outcome and retrospectively characterizing trajectories 

preceding their outcome.  

 

Biomarkers 

We selected eight biomarkers (4 vital signs and 4 laboratory measures) to represent components 

of inflammation, end-organ disease, and coagulation: respiratory rate, temperature, pulse, 

SpO2/FiO2, C-reactive protein (CRP), estimated glomerular filtration rate (eGFR), D-dimer, and 

absolute lymphocyte count (ALC). These factors are associated with severe illness and/or death 

from COVID-19.9 Respiratory rate, temperature, CRP and ALC were found to be predictive of 

severe disease or death from COVID-19, and SpO2/FiO2 was associated with mortality using 
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data from the Johns Hopkins Health System.4 Elevated pulse is a marker of sepsis and may be 

associated with worse mortality in sepsis as well as in COVID-19.10 Patients with pre-existing 

kidney disease are at higher risk of death from COVID-19.11 Acute kidney injury is also a risk 

factor for poor outcomes.12 D-dimer is associated with severe COVID-19 and has been linked to 

mortality from COVID-19.13 Laboratory values reported with ">" or "<" (4.0% of values) were 

changed to reflect the limit of quantification. For example, if D-dimer was reported as <0.19, 

0.19 was used. We calculated daily means for each biomarker. 

 

Trajectories preceding clinical events 

We aimed to characterize population-average and patient-specific biomarker trajectories leading 

up to major clinical outcomes. For each patient, we treated the day of their outcome as day 0 and 

studied repeated biomarker measures over previous time from their admission until day 0. 

Previous time from admission to day 0 will be designated as 𝑢. If a patient was admitted for 

COVID-19 20 days before their outcome, we considered admission to be day –20. This approach 

aligned patient trajectories proximal to event time rather than admission time and allowed us to 

characterize trajectories immediately preceding major clinical outcomes. 

  

We fit two linear mixed-effects models for each biomarker. The first model describes trajectories 

from admission up to a patient’s first major event of interest: ventilation, discharge, or death. The 

second model describes trajectories from the initiation of ventilation up to their second event of 

interest: discharge or death. Patients admitted prior to ventilation contribute data to both models. 

The fixed effects were indicators for the patient’s outcome stratum and interactions between the 

stratum and smooth time trends represented by natural cubic splines with three degrees of 
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freedom. The random effects included random intercepts and smooth time trends represented by 

natural cubic splines with three degrees of freedom. Random effects allowed each patient's 

trajectory to deviate from the mean level and shape of their subgroup’s overall curve. We 

performed likelihood ratio tests to test the null hypotheses that the smoothed time trend is the 

same across the outcome strata for each model. To study the total effect of each covariate on the 

level or shape of each biomarker's trajectory, we fit a series of models in which the interaction 

between the smooth time trend and outcome stratum also interacted with one of the patient 

characteristics: age, sex, race, body mass index, Charlson comorbidity score, or smoking status. 

We displayed the estimated intercept (value at day 0) and 3-day linear trend preceding day 0 

(from day –3 to 0) for each subgroup in Web Figures 1 and 2. Programs were written in the R 

statistical language.14 

 

Statistical Model 

Let 𝑌𝑖𝑗 be the jth biomarker value for patient i measured at day 𝑡𝑖𝑗 from the day of admission for 

which 𝑡𝑖𝑗 = 0. Denote baseline predictor variables as 𝑋𝑖 and major clinical events as 𝐸𝑖. 

Consider two possible events after admission denoted by 𝐸𝑖
(1)

 and 𝐸𝑖
(2)

where  𝐸𝑖
(1)

=

0, 1, 2 indicates whether the patient was discharged, died, or mechanically ventilated. When 

𝐸𝑖
(1)

= 2, then 𝐸𝑖
(2)

∈ {0, 1} indicating whether the person who required ventilation was 

eventually discharged or died. The 5 clinical outcome strata coincide with 4 patient groups: 

𝐸𝑖
(1)

= 0: those who were admitted, never received mechanical ventilation, and were discharged, 

𝐸𝑖
(1)

= 1: those who were admitted, never received mechanical ventilation, and died, 𝐸𝑖
(2)

=

0|𝐸𝑖
(1)

= 2: those who were admitted, received mechanical ventilation, and were discharged, and 
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𝐸𝑖
(2)

= 1 | 𝐸𝑖
(1)

= 2: those who were admitted, received mechanical ventilation, and died. We 

define 𝜏𝑖
(1)

 to be the date of event 𝐸𝑖
(1)

for patient 𝑖 and 𝜏𝑖
(2)

the date of event 𝐸𝑖
(2)

 conditioned on 

event 𝐸𝑖
(1)

. We define the times prior to each of the events by 𝑢𝑖𝑗
(1)

= 𝑡𝑖𝑗 −  𝜏𝑖
(1)

 ,  𝑢𝑖𝑗
(2)

= 𝑡𝑖𝑗 −

 𝜏𝑖
(2)

. The linear mixed effects models take the form: 

𝑌𝑖𝑗
(𝑘)

|𝐸𝑖
(𝑘)

, 𝑢𝑖𝑗
(𝑘)

, 𝐛𝐢
(𝐤)

= 𝛽0
(𝑘)

+ 𝐸𝑖
(𝑘)

𝑓(𝑘)(𝑢𝑖𝑗
(𝑘)

;  𝛃
(𝐤)

, 𝜈(𝑘)) + 𝑏0𝑖
(𝑘)

+ 𝛿(𝑘)(𝑢𝑖𝑗
(𝑘)

;  𝐛𝐢
(𝐤)

, 𝜉(𝑘)) + 𝜖𝑖𝑗
(𝑘)

 

where 𝑘 = 1 pre-ventilation or k = 2  post-ventilation. 𝜈(𝑘) is the degree of freedom that 

determines smoothness of the fixed effects curves (population-averaged) while 𝜉(𝑘) determines 

smoothness of the random effects curves (patient-specific). The residuals  𝜖𝑖𝑗
(𝑘)

 are assumed to 

follow a multivariate Gaussian (normal) distribution with mean 0 and covariance matrix 

𝑅(𝑘) 𝑜𝑟 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝑅(𝑘)). Similarly, we assume the random effects 𝐛𝐢
(𝐤)

=

(𝑏0𝑖
(𝑘)

, 𝑏1𝑖
(𝑘)

, … , 𝑏𝜉𝑖
(𝑘)

) ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝐆(𝐤)). In this application to simplify the computation, we 

do not model the joint distribution of 𝐛𝐢
(𝐤)

 for 𝑘 = 1, 2 but treat trajectories pre- and post-

ventilation as if they are independent. Questions involving both models can be addressed by 

fitting the two linear mixed effects in a single equation with random effects 𝒃𝒊 =

(𝐛𝐢
(𝟏)

, 𝐛𝐢
(𝟐)

) ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝐆). 

 

Model checking 

We created boxplots of standardized residuals against deciles of predicted values for each �̂�𝑖𝑗 to 

identify systematic deviations from residual mean of 0 or changing spread among residuals that 

would indicate an incorrect model for the variance of the observations. We produced quantile-

quantile plots against the standard Gaussian distribution for the standardized residuals to assess 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T



9 
 

the Gaussian assumption regarding random effects and residual errors. If we discovered a 

systematic deviation, we used bootstrapping to obtain robust variance estimators for the 

estimated population intercepts and linear slopes. 

 

RESULTS 

Study population 

From among the 1884 patients, 1445 patients were admitted and discharged without ventilation, 

118 were admitted and died without ventilation, 202 were admitted, ventilated during admission, 

and discharged, and 119 were admitted, ventilated during admission, and died. Compared to the 

other patient strata, patients discharged without ventilation were more likely to be younger 

(median [IQR] age 56 [41-71]), Latinx or Other race/ethnicity, have lower Charlson comorbidity 

scores, and less likely to have been a current/former smoker (Table 2). Patients who died without 

ventilation were more likely to be older (median [IQR] age 82.5 [73-91]), White, and have a do 

not resuscitate/do not intubate order. Patients who were ventilated and discharged were more 

likely to be younger (median age 60.5 [51-71]), Black, non-smokers, and to have lower Charlson 

comorbidity scores. Patients who were ventilated and died were more likely to be older (median 

age 70 [63-75]), Black, to have Charlson score of 1-2, and to have signed a do not resuscitate/do 

not intubate order. Among patients who were never ventilated, median times to discharge and 

death were 4 days (IQR 2-7) and 5 days (IQR 1-9), respectively. Among those ventilated, median 

times from admission to discharge or death were 20 days (IQR 12-32) and 11 days (IQR 6-20). 
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Mean biomarker trajectories preceding patient outcomes are displayed with 95% confidence 

intervals in Figure 1. The final fitted values on the day of each outcome (day 0) are presented 

with 95% CI in Table 3, and the slope of values over the three days leading up to each outcome 

are presented in Table 4. All likelihood ratio tests of the null hypothesis that the smoothed time 

trend is the same across the outcome strata were statistically significant (p<0.001). Patients 

discharged without ventilation had lower (better) log-CRP (Figure 1A), log-D-dimer (Figure 

1C), pulse (Figure 1I), respiratory rate (Figure 1K), and temperature (Figure 1O) and higher 

(better) eGFR (Figure 1E), log-absolute lymphocyte count (log-ALC) (Figure 1G), and 

SpO2/FiO2 (Figure 1M) at discharge as compared to those who died without ventilation or were 

ventilated. Without ventilation, there was a divergence in log-CRP, log-ALC, respiratory rate, 

and SpO2/FiO2 trajectories approximately 8-10 days prior to death or discharge (Figures 1A, 1G, 

1K, and 1M). We observed a steady increase in D-dimer that began 20 days prior to death 

without ventilation and minimal change in D-dimer among those discharged without ventilation 

(Figure 1C). Similarly, we observed a steady increase in eGFR that began 20 days prior to 

discharge without ventilation and minimal change in eGFR among those who died without 

ventilation apart from the last few days leading up to death (Figure 1E). In the days leading up to 

ventilation, patient trajectories more closely followed trajectories of patients who died without 

ventilation.   

   

Among patients who required ventilation, log-CRP (Figure 1B), eGFR (Figure 1F),  log-ALC 

(Figure 1H), respiratory rate (Figure 1L), and SpO2/FiO2 (Figure 1N) trajectories diverged 

between ventilated patients who were discharged versus died, such that values improved for 

those who were discharged or remained unchanged/worsened for those who died. This 
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divergence was observed 10 or more days prior to discharge or death. Log-D-dimer and 

temperature diverged between ventilated patients who were discharged versus died 

approximately 8 days prior to discharge or death (Figures 1D and 1P). Almost immediately 

following ventilation, eGFR and SpO2/FiO2 increased among patients who were discharged 

compared to minimal changes among those who died (Figures 1F and 1N). Patients who required 

ventilation and were discharged reached SpO2/FiO2, respiratory rate, log-ALC, pulse, and 

temperatures comparable to patients who were discharged without ventilation. In contrast, 

patients discharged after ventilation were discharged at lower eGFRs than patients discharged 

without ventilation (75.9 [95% CI 70.1-81.7] vs 92 [90.2-93.8]) (Table 3). Log(D-dimer) 

remained elevated among patients discharged after ventilation when compared to those who were 

discharged without ventilation (0.6 [0.3-0.9] vs -0.2 [-0.3-0.1]) (Table 3). 

 

Trajectories by subgroup 

Among those discharged without ventilation, at the time of discharge there was minimal 

variation by sex, age, race, body mass index, Charlson score or smoking status in log-CRP, 

pulse, respiratory rate, SpO2/FiO2 or temperature. Black and White patients over 75 years old 

and patients with Charlson score >3 were discharged at lower eGFR. Among patients who 

required ventilation, older Black and White patients were ventilated at lower eGFR, patients with 

Latinx and Other race/ethnicity were ventilated at higher respiratory rate. Among patients who 

were ventilated and discharged, those with Charlson comorbidity score >3 were discharged at 

lower eGFR, D-dimer, log-ALC, and pulse than those with Charlson score of 0 or 1-2 (Web 

Figure 1). Fitted linear trends over the three days prior to each outcome across demographic and ORIG
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clinical subgroups are plotted in Web Figure 2. Overall, there were minimal variations in slope 

across subgroups. 

 

Individual trajectory 

The models offer patient-specific estimated curves (Figure 2). Here, we plotted observed and 

fitted biomarker trajectories for one random patient pre- and post-ventilation. The patient’s 

observed and fitted values overlay the population-average model-based estimates to illustrate 

individual variation from trajectories conditioned on outcome. 

 

Model checking 

For all but one of the biomarkers, the distributions of residuals were approximately Gaussian 

with constant variance. The respiratory rate models produced residuals such that spread 

increased with the mean value (Web Figure 3) indicating an incorrect model for the variance of 

estimate coefficients. We introduced robust variance estimators for the respiratory rate models 

and used bootstraps with 500 iterations to determine whether this improved model validity. 

Quantile-quantile plots of bootstrapped estimates indicated that inferences with respect to 

respiratory rate using robust variance were valid (Web Figure 4).  

 

DISCUSSION 

In this study of 1884 patients with COVID-19 from one hospital system, we used a 

generalization of the case-control design by stratifying longitudinal data analysis into outcome-

specific strata. We describe population and individual biomarker trajectories conditioned on each 

stratum. Trajectories of four vital signs (respiratory rate, SpO2/FiO2, pulse, and temperature) and 
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four lab values (CRP, ALC, eGFR, and D-dimer) clearly distinguished patients admitted for 

COVID-19 based on their outcomes of 1) discharge without ventilation, 2) death without 

ventilation, 3) ventilation, 4) discharge after ventilation, and 5) death after ventilation. Prior to 

any ventilation, we observed a divergence in log-CRP, log-ALC, respiratory rate, and SpO2/FiO2 

that began approximately 8-10 days prior to the event, such that values improved steadily up 

until discharge or remained unchanged or worsened up until ventilation or death. Following 

ventilation, we again observed a divergence in log-CRP, log-ALC, respiratory rate, SpO2/FiO2, 

and eGFR that began 10 or more days prior to death or discharge, such that values improved 

until discharge and remained unchanged or worsened until death. 

 

Our findings that SpO2/FiO2 decreased in the days prior to death and increased in the days prior 

to discharge in patients with COVID-19 are consistent with how this measure correlates with the 

severity of lung injury and likelihood of death in patients who are mechanically ventilated or 

who have acute respiratory distress syndrome (ARDS) from other causes.15,16 Multiple studies 

have identified respiratory failure and ARDS as primary complications in patients with COVID-

197,17 and previous work by our group identified an association between SpO2/FiO2 and mortality 

in COVID-19.4 Respiratory rate is also an important predictor of severe disease or death in 

patients with COVID-19.4,18,19 This is not surprising given its prominence in well-known 

prediction calculators for in-hospital mortality.20-22 Our trajectories of respiratory rate and 

SpO2/FiO2 extend these findings to illustrate patients’ progression to respiratory failure prior to 

ventilation, and subsequent failure to regain respiratory function among patients who died 

following ventilation. We are also able to observe how patients who died following ventilation 

were unable to regain respiratory function while ventilated while those who survived to 
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discharge following ventilation had clear and immediate improvement in respiratory function (as 

defined by a higher SpO2/FiO2 and lower respiratory rate). Given the ease with which these vitals 

can be measured continuously, understanding these trajectories is the first step towards applying 

a patient’s individual data points to robust population-level trajectories and gaining a better 

understanding of that patient’s disease course.   

 

Our findings that patients who died with or without ventilation had persistently higher CRP and 

D-dimer and lower ALC are consistent with existing work on the importance of these 

inflammatory markers in severe SARS-CoV-2 infection.4,5,23-25 For example, Manson et al. 

plotted CRP and ALC over time from a cohort of 269 patients with a positive swab for SARS-

CoV2 and observed slightly elevated CRP among patients who required ventilation and among 

those who died.26 We are able to provide further insight into the behavior of these inflammatory 

markers leading up to and following ventilation. Specifically, in our study population, CRP 

consistently declined over the 15 days prior to discharge following ventilation, yet remained 

elevated without decreasing among those who went on to die following ventilation. ALC 

consistently increased among patients who survived to discharge following ventilation, but 

increased only slightly and after some delay among those who died following ventilation. 

Understanding the behavior of these biomarkers independent of each other is clinically helpful as 

models of inflammatory states emerge.20 

 

In our study, patients discharged following ventilation regained SpO2/FiO2, ALC, respiratory 

rate, and temperatures comparable to those of patients discharged without ventilation. In 

contrast, these patients were discharged at lower eGFRs and higher D-dimer than those 
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discharged without ventilation. The eGFR trajectories we observed support existing evidence 

that COVID-19 leads to acute kidney injury in up to 25% of patients who develop critical 

illness.27 This damage is likely compounded by the potential injurious impact of ventilation on 

kidney function.28,29  The D-dimer trajectories we observed are consistent with prior studies 

linking elevated D-dimer to an increased risk of severe disease and death.30 We were able to 

further show that patients who survived to discharge but required ventilation maintained elevated 

D-dimer when compared to patients who were discharged without ventilation. 

 

The limitations of this study merit discussion. Our approach to modeling biomarker trajectories 

relevant to SARS-CoV-2 does not incorporate joint modeling of biomarkers which might provide 

a unified picture of health and disease trajectory for a given patient. We are bound by the 

restrictions of case-control design and unable to predict a given patient’s trajectory, as each 

model requires that we know the patient’s outcome. Thus, these models cannot be used for 

prediction, but rather provide the foundation for jointly modeling biomarker trajectories and the 

probability of each event. For patients on a ventilator, we modeled SpO2/FiO2 rather than 

PaO2/FiO2 which would allow minor changes to be better observed. SpO2/FiO2 data were 

reported more frequently for our study population and allowed us to compare pre- and post-

ventilation trajectories. We chose to retrospectively characterize trajectories based on ventilation, 

discharge, or death, yet there is significant variation in health status and quality of life for 

patients within each of these outcomes, and in particular among discharged patients. We 

observed significant improvements in health up until discharge, yet there are unknown long-term 

consequences for patients discharged following COVID-19 that should be considered in the 

context of this work.31 When interpreting patient trajectories, we must also recognize the 
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circularity between medical and pharmacological interventions (mechanical ventilation and 

otherwise) and the biomarkers we observed throughout a patient’s hospital stay. Biomarkers are 

both drivers of and responses to physician intervention and complicate our understanding of 

temporality in a longitudinal analysis. Finally, we did not capture the dynamic nature of 

ventilation (e.g. adjustments in ventilator mode, FiO2, positive end expiratory pressure, tidal 

volume, respiratory rate, neuromuscular blockade, sedation, prone positioning, etc.), but treated 

patients for whom mechanical ventilation was ever initiated as on ventilation until their outcome 

and characterized their trajectories as a distinct patient population. 

 

We provide robust population-level and patient-specific biomarker and vital sign trajectories for 

a cohort of patients admitted for COVID-19. This work is unique in our attempt to understand 

these trajectories conditioned on and preceding distinct outcomes.  Our findings align with 

existing research, provide insight into the dynamic behavior of biomarkers and vital signs prior 

to clinical events, and lay the foundation for a joint modeling approach to predicting trajectories 

using population-level and patient-specific data. 
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Table 1. Frequency of Patients With at Least One Reported Measure, Number of Reported Measures per Patient, and Unmeasured 

Data per Vital Sign and Laboratory Value From the JH-CROWN Registry Study of Patients With COVID-19, Baltimore MD 

3/4/2020-6/25/2020. 

Biomarker 

Unique 

patients 

Daily 

Measures 

Days with Reported 

Measures  

(Median [IQR]) 

Days with Reported 

Measures (Range) 

Percent of days with 

no reported measurea 

Overall 1884b 16747 6 (3-11) 1-81  

Respiratory rate 1856 16117 6 (3-11) 1-79 4.5% 

Temperature 1845 16130 6 (3-11) 1-79 4.4% 

Pulse 1856 16183 6 (3-11) 1-79 4.1% 

SpO2/FiO2  1847 16132 6 (3-11) 1-79 4.4% 

D-dimer 1471 5668 2(1-5) 1-38 66.4% 

CRP 1461 5631 3 (1-5) 1-40 66.6% 

eGFR 1715 13023 5 (2-9) 1-77 22.8% 

ALC 1316 7551 3 (1-6) 1-59 55.3% 

Abbreviations, COVID-19 Coronavirus disease 2019, IQR interquartile range, CRP C-reactive protein, eGFR estimate glomerular 

filtration rate, ALC absolute lymphocyte count 

aThe denominator or days with an expected measure was based on number of individual patients and length of stay of each patient. 

bNumber of patients with at least one biomarker measure 
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Table 2. Comparing Characteristics of Patients With COVID-19 Across Outcome Strata From Within the JH-CROWN Registry, 

Baltimore MD 3/4/2020-6/25/2020. 

Patient characteristics 

Admitted -> 

Discharged 

N=1445 

Admitted -> 

Died 

N=118 

Admitted -> 

Ventilated-> 

Discharged 

N=202 

Admitted -> 

Ventilated -> 

Died 

N=119 

Total 

N=1884 

  No. % No. % No. % No. % No. % 

Days to initial ventilation, 

Med [IQR]a, b   

1.00  

[0, 2.00] 

1.00  

[0, 3.00]  

Days to discharge/death, 

Med [IQR] a,b 

4.00 

[2.00, 7.00] 

5.00 

[1.00, 9.00] 

20.0 

[12.0, 31.8] 

11.0 

[6.00, 20.0] 

5.00 

[2.00, 10.0] 

Age, Med [IQR] a, b 
56.0 

[41.0, 71.0] 

82.5 

[73.0, 91.0] 

60.5 

[51.0, 70.8] 

70.0 

[63.0, 80.5] 60.0 [44.0, 73.0] 

Age, % a           

   <60 817 56.5 3 2.5 99 49.0 22 18.5 941 49.9 

   60-74 356 24.6 30 25.4 72 35.6 52 43.7 510 27.1 

   >74 272 18.8 85 72.0 31 15.3 45 37.8 433 23.0 

Race, % a           

   White 376 26.0 59 50.0 52 25.7 43 36.1 530 28.1 

   Black 499 34.5 39 33.1 80 39.6 47 39.5 665 35.3 

   Latinx/Other 569 39.4 20 16.9 70 34.7 29 24.4 688 36.5 

   Missing 1 0.1 0 0 0 0 0 0 1 0.1 

Sex, %c           

   Female 702 48.6 49 41.5 85 42.1 65352 43.7 888 47.1 

   Male 743 51.4 69 58.5 117 57.9 67 56.3 996 52.9 

Body mass index, %a           

   <18.5 35 2.4 12 10.2 4 2.0 2 1.7 53 2.8 

   18.5 to <25 304 21.0 44 37.3 32 15.8 29 24.4 409 21.7 

   25 to <30 379 26.2 23 19.5 48 23.8 30 25.2 480 25.5 

   30 to <40 405 28.0 14 11.9 58 28.7 27 22.7 504 26.8 

   ≥40 116 8.0 2 1.7 22 10.9 13 10.9 153 8.1 
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   Missing 206  14.3 23 19.5 38 18.8 18 15.1 285 15.1 

Diabetes a,d 374  25.9 28 23.7 72 35.6 46 38.7 520 27.6 

Smoking history, % a           

   Current Smoker 78  5.4 7 5.9 19 9.4 6 5.0 110 5.8 

   Former Smoker 284  19.7 35 29.7 57 28.2 33 27.7 409 21.7 

   Never Smoker 957  66.2 48 40.7 109 54.0 50 42.0 1164 61.8 

   Missing 126  8.7 28 23.7 17 8.4 30 25.2 201 10.7 

Charlson, Med [IQR] a 1.00 [0, 2.00] 2.00 [1.00, 3.00] 1.00 [0, 3.00] 1.00 [1.00, 3.00] 1.00 [0, 2.00] 

Charlson, % a           

   0 658  45.5 14 11.9 74 36.6 27 22.7 773 41.0 

   1-2 580  40.1 56 47.5 76 37.6 59 49.6 771 40.9 

   3-4 170 11.8 38 32.2 35  17.3 20 16.8 263 14.0 

   >5 30 2.1 10 8.5 17  8.4 13 10.9 70 3.7 

   Missing 7 0.5 0 0 0  0 0 0 7 0.4 

Ever DNR/DNI, % a 175 12.1 112 94.9 35  17.3 105 88.2 427 22.7 

Abbreviations, COVID-19 Coronavirus disease 2019, IQR interquartile range, DNR/DNI do not resuscitate/do not intubate  

aComparison across four strata statistically significant such that p<0.001. 

bValues expressed as median [IQR]. 

cComparison across four strata groups not statistically significant. 

dDiabetes history missing for 7 patients (0.4%). 
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Table 3. Fitted Values on the Day of Clinical Event (Discharge, Death, or Ventilation) From Outcome-Stratified Longitudinal Models 

Among Patients Within the JH-CROWN Registry, Baltimore MD 3/4/2020-6/25/2020. 

Biomarker 

Trajectory from 

Admission to 

Discharge 

Trajectory from 

Admission to 

Death 

Trajectory from 

Admission to 

Ventilation 

Trajectory from 

Ventilation to 

Discharge 

Trajectory from 

Ventilation to 

Death 

 

Fitted 

value 95% CI 

Fitted 

value 95% CI 

Fitted 

value 95% CI 

Fitted 

value 95% CI 

Fitted 

value 95% CI 

Log(CRP) 0.8a 0.7, 0.9 2.3 1.9, 2.7 2.5 2.3, 2.7 0.3 0, 0.6 2.5 2.1, 2.8 

Log(D-dimer) -0.2 -0.3, -0.1 1.3 1, 1.7 0.5 0.4, 0.7 0.6 0.3, 0.9 1.8 1.5, 2.1 

eGFR 92 90.2, 93.8 51.7 44.8, 58.5 67.8 63.4, 72.3 75.9 70.1, 81.7 48.9 41.4, 56.4 

Log(ALC) 0.4 0.4, 0.4 -0.3 -0.5, -0.1 -0.2 -0.3, -0.1 0.5 0.4, 0.6 0 -0.1, 0.2 

Pulse 81.6 80.7, 82.4 103.9 101.1, 106.7 91.3 89.2, 93.4 86.1 83.9, 88.3 100.7 97.9, 103.6 

Respiratory rate 18.6 18.4, 18.8 25.9 25.1, 26.6 26.1 25.6, 26.6 19.2 18.4, 20.1 27.3 26.2, 28.4 

SpO2/FiO2 460.5 456.6, 464.3 163.5 149.7, 177.3 238.6 228.8, 248.3 450.6 438.4, 462.8 157.1 141.4, 172.9 

Temperature 36.7 36.7, 36.7 37.3 37.237.4 37.3 37.2, 37.3 36.5 36.4, 36.6 37 36.8, 37.1 

Abbreviations, ALC absolute lymphocyte count, CI Confidence intervals, COVID-19 Coronavirus disease 2019, CRP C-reactive 

protein, eGFR estimated, eGFR estimated glomerular filtration rate 

aFitted values calculated from 16 outcome-stratified longitudinal models (for each biomarker pre- and post-ventilation). In each 

column, the fitted value represents the population-average value on the day of the final event in each trajectory (i.e. day 0 in each 

model). For example, patients in our study population who were admitted and discharged without requiring mechanical ventilation 

were discharged with an average log-C-reactive protein of 0.8 (95% confidence interval 0.7, 0.9).  
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Table 4. Linear Trend in Values Over the Three Days Preceding the Clinical Event From Outcome-Stratified Longitudinal Models 

Among Patients Within the JH-CROWN Registry, Baltimore MD 3/4/2020-6/25/2020. 

 

Biomarker 

Trajectory from 

Admission to 

Discharge 

Trajectory from 

Admission to 

Death 

Trajectory from 

Admission to 

Ventilation 

Trajectory from 

Ventilation to 

Discharge 

Trajectory from 

Ventilation to 

Death 

 Trend 95% CI Trend 95% CI Trend 95% CI Trend 95% CI Trend 95% CI 

Log(CRP) -0.2a -0.2, -0.1 0 -0.1, 0.2 0.1 0, 0.2 -0.2 -0.2, -0.1 0 -0.1, 0.1 

Log(D-dimer) -0.1 -0.1, 0 0.1 0, 0.2 0.1 0.1, 0.2 -0.1 -0.1, 0 0.1 0, 0.2 

eGFR 0.5 0.2, 0.9 -2.6 -4, -1.1 1.2 0.4, 2.1 0.3 -0.5, 1.1 -1.2 -2.3, -0.1 

Log(ALC) 0 0, 0.1 0 -0.1, 0 0 -0.1, 0 0 0, 0 0 0, 0 

Pulse -0.5 -0.7, -0.2 3 2.1, 3.8 1 0.3, 1.8 -0.1 -0.7, 0.5 2.1 1.3, 2.9 

Respiratory rate -0.3 -0.4, -0.3 0.6 0.3, 0.9 1.1 0.8, 1.3 -0.5 -0.8, -0.3 0.2 -0.2, 0.5 

SpO2/FiO2 17.4 15.9, 18.9 -14.2 -19.8, -8.6 -29 -34, -24 19.2 15.7, 22.7 -8.3 -13.1, -3.6 

Temperature -0.1 -0.1, 0 0.1 0.1, 0.1 0 0, 0 0 -0.1, 0 0 0, 0 

Abbreviations, ALC absolute lymphocyte count, CI Confidence interval, COVID-19 Coronavirus disease 2019, CRP C-reactive 

protein, eGFR estimated glomerular filtration rate 

aTrend represents the slope of fitted values over the three days immediately preceding the event (i.e. day -3 to day 0 in in each model). 

For example, for patients in our study population who were admitted and discharged without requiring mechanical ventilation, log-C-

reactive protein decreased 0.2 units per day over the three days prior to discharge. 
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Figure legends 

 

Figure 1. Mean Population-Average and Patient-Specific Biomarker Trajectories Preceding 

Clinical Events for Eight Select Measures Using Outcome-Stratified Longitudinal Models 

Among Patients Within The JH-CROWN Registry, Baltimore MD 3/2020-6/2020. For panels A-

H y-axes are fitted values for each biomarker and x-axes are days leading up to the clinical 

outcome. Thick lines represent population-average trajectories, and thin lines represent the 

patient-specific trajectories. The left-sided panel for each biomarker (A, C, E, G, I, K, M, and O) 

represents data among those "Not Vented." Trajectories in these panels are shown from 

admission to death in red, from admission to discharge in blue, and from admission to 

mechanical ventilation if later ventilated in green. The right-sided panel for each biomarker (B, 

D, F, H, J, L, N, and P) represents data among those "Post-Ventilation." Trajectories in these 

panels are shown from ventilation to death in red and from ventilation to discharge in blue. 

Individual trajectories of patients with less data more closely approximate the population-

average curve with the same outcome. Line thickness is representative of the number of patients 

with available data at that time point: widest width the curves represent data from >1000 

patients, and at the narrowest fewer than 50 patients. 95% confidence intervals are shown in 

corresponding colors with transparency. Abbreviations, CRP C-reactive protein, eGFR estimated 

glomerular filtration rate, ALC absolute lymphocyte count  
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Figure 2. Patient-Specific Trajectories for One Randomly Selected Patient Based on Outcome-

Stratified Longitudinal Models Among Patients Within The JH-CROWN Registry, Baltimore 

MD 3/2020-6/2020. The randomly selected patient was discharged on day 0 and mechanically 

ventilated 15 days prior to discharge (day -15, dashed line). For panels A-P, solid gray lines with 

closed circles represent fitted values of this patient’s trajectory and dashed gray lines with open 

circles represent observed values of this patient’s trajectory. The patient was followed from 

admission until mechanical ventilation on day -15, and from ventilation until discharge on day 0. 

Dashed vertical line on day -15 delineates the pre- and post-ventilation data. Solid red, blue, and 

green lines represent population-average curves leading up to death, discharge, and ventilation in 

the overall population pre- and post-ventilation. The patient had no reported C-reactive protein 

(CRP) or D-dimer data over the 4 days prior to discharge. Abbreviations, CRP C-reactive 

protein, eGFR estimated glomerular filtration rate, ALC absolute lymphocyte count 
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