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Although somatic mutations influence the pathogenesis, phenotype, and outcome of

myeloproliferative neoplasms (MPNs), little is known about their impact on molecular

response to cytoreductive treatment. We performed targeted next-generation sequencing

(NGS) on 202 pretreatment samples obtained frompatientswithMPN enrolled in the DALIAH

trial (A Study of Low Dose Interferon Alpha Versus Hydroxyurea in Treatment of Chronic

Myeloid Neoplasms; #NCT01387763), a randomized controlled phase 3 clinical trial, and 135

samples obtained after 24 months of therapy with recombinant interferon-alpha (IFNa) or

hydroxyurea. The primary aim was to evaluate the association between complete

clinicohematologic response (CHR) at 24 months and molecular response through sequential

assessment of 120 genes using NGS. Among JAK2-mutated patients treated with IFNa, those

with CHR had a greater reduction in the JAK2 variant allele frequency (median, 0.29 to 0.07;

P, .0001) comparedwith those not achieving CHR (median, 0.27 to 0.14; P, .0001). In contrast,

the CALR variant allele frequency did not significantly decline in those achieving CHR or in

those not achieving CHR. Treatment-emergent mutations in DNMT3A were observed more

commonly in patients treated with IFNa compared with hydroxyurea (P 5 .04). Furthermore,

treatment-emergent DNMT3A mutations were significantly enriched in IFNa–treated

patients not attaining CHR (P5 .02). A mutation in TET2, DNMT3A, or ASXL1was significantly

associated with prior stroke (age-adjusted odds ratio, 5.29; 95% confidence interval,

1.59-17.54; P 5 .007), as was a mutation in TET2 alone (age-adjusted odds ratio, 3.03; 95%

confidence interval, 1.03-9.01; P5 .044). At 24months, we foundmutation-specific response
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Key Points

� Treatment with IFNa
was associated with
distinct molecular
responses in patients
with JAK2-mutated
MPN compared with
CALR-mutated MPN.

� Among patients
treated with IFNa who
did not achieve CHR,
DNMT3A mutations
emerged more
frequently than non-
DNMT3A mutations.
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patterns to IFNa: (1) JAK2- and CALR-mutated MPN exhibited distinct molecular responses;

and (2) DNMT3A-mutated clones/subclones emerged on treatment.

Introduction

Philadelphia chromosome–negative chronic myeloproliferative neo-
plasms (MPNs) comprise essential thrombocythemia (ET), polycythe-
mia vera (PV), and primary myelofibrosis (PMF), including prefibrotic
myelofibrosis (Pre-MF). MPNs are clonal hematopoietic neoplasms
characterized by excessive proliferation of mature hematopoietic cells
from one or more of the myeloid lineages.1,2 The diseases are associ-
ated with an increased risk of thrombohemorrhagic events and
reduced life expectancy compared with the general population.3,4

ET and PV may progress into post-ET and post-PV myelofibrosis,
and all disease entities may transform into secondary acute myeloid
leukemia, which has a dismal prognosis.5

Themajority of MPNs are driven by somatic mutations in JAK2,CALR,
or MPL that arise in the hematopoietic stem cell compartment (ie,
MPN phenotypic driver mutations).6 All 3 MPN phenotypic driver
mutations lead to uncontrolled myeloproliferation by constitutive acti-
vation of the JAK-STAT signal transduction pathway through ligand-
independent activation and hypersensitivity of type I cytokine recep-
tors.7 Approximately 95% to 97% of patients with PV and 50% to
60% of patients with ET or PMF harbor a point mutation in exon 14
of the JAK2 gene.8-11 The remaining 2% to 3% of patients with PV
carry mutations in JAK2 exon 12.12 CALR orMPL mutations are pre-
sent in the majority of patients with JAK2-negative ET and PMF.
Approximately 10% of patients with MPN carry none of the 3 pheno-
typic driver mutations and are referred to as “triple-negative.”13,14

The emergence of next-generation sequencing (NGS) has expanded
insights into the molecular complexity of MPN, and .50 genes have
been reported to be recurrently mutated.15 Mutations outside of
JAK2, CALR, and MPL (ie, concomitant somatic mutations) are
observed in .50% of patients with MPN, and increasing numbers
are observed with disease progression.16,17 The most common clas-
ses of concomitant mutations consist of genes involved in DNA meth-
ylation (TET2, DNMT3A, IDH1, and IDH2), chromatin modification
(ASXL1 and EZH2), RNA splicing (SRSF2, U2AF1, SF3B1, and
ZRSR2), signaling pathways (LNK/SH2B3, CBL, NRAS, KRAS,
and PTPN1), transcription factors (RUNX1 and NFE2), and DNA
damage response/stress signaling (TP53 andPPM1D).7 Thesemuta-
tions may precede the acquisition of the phenotypic driver mutation or
occur subsequently in the same or a different clone.16 Concomitant
mutations may contribute to phenotype and are often associated
with disease progression and inferior survival.15,18-20 Furthermore,
the presence of specific concomitant mutations,18 as well as the total
number19 and order of acquisition, influences prognosis.21

Internationally, the most widely used first-line cytoreductive therapy in
patients with high-risk ET or PV is hydroxyurea (HU). HU effectively
reduces elevated peripheral blood counts and the risk of thrombo-
sis.22-24 However, there is conflicting evidence regarding the potential
of HU to induce a continuous reduction of the JAK2V7617F-mutated
clone.25-27 In contrast, recombinant interferon-a (IFNa), which has
been used off-label for the treatment of MPN for .3 decades, has
been associated with molecular responses in JAK2V617F-mutated
MPN.28-36 A subset of patients achieve molecular remissions and

normalization of the bone marrow after long-term treatment, which
may be sustained in a minority of patients even after treatment discon-
tinuation, an effect never observed for HU.36-39

Increasing knowledge regarding the complex molecular landscape of
MPN has enabledmore accurate personalized prediction of outcomes
and improved clinical decision-making, particularly in myelofibrosis.
However, the predictive role of somatic mutations regarding response
and resistance to cytoreductive therapy remains unclear. To address
this question, we performed serial genomic profiling on patients
enrolled in the DALIAH trial (A Study of Low Dose Interferon Alpha
Versus Hydroxyurea in Treatment of Chronic Myeloid Neoplasms),
which to our knowledge is the largest randomized controlled phase
3 trial of IFNa vs HU in patients with newly diagnosed MPN.

Methods

Trial design

Genomic profiling by NGS was performed in 202 pretreatment sam-
ples and 135 samples obtained after 24 months from patients
enrolled in the DALIAH trial. This study was an investigator-initiated,
open-label, randomized controlled, parallel-design, clinical phase 3
trial (ClinicalTrials.gov identifier: #NCT01387763). The study was
approved by the Danish Regional Science Ethics Committee and
the Danish Medicines Agency and was conducted in compliance
with the Declaration of Helsinki and Good Clinical Practice. All study
participants provided written informed consent before entering the
trial.

Patients aged$18 years with a diagnosis of ET, PV, Pre-MF, or PMF
according to the World Health Organization 2008 criteria40 and evi-
dence of active disease regardless of risk group were eligible to be
enrolled. Detailed inclusion and exclusion criteria are provided in the
supplemental Methods. Patients aged.60 years were randomly allo-
cated (1:1:1) to receive HU, IFNa-2a, or IFNa-2b; patients aged#60
years were randomly allocated (1:1) to receive IFNa-2a or IFNa-2b.
Treatment dose was modified based on efficacy and toxicity accord-
ing to predefined dose levels (supplemental Tables 1 and 2). Clinico-
hematologic response (CHR) assessment was performed by central
review according to the modified 2009 European LeukemiaNet (ET,
PV, and Pre-MF)41 and the 2005 European Myelofibrosis Network cri-
teria (PMF).42

NGS analysis

Genomic profiling comprised targeted NGS of 120 myeloid
malignancy–associated genes and 1609 informative single nucleotide
polymorphisms on chromosome 9p. Detailed information on the
sequencing, including a list of sequenced genes and genomic coordi-
nates of all target regions, is provided in the supplemental Methods
and supplemental Tables 6 to 8.

Statistical methods

Statistical methods are presented in the supplemental Methods.
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Results

Clinical characteristics at baseline

NGS was performed on 202 pretreatment samples from patients ran-
domly allocated to treatment with HU (n5 38) or IFNa-2a (n5 164),
and 135 samples were obtained 24 months after initiation of therapy
(HU, n5 34; IFNa, n5 101) (Figure 1). Seventy-two patients (36%)
had ET, 89 (44%) had PV, 16 (8%) had Pre-MF, and 25 (12%) had
PMF (Table 1). The median age was 62 years (range, 20-88 years),
and 112 (55%) were male. Thirty-nine (19%) patients had experi-
enced previous major thrombosis, including 17 (8%) with prior stroke
(ET, 4 of 72 [6%]; PV, 10 of 89 [11%]; Pre-MF, 1 of 16 [6%]; PMF, 2
of 25 [8%]). Twenty-one (10%) patients received HU from screening
and until random allocation in the study due to major thrombosis at
diagnosis or platelet count.10003 109/L at screening. The median
time from screening to randomization in these patients was 21 days
(range, 3-45 days). Prior phlebotomy was performed in 90 (45%)
patients, with a median number of 3 phlebotomies in each patient
(range, 1-29). Due to the design of the study, median age was higher
in patients allocated to receive HU (68 years; interquartile range [IQR],
64-71 years) compared with IFNa (59 years; IQR, 46-67 years).
Baseline demographic and clinical characteristics are presented in
Table 1 and supplemental Tables 9 and 10.

Somatic mutations at baseline

Somatic mutations in 34 genes were detected by NGS in 191 (95%)
patients at baseline. MPN phenotypic driver mutations were present in
92% of the patients: JAK2 (74%; JAK2V617F, 73%; JAK2 exon 12,
1%),CALR (14%; type 1, 11%; type 2, 3%), orMPL (5%) (Figure 2;
supplemental Table 11). No somatic mutations were detected in 11

patients (5%), 1 mutation was detected in 88 patients (44%), 2 muta-
tions in 55 patients (27%), and $3 mutations in 48 patients (24%).
The number of mutations was significantly different based on diagno-
sis (mean number6 standard deviation of mutations in ET, 1.66 1.5;
PV, 2.0 6 1.3; Pre-MF, 2.1 6 1.2; PMF, 1.9 6 1.9). Although the
presence of phenotypic driver mutations is usually considered mutu-
ally exclusive, we found coexistence of JAK2V617F and MPL muta-
tions in 3 patients (1%). Sixteen (8%) patients (ET, n 5 12; PV, n
5 2; Pre-MF, n 5 1; PMF, n 5 1) were triple-negative for JAK2,
CALR, andMPLmutations. The median JAK2 variant allele frequency
(VAF) at baseline was 0.25 (range, 0.01-0.94), and JAK2 uniparental
disomy (JAK2-UPD) was observed in 28%. The median JAK2 VAF
was significantly higher among patients with JAK2-UPD (0.48; IQR,
0.35-0.68) compared with those without JAK2-UPD (0.15; IQR,
0.09-0.26; P , .0001). The most frequent concomitant mutations
at baseline affected 3 genes: TET2 (24%), DNMT3A (16%), and
ASXL1 (10%). Spliceosome gene mutations were found in 4%
(SF3B1, n 5 6; SRSF2, n 5 2; U2AF1, n 5 1; ZRSR2, n 5 1),
and mutations involving RAS/MAPK signaling, including CBL,
KRAS, NRAS, NF1, PTPN11, and RIT1, were detected in 6%.

Association between somatic mutations and clinical

characteristics at baseline

At baseline, mutations in JAK2 were detected in 98% of patients with
PV and 53%, 69%, and 56% of patients with ET, Pre-MF, and PMF,
respectively. JAK2-UPD was most commonly found in patients with
PV (54%) (Figure 2), where it was significantly associated with higher
hemoglobin level (P 5 .0003), higher hematocrit level (P , .0001),
higher neutrophil count (P 5 .039), and lower platelet count (P ,
.0001) compared with PV patients without JAK2-UPD (supplemental

Assessed for eligibility
(n = 877)

Randomized (n = 206)
HU (n = 38), IFN� (n = 168)

NGS at baseline (n = 202)
HU (n = 38), IFN� (n = 164)

Remained on study therapy
at 24 months (n = 121)

HU (n = 33), IFN� (n = 88)

NGS at 24 months (n = 116)
HU (n = 32), IFN� (n = 84)

Discontinued study therapy
within 24 months (n = 81)

HU (n = 5), IFN� (n = 76)

NGS at 24 months (n = 19)
HU (n = 2), IFN� (n = 17)

Excluded (n = 671)
Did not meet inclusion criteria, declined
to participate, or excluded for
other reason (n = 671)

MPN diagnosis refuted by reevaluation
(n = 2)
Never initiated therapy (n = 1)
No sample available for NGS (n = 1)

Figure 1. Trial flowchart. NGS was performed on 202 primary MPN samples and 135 samples obtained 24 months after initiation of therapy with either HU or IFNa (IFNa-2a or

IFNa-2b). One patient allocated to IFN-a died within 24 months.

12 APRIL 2022 • VOLUME 6, NUMBER 7 GENOMIC PROFILING OF AN RCT OF IFNa VS HU IN MPN 2109



Table 12). JAK2-UPD was not detected in any patients with ET.
Among patients with ET, Pre-MF, and PMF, patients with ET were
more likely to present with triple-negative disease (ET, 18%; PV,
2%; Pre-MF, 6%; PMF, 4%; P5 .007), which was significantly asso-
ciated with younger age compared with patients harboring 1 of the 3
phenotypic driver mutations (median, 44 years vs 64 years;P5 .006).
Among patients with ET, Pre-MF, and PMF, mutated CALR was sig-
nificantly associated with higher platelet count (P5 .004) or elevated
lactate dehydrogenase levels (P 5 .0008) compared with patients
with JAK2 (1/2MPL)-mutated MPN or patients with triple-negative
MPN (supplemental Table 13).

The most frequent concomitant mutations (ie, in TET2, DNMT3A,
ASXL1, RAS/MAPK signaling, and RNA splicing genes) among all
MPN subtypes were detected in both JAK2-mutated and JAK2

wild-type (WT) patients. However, coexistence of ASXL1 was signif-
icantly associated with JAK2, as it was present in 13% of JAK2-
mutated patients compared with 2% of JAK2 WT patients (P 5
.029) (supplemental Table 14). Mutations in TET2, DNMT3A, or
ASXL1 were significantly associated with older age ($60 years)
(54% vs 26%; P , .0001), as well as with a history of major throm-
bosis (odds ratio [OR], 2.11 [95% confidence interval (CI), 1.04-
4.37; P 5 .038]; age-adjusted OR, 1.96 [95% CI, 0.94-4.12; P 5
.073]) and in particular prior stroke (OR, 5.21 [95% CI, 1.64-16.67;
P 5 .005]; age-adjusted OR, 5.29 [95% CI, 1.59-17.54; P 5
.007]) compared with patients without these mutations. Also, TET2
alone was significantly associated with prior stroke (age-adjusted
OR, 3.03; 95% CI, 1.03-9.01; P 5 .044). No other significant base-
line associations were detected between clinical characteristics and
baseline mutational status.

Table 1. Baseline demographic and clinical characteristics according to treatment group

HU (n 5 38) IFNa-2a (n 5 82) IFNa-2b (n 5 82) Total (n 5 202)

Patient-related variable

MPN subtype

ET 9 (24) 30 (37) 33 (40) 72 (36)

PV 21 (55) 34 (41) 34 (41) 89 (44)

Pre-MF 1 (3) 9 (11) 6 (7) 16 (8)

PMF 7 (18) 9 (11) 9 (11) 25 (12)

Age, median (range), y 68 (60-80) 60 (21-88) 58 (20-81) 62 (20-88)

Age group

#60 y 0 (0) 45 (55) 45 (55) 90 (45)

.60 y 38 (100) 37 (45) 37 (45) 112 (55)

Biological sex

Female 14 (37) 37 (45) 39 (48) 90 (45)

Male 24 (63) 45 (55) 43 (52) 112 (55)

History of major thrombosis 6 (16) 21 (25) 12 (15) 39 (19)

History of prior stroke 3 (8) 10 (12) 4 (5) 17 (8)

Phenotypic driver mutation

JAK2* 31 (84) 62 (80) 57 (80) 150 (74)

CALR 6 (16) 10 (14) 13 (17) 29 (14)

MPL† 1 (3) 4 (6) 5 (6) 10 (5)

Triple-negative 1 (3) 4 (5) 11 (12) 16 (8)

Disease-related variable

Hemoglobin, mmol/L 9.3 (7.9-10.2) 9.0 (8.3-9.9) 8.9 (8.1-9.5) 9.0 (8.2-9.8)

Hematocrit, vol % 45 (41-52) 45 (42-47) 43 (40-47) 44 (41-49)

WBC, 3109/L 9.9 (8.1-11.5) 8.9 (7.6-11.6) 9.5 (7.8-12.7) 9.4 (7.7-11.7)

Platelets, 3109/L 664 (552-895) 712 (480-930) 615 (484-852) 667 (502-904)

Lactate dehydrogenase, U/L 242 (216-288) 232 (180-296) 224 (177-294) 229 (184-294)

Splenomegaly on imaging, $13 cm 15/30 (50) 21/50 (42) 31/60 (52) 67/140 (48)

Disease-related symptoms‡ 19 (50) 51 (62) 40 (49) 110 (54)

Pretreatment

HU 4 (11) 10 (12) 7 (9) 21 (10)

Phlebotomy 17 (45) 34 (41) 39 (48) 90 (45)

Data are presented as no. (%) or median (IQR) unless otherwise indicated.
*Mutated JAK2V617F or JAK2 exon 12 mutation.
†Coexistence of mutated MPL and JAK2V617F was detected in 3 patients.
‡Constitutional symptoms, microcirculatory disturbances, or pruritus.
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Treatment discontinuation within 24 months

At 24 months, 40% of all patients had discontinued study medication
(supplemental Table 15). The most frequent reason for treatment dis-
continuation across all treatment groups was treatment-related toxic-
ity: HU, 8%; IFNa-2a, 30%; and IFNa-2b, 38%. One patient with
CALR-positive PMF and a history of chronic obstructive pulmonary
disease died of pneumonia after �17 months of treatment with
IFNa-2b. None of the patients transformed to post-ET/PV myelofibro-
sis or secondary acute myeloid leukemia.

CHR at 24 months

At 24 months, 121 patients were on study medication and eligible for
CHR assessment. Missing data made response evaluation impossible
in 3 of these patients. CHR was achieved in 21% (95% CI, 10-37)
treated with HU and 26% (95% CI, 19-33) treated with IFNa
(IFNa-2a, 30%; IFNa-2b, 21%) (P5 .68) (Figure 3A-B; supplemental
Table 16). Median time to CHR was 5.7 months (IQR, 1.8-10.5
months) for HU, 4.9 months (IQR, 2.1-8.9 months) for IFNa-2a, and
6.0 months (IQR, 1.8-10.1 months) for IFNa-2b. Of note, 31 (19%)
patients allocated to receive IFNa received either pretreatment with
HU (n 5 17) and/or combination treatment with IFNa and HU (n 5

28) within 24 months after treatment allocation (supplemental Table
17). At CHR assessment at 24 months, 7 patients (HU, n 5 1;
IFNa, n 5 6) received combination treatment. The median duration
of combination treatment among these patients was 14.3 months
(range, 6.2-18.4 months). Two were in CHR, 1 was not evaluable
due to missing data, and 4 were nonresponders.

Somatic mutations on serial sampling

NGS was performed in 135 patients at 24 months, including 113 of
121 patients eligible for CHR assessment (HU, n5 32; IFNa, n5 84)
and in 19 who had discontinued study treatment (HU, n5 2; IFNa, n
5 17) (supplemental Figure 2). Phenotypic driver mutations remained
detectable by NGS at 24 months in all patients. JAK2 VAF decreased
in 94% of the patients treated with IFNa and in 75% treated with HU

(P 5 .01). The median absolute JAK2 VAF reduction (baseline to 24
months) was significantly greater in patients treated with IFNa (HU
0.05 vs IFNa 0.11; P 5 .005). The change in CALR VAF with treat-
ment was more heterogeneous. TheCALR VAF decreased in 80% of
patients allocated to HU and 78% allocated to IFNa (P 5 .99)
(median VAF reduction, HU 0.02 vs IFNa 0.04; P5 .63) (supplemen-
tal Table 16). Among patients treated with IFNa, those with JAK2-
UPD had a greater absolute JAK2 VAF reduction (median, 0.49 to
0.17) compared with those without JAK2-UPD (median, 0.15 to
0.08) (P , .0001). No significant reduction in JAK2 VAF was
observed among patients with JAK2-UPD treated with HU (median,
0.44 to 0.30) than those without JAK2-UPD (median, 0.22 to 0.08)
(P 5 .76).

Mutations were detected in 30 genes at 24 months, including 3 not
observed at baseline (EP300, IDH2, and PHF6) (supplemental
Figure 2). Thirty-eight treatment-emergent mutations were detected
in 32 patients (HU, n 5 14; IFNa, n 5 18), of whom 4 patients had
discontinued treatment.

DNMT3A was the most frequent treatment-emergent mutation (n 5

15 [39%]), followed by TET2 (n 5 4 [11%]), ASXL1 (n 5 3 [8%]),
PPM1D (n 5 3 [8%]), and TP53 (n 5 3 [8%]) (Figure 4A; supple-
mental Table 18). The VAF of treatment-emergent mutations was
low (median, 1.5%), and they primarily occurred in JAK2-positive
patients (97%) (Figure 4B). The NGS platform enabled simultaneous
evaluation of the following: (1) the molecular response of MPN pheno-
typic driver mutations; (2) JAK2-UPD at 9p; and (3) detection of
treatment-emergent mutations in any of the .100 genes assessed,
allowing us to uncover the complexity of molecular responses (Figure
4C-D). Treatment-emergent mutations in DNMT3A were more com-
monly observed in patients treated with IFNa (11 of 18 [61%]) than
HU (3 of 14 [21%]) (P5 .046). In contrast, treatment-emergent muta-
tions inPPM1D or TP53weremore common in patients who received
HU (5 of 14 [36%]) compared with IFNa (1 of 18 [6%]) (P 5 .06)
(supplemental Figure 3).

Diagnosis

Mutation

9p-UPD

VAF

Mutation

VAF

Mutation

VAF

Variant allele fraction Polycythemia vera
Essential thrombocythemia
Pre-fibrotic myelofibrosis
Myelofibrosis

0.01
0.50

1

TET2
DNMT3A
ASXL1

RAS/MAPK
Other

74.3%

28.2%

14.4%

5.0%

23.8%
16.8%

9.9%
5.4%

23.3%

Diagnosis
V617F
Exon 12

JAK2 mutation
Type 1
Type 2

CALR mutation

JA
K
2

C
A
LR

M
P
L

MPN
driver

Figure 2. Genomic profiling of somatic mutations in baseline samples by NGS (comutation plot). Each column represents 1 patient (n5 202), and the rows represent

different somatic mutations. The VAF for each phenotypic driver mutation is color coded. The frequency of specific somatic mutations is listed on the right border of the figure.

Somatic mutations in 34 different genes were detected in 191 (95%) patients, including 92% with MPN phenotypic driver mutations: JAK2, 74%; CALR, 14%; or MPL, 5%.

JAK2-UPD was observed in 28% and was significantly associated with PV (Kruskal-Wallis test, P , .0001). The most frequent concomitant mutations affected 3 genes: TET2

(24%), DNMT3A (16%), and ASXL1 (10%). 9p-UPD, uniparental disomy of chromosome 9p.
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Association between somatic mutations and

complete CHR on serial sampling

The probability of CHR at 24 months was not associated with JAK2
(P 5 .27), JAK2-UPD (P 5 .35), or CALR (P 5 .10) baseline muta-
tional status or concomitant mutations in DNMT3A, TET2, or
ASXL1 (P 5 .40) in the entire cohort or when stratifying according
to treatment group (HU vs IFNa). Analysis for associations with other
concomitant mutations was not feasible due to their low frequency in
the cohort. CHR at 24 months was obtained in 34 (23%) of 150
patients with JAK2 mutations, 11 (37%) of 29 patients with CALR
mutations, and in 18 (21%) of 84 patients with DNMT3A, TET2, or
ASXL1 mutations. The JAK2 VAF declined significantly in patients
randomized to receive HU achieving CHR (median, 0.25 to 0.08;
P 5 .03) but not in those not achieving CHR (median, 0.30 to
0.26; P5 .10). Among JAK2-positive patients randomized to receive
IFNa, those attaining CHR had a greater reduction in the JAK2 VAF
(median, 0.29 to 0.07; P , .0001) compared with patients who did
not achieve CHR (median, 0.27 to 0.14; P , .0001) (Figure 5A). In
contrast, the mutant CALR VAF did not significantly decline in either
those achieving CHR during treatment with IFNa (median, 0.17 to
0.13; P 5 .078) or in those not achieving CHR (median, 0.21 to
0.17; P5 .066) (Figure 5B). Of note, only 18CALR-positive patients
allocated to receive IFNa were evaluable for response at 24 months.
None of the 5 CALR-positive patients allocated to receive HU
achieved CHR.

We divided the patients available for CHR assessment and serial sam-
pling (n 5 113) into 2 groups: (1) those in whom no treatment-
emergent mutations were detected (HU, n 5 18; IFNa, n 5 68)
(Figure 5C); and (2) those in whom treatment-emergent mutations
were detected (HU, n 5 13; IFNa, n 5 14) (Figure 5D). We further
divided the latter group into those in whom DNMT3A mutations
were detected (HU, n 5 2; IFNa, n 5 9) (Figure 5E) and those in
whom non-DNMT3A treatment-emergent mutations were detected

(HU, n 5 11; IFNa, n 5 5) (Figure 5F). Within the group in whom
no treatment-emergent mutations were detected, significantly more
patients treated with IFNa achievedCHR (35 of 68 [51%]) compared
with patients treated with HU (4 of 18 [22%]) (P 5 .034). Of 27
patients with treatment-emergent mutations at 24 months and avail-
able for response assessment, 19 (70%) failed to achieve CHR
(HU, 10 of 13 [77%]; IFNa, 9 of 14 [64%]) (P 5 .68). We found
that treatment-emergent DNMT3A mutations were significantly
enriched among patients treated with IFNa failing to achieve CHR
(8 of 9 [89%]) compared with treatment-emergent non-DNMT3A
mutations (1 of 5 [20%]) (P 5 .02). Among patients randomized to
receive HU, the 2 patients with treatment-emergent DNMT3A muta-
tions did not obtain CHR compared with CHR in 3 (27%) of 11
patients with treatment-emergent non-DNMT3A mutations.

Discussion

To determine the impact of molecular genetics on response to front-
line cytoreductive therapy in MPN, we performed sequential molecular
profiling on samples obtained from patients enrolled in the DALIAH
trial, a randomized controlled, phase 3 clinical trial of IFNa vs HU in
patients newly diagnosed with MPN.

To enable detailed molecular profiling, we first developed a
custom targeted NGS assay encompassing 120 myeloid
malignancy–associated genes. A significant age-independent associ-
ation was found between the presence of a mutation in TET2,
DNMT3A, or ASXL1 at baseline and a history of stroke, which
remained significant for mutated TET2 alone. We also found an asso-
ciation between the presence of a TET2, DNMT3A, or ASXL1 muta-
tion and a history of major thrombosis. However, this association did
not retain significance when adjusted for age. Previous studies have
found an age-independent association between the presence of
one or more mutations in TET2, DNMT3A, or ASXL1 and thrombotic
events in PV, which was retained for the presence of a TET2mutation
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alone.43 However, an association between TET2, DNMT3A, or
ASXL1 mutations and thrombosis in PV was not found in earlier stud-
ies.44,45 A novel feature of the NGS assay was the ability to determine
the presence of JAK2-UPD on 9p, allowing us to distinguish patients

who were heterozygous for the JAK2 mutation from those who were
homozygous. This is particularly informative in patients with a JAK2
VAF ,50%. We incorporated JAK2-UPD into our analysis of the
molecular response, and by combining sequential mutational and
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JAK2-UPD analyses, we were able to uncover distinct treatment
responses in independent clones/subclones in individual patients (dis-
cussed later).

In terms of treatment response, we first focused our attention on the 2
most common MPN phenotypic driver mutations, JAK2 and CALR.
We found that more patients treated with IFNa had a decrease in
the mutant JAK2 VAF than patients treated with HU. Furthermore,
the median mutant JAK2 VAF reduction was significantly greater
among patients treated with IFNa than with HU. In contrast, there
was no difference in the magnitude of decrease in mutant CALR
VAF in patients treatedwith HU thanwith IFNa, and themedian reduc-
tion in mutantCALR VAF was,5% for both HU and IFNa. We found
that patients with JAK2-UPD treated with IFNa had a greater
decrease in JAK2 VAF than JAK2-mutated patients without JAK2-
UPD (not seen with HU). This finding is consistent with a small pro-
spective study of MPN (n 5 33 patients) by Mosca et al,46 who
reported (in abstract form) that hematopoietic stem cells homozygous
for mutated JAK2V167F were more effectively targeted by IFNa than
heterozygous cells.

We next evaluated the association between CHR at 24 months
and molecular response. CHR rates were similar at 24 months
between HU and IFNa, which is in accordance with data
(presented in abstract form) from the randomized Myeloproliferative
Disorders–Research Consortium (MPD-RC) 112 study of high-risk
ET or PV comparing HU with IFNa-2a.47 Interestingly, we found that
CHR at 24 months was associated with a significant VAF reduction
in JAK2-mutated patients but not in CALR-mutated patients treated
with IFNa. Although reductions in mutant CALR VAF in response to
IFNa treatment have been reported in MPN,48,49 previous smaller
studies, including a recent retrospective study (n 5 38 patients)
reported by Czech et al,50 have suggested that CALR-mutant MPN
cells are less sensitive to IFNa than JAK2-mutated cells.51 Strengths
of our findings on this point include that patients were treated in a
large prospective randomized trial (n 5 202 patients) and that
JAK2 and CALR VAF were assessed simultaneously using the
same NGS platform. Limitations include the fact that almost one-
third of the CALR mutant group were patients with PMF (31%), in
addition to patients with ET (55%) and Pre-MF (14%), whereas the
JAK2 mutant group was composed primarily of patients with PV
(59%) and ET (24%), in addition to patients with Pre-MF (7%) and
PMF (10%).

We next turned our attention to treatment-emergent mutations. By
serial sampling at 24 months, 38 treatment-emergent mutations
were found in 32 patients. Notably, approximately one-half the time
a treatment-emergent mutation was detected on serial sampling, the
JAK2 VAF was found to have declined by .50%, suggesting that
the treatment-emergent mutation had arisen independently or was
subclonal to the JAK2mutant clone. This finding highlights the impor-
tance of not restricting molecular analysis in clinical trials to MPN phe-
notypic driver genes only.

The gene in which we most commonly identified treatment-emergent
mutations was DNMT3A (39%), and we found that treatment-
emergent DNMT3A mutations were significantly more prevalent in
patients treatedwith IFNa failing to achieveCHR.DNMT3Amutations
have been reported to both precede and follow JAK2V617F acquisi-
tion, in addition to arising in independent clones in MPN.52,53 As such,
theseDNMT3Amutations could reflect either treatment-resistant sub-
clones or genetically unrelated clones that develop in parallel to the

phenotypic driver clone. The methodology we used in this study did
not allow us to distinguish whether preexisting DNMT3A-mutated
clones expanded during treatment with IFNa or de novo DNMT3A
mutations were induced by IFNa. However, we believe it is highly likely
that treatment-emergent DNMT3A mutations were preexisting at
baseline and selected for with IFNa therapy. In agreement with this
model, studies using ultrasensitive error-corrected sequencing have
found that most adults aged.50 years have evidence of clonal hema-
topoiesis, most commonly involving mutations in DNMT3A.54 In
accordance with our finding, Quint�as-Cardama et al33 found that
the acquisition of a DNMT3A mutation was associated with failure
to achieve complete molecular remission in patients with PV and ET
treated with IFNa (n 5 83). More recently, Stetka et al55 reported
(in abstract form) that genetic loss of Dnmt3a confers resistance to
treatment with IFN in a JAK2V617F-driven MPN mouse model. Clues
to the mechanism by which Dnmt3a loss could render hematopoietic
stem and progenitor cells resistant to IFNa are suggested by Jacque-
lin et al, who found that Dnmt3a loss induced aberrant self-renewal of
Jak2-mutant hematopoietic stem and progenitor cells and augmented
pro-inflammatory signaling due to increased chromatin accessibil-
ity.56,57 It is important to note that the majority of DNMT3A mutations
found inMPN (and in this study) are heterozygousmissensemutations
that do not result in complete loss of DNMT3A function. Mutations in
PPM1D or TP53 were found more frequently in patients treated with
HU, a finding consistent with several earlier reports linking mutations
in these genes to chemotherapy exposure in other contexts.58-61 How-
ever, it is important to note that low allele burden TP53mutations have
been associated with older age in chronic-phase MPN, and random-
ization to HU was restricted to patients aged .60 years in our
study.62

In the current study, molecular response was assessed at 24 months.
In previous studies, the JAK2 molecular response has been shown to
increase gradually with time upon treatment with IFNa,28-36 whereas
the molecular response is often transient in patients treated with
HU.25-27,30 In the recently reported randomized CONTINUATION-
PV trial of 171 patients with PV allocated to receive ropeginterferon
a-2b (ropeg) or best available therapy (mainly HU), significantly higher
JAK2 molecular responses were observed among patients treated
with ropeg after 24 and 36 months of treatment.30 Furthermore, the
higher JAK2 molecular response rate in the ropeg arm was even
more striking after 48 months and was sustained at 60 months.63

This is consistent with the reported durable JAK2 molecular
responses beyond 5 years in patients with ET and PV treated with
IFNa-2a.32 Notably, ropeg, which is dosed every 2 weeks, seemed
to be well tolerated in the CONTINUATION-PV trial,64 in contrast to
our study, in which 34% of the IFNa–treated patients discontinued
study medication for toxicity within 24 months, despite a low-dose
regimen.

Although NGS technologies are increasingly used in clinical practice
to provide prognostic information and guide treatment decisions in
MPN, sequential genomic profiling is not usually performed outside
of clinical trials. In terms of counseling patients on the possible molec-
ular consequences of cytoreductive therapy, our findings can be sum-
marized as follows: (1) coexisting mutations are present at diagnosis
in �50% of patients with ET and PV; (2) concomitant mutations may
be present in the same cell or a different cell than the MPN disease-
initiating mutation (ie, JAK2, CALR, MPL); and (3) not all mutations
respond in the same way to IFNa or HU treatment. It is important to
acknowledge that we currently have an incomplete understanding of
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the clinical significance of concomitant mutations in ET and PV, partic-
ularly with respect to treatment. Therefore, additional studies with long
follow-up are required to understand the clinical significance of an
IFNa–induced reduction in JAK2V617F allele burden and mutations,
such as DNMT3A, expanding during IFNa treatment.

Because the primary goal of cytoreductive therapy in MPN is to
reduce the risk of thrombotic and vascular events, we are not suggest-
ing any immediate change in clinical practice based on our results.
However, we suggest several next steps to further advance the under-
standing of the differential effects of cytoreductive therapy on clonal
MPN cells: (1) aggregate currently available molecular genetic data
on patients treated with IFNa to increase statistical power and further
validate key findings; (2) perform sequential NGS analysis in prospec-
tive clinical trials of cytoreductive therapy in PV and ET, and correlate
early molecular findings with long-term clinical outcomes (ie, identify
molecular genetic biomarkers that predict clinical outcome); and (3)
develop low-cost methodologies to enable sequential molecular
genetic analysis as a routine component of MPN clinical care.

Finally, newly emerging data have shown that acquisition of the
JAK2V617F mutation may occur decades before the development
of MPN,65,66 consistent with a long preclinical phase termed JAK2-
mutant clonal hematopoiesis (CH). Although not all patients with
JAK2-mutant CH develop MPN, it is a clinically relevant entity associ-
ated with an increased risk of cardiovascular disease67 and venous
thrombosis.68,69 Due to the ability of IFNa to reduce the JAK2-
mutated clone,70 early identification and upfront treatment of individu-
als with JAK2-mutant CH raise the possibility that IFNa could have the
potential to prevent the development of MPN and/or decrease JAK2-
mutant CH-associated morbidity and mortality. The development of
specialized CH clinics to identify such individuals and offer them clin-
ical trials (eg, with IFNa) is a recent development in this regard.71

In conclusion, we performed comprehensive molecular profiling of
patients with newly diagnosed MPN treated with front-line cytoreduc-
tive therapy (IFNa vs HU) and identified treatment- and mutation-
specific patterns of response that have clinical implications.
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