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Abstract: For highly viscous polymer melts, considerable fluid temperature rises produced by viscous
heating can be a disturbing factor in viscosity measurements. By scrutinizing the experimental and
simulated capillary pressure losses for polymeric liquids, we demonstrate the importance of applying
a viscous heating correction to the shear viscosity, so as to correct for large errors introduced by
the undesirable temperature rises. Specifically, on the basis of a theoretical derivation and 3-D
nonisothermal flow simulation, an approach is developed for retrieving the equivalent shear viscosity
in capillary rheometry, and we show that the shear viscosity can be evaluated by using the average
fluid temperature at the wall, instead of the bulk temperature, as previously assumed. With the help
of a viscous Cross model in analyzing the shear-dominated capillary flow, it is possible to extract the
viscous heating contribution to capillary pressure loss, and the general validity of the methodology is
assessed using the experiments on a series of thermoplastic melts, including polymers of amorphous,
crystalline, and filler-reinforced types. The predictions of the viscous model based on the equivalent
viscosity are found to be in good to excellent agreement with experimental pressure drops. For
all the materials studied, a near material-independent scaling relation between the dimensionless
temperature rise (Θ) and the Nahme number (Na) is found, Θ ~ Na0.72, from which the fluid
temperature rise due to viscous heating as well as the resultant viscosity change can be predicted.

Keywords: shear viscosity; viscous heating; temperature rise; polymer melt; capillary rheometer;
nonisothermal simulation; cross model; injection molding

1. Introduction

Shear viscosity is particularly important for thermally developing flow problems in
which the temperature, pressure, and velocity in conduits are continually changing in the
flow direction. For fast flows of polymeric liquids, the apparent decrease in viscosity may
result from shear thinning (decrease in viscosity because of non-Newtonian effects) [1]
as well as from temperature thinning (decrease in viscosity because of temperature rise
caused by viscous heating) [2–4]. In most flow problems, viscous heating is not important.
However, in injection molding of thin-walled parts, wall shear rates can significantly
exceed 1000 s−1 and intense viscous heating arises, thus resulting in a severely reduced
viscosity [5]. For a simulation of such injection molded parts, an excellent description of
the rheological behavior of viscous polymer melts relies on an experimentally measured
shear viscosity that is free of the large errors introduced by undesirable effects, such as
the temperature deviations due to viscous heating [3,6–10] or the pressure dependence of
viscosity [11–14]. Capillary rheometry provides an efficient access to high-shear-rate flow
properties relevant for processing. One of the major concerns in using a capillary rheometer
to measure melt viscosity is viscous heating (or temperature thinning), although it can also
occur at low shear rates in the presence of extremely viscous materials [5]. The standard
methods for interpreting capillary rheometer data to determine the shear viscosity are,
however, based on the isothermal flow condition. Because of the highly viscous nature
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of polymer melts and their low thermal conductivities, experimental and computational
evidences for appreciable fluid temperature rises of 10–50 ◦C due to viscous heating have
been reported in the literature for various materials in die flows [3,4,6–8,13,15–21], therefore
viscous heating can be a disturbing factor in viscosity measurements.

To address viscous heating in capillary or slit flows, it is possible to measure the
temperature rise of the fluid in the flow channels by means of various experimental
techniques [4,15–19,21–23]. The effects of viscous heating can also be analyzed by means
of theoretical calculations of temperature profiles [1,3,4,7–9,13,14,16,17,20,21,24–32]. In
principle, the temperature rises obtained from either of the two approaches can be combined
with a viscous heating correction method to retrieve the equivalent viscosity for isothermal
flow [7,15,33]. Because of the coupling of the momentum and energy equations, the only
way to obtain detailed temperature distributions in the general case is to numerically solve
the governing equations along with the appropriate boundary conditions. To shed light
on the effects of viscous heating on the experimentally measured shear viscosity, we not
only performed 3-D nonisothermal capillary flow simulations to obtain information about
the average fluid temperature rise, but also present a detailed viscous heating correction
method that is supported by a theoretical derivation as well as by the nonisothermal flow
simulation.

Some studies have investigated the influence of fluid temperature rise on measured
shear viscosity, or have made a comparison between measured temperature rises and
theoretical predictions. For example, using a calorimetric method, Daryanani et al., re-
ported an equivalent shear viscosity corrected for the bulk temperature rises for a high
density linear polyethylene [15]. They found that local temperature rises in the capillary
can greatly exceed the bulk temperature rise (sometimes referred to as the cup-mixing
temperature rise or the flow-average temperature rise). Cox and Macosko investigated
viscous dissipation in various die flows for an acrylonitrile butadiene styrene (ABS) and a
branched polyethylene [16]. They developed a mathematical model for the calculation of
temperature profiles in the flow geometries using uncorrected shear viscosity. Reasonable
agreement was obtained between the predicted and infrared measured melt surface tem-
perature rises, and the average temperature rise estimated from the total mechanical energy
input was shown to seriously underestimate the maximum temperature rise. An empirical
method of correcting measurements of pressure in a capillary rheometer for viscous heating
effects was developed by Kamal and Nyun for the case of adiabatic walls [13]. Their treat-
ment may be considered as a generalized extension of the classical Rabinowitsch–Mooney
method for estimating temperature-corrected viscosity in capillary flow. Friesenbichler
and coworkers have recently carried out rheological measurements up to shear rates of
106 s−1 for a polypropylene using a special rheological mold very similar to a standard
injection mold [33]. By defining three thermal flow regimes according to the Cameron
number (Ca), they also successfully calculated temperature corrected viscosity by taking
into account a rise in average fluid temperature over the whole slit volume due to shear
heating and compression heating [7,30,33]. In another work, they used a thermocouple
to measure the temperature rise of a rubber compound issued from a conical die, and the
measured temperatures were in good agreement with the prediction that takes into account
both shear and elongational heating [17]. It should be apparent that most of the methods
discussed above have contained simplifying assumptions. Furthermore, these methods
have not been extensively tested against experimental capillary flow data, from which
the uncorrected viscosity is determined. As a result, these methods have not met with
complete success.

In this article we begin by demonstrating the necessity of performing the viscous
heating correction in capillary rheometry for a series of thermoplastic melts that exhibit a
distinct sensitivity of viscosity to temperature. On the basis of a newly derived expression
for the average viscosity in nonisothermal flows, we elucidate the details of the correction
of shear viscosity for fluid temperature rises. It appears to us, however, that no earlier
studies have made a direct assessment of the generality of the viscous heating correction
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method proposed. For its simplicity and reliability, capillary rheometry provides a unique
opportunity for extracting the viscous heating contribution to pressure drop by means of
the 3-D nonisothermal flow simulation. It is shown that, in the shear-dominated capillary
flow, the prediction of the viscous Cross model based on the temperature-corrected viscosity
agrees favorably with experimental results. Furthermore, a near material-independent
scaling relation is found and can be expressed in terms of the correlation between the
dimensionless fluid temperature rise (Θ) and the Nahme number (Na), from which the
temperature rise due to viscous heating as well as the resultant viscosity change can be
predicted.

2. Materials and Methods
2.1. Thermoplastic Polymers and Rheological Characterization

We carried out a series of capillary flow experiments on five injection molding grade
thermoplastic melts, which were chosen because of their very different sensitivity of
viscosity to temperature at the high stress levels encountered in capillary rheometry (see
their respective values of the temperature coefficient of viscosity αη in Table 1). The polymer
samples include a high impact grade polystyrene (HIPS, POLYREX PH-60, Chi Mei Corp.,
Tainan County, Taiwan), a general purpose polystyrene (GPPS, POLYREX PG-33, Chi
Mei Corp.), an acrylonitrile butadiene styrene (ABS, POLYLAC PA-757, Chi Mei Corp.), a
crystalline polypropylene homopolymer (PP, Globalene 6331, LCY Corp., Taipei, Taiwan),
and a carbon-fiber reinforced polyamide 66 (PA66, LUVOCOM 1/XCF/25, LEHVOSS
Group, Hamburg, Germany). Prior to the measurements, the pellets were dried under
vacuum conditions overnight at temperatures suggested by the manufacturers. Steady
shear flow measurements at low shear rates were performed using a rheometer (MCR
301, Anton Paar, Graz, Austria) equipped with a 25 mm diameter parallel-plate fixture
(disposable aluminum substrate). A high pressure capillary rheometer (RG25, Göttfert,
Buchen, Germany) was operated in the controlled speed mode to consecutively measure
shear viscosities in the apparent shear rate range

.
γa = 50–5000 s−1. All the capillary

measurements were repeated twice to ensure data reproducibility. Three circular dies of
diameter D = 1 mm and different lengths L = 10, 20, and 30 mm were used to determine
the entrance pressure drop (Bagley correction) and, hence, the true shear stress [34,35]. We
found that the extrapolation method resulted in practically the same end corrections as
those measured using a tapered orifice die (D = 1 mm and L = 0.2 mm). The Weissenberg–
Rabinowitsch correction was performed to obtain the true wall shear rates [36,37]. Since
the temperature dependences of the density ρ, specific heat capacity Ĉp, and thermal
conductivity k were taken into account in the nonisothermal flow simulation, the fluid
properties (ρ, Ĉp, k) were measured, respectively, using a PVT-6000 apparatus (Gotech),
DSC 8500 (PerkinElmer), and RG25 accessory (Göttfert). Pressure–volume–temperature
(PVT) diagrams for the molten materials were obtained under isobaric conditions (30, 60,
90, and 120 MPa) at a cooling rate of 5 ◦C/min. For the differential scanning calorimetry
(DSC) measurements, each sample was heated to 250 or 300 ◦C at a temperature ramp rate
of 10 ◦C/min in a nitrogen environment. The thermal conductivity measurements were
performed under stationary conditions in a temperature range up to 250 or 300 ◦C. The
measured values at an intermediate measurement temperature are compiled in Table 1
for reference, along with the melt flow index (MFI), the longest polymer relaxation time
λ, and the temperature coefficient of viscosity αη (= −∂η/η∂T) numerically evaluated at
.
γa = 500 s−1 from the temperature-corrected shear viscosity [1,25].
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Table 1. Fluid properties of polymer melts.

Sample T0 (◦C) ρĈp (J/m3·K) k (W/m·K) MFI (g/10 min) † λ (s) αη (1/K)

HIPS 220 2.17× 106 0.256 5.5 0.178 1.51× 10−2

GPPS 210 2.08× 106 0.259 8.0 0.250 1.53× 10−2

ABS 210 2.27× 106 0.235 1.6 0.222 1.68× 10−2

PP 210 2.05× 106 0.279 14.5 0.109 1.14× 10−2

Filled PA66 290 2.68× 106 0.282 20.8 0.015 3.44× 10−2

† HIPS, GPPS, and ABS: 200 ◦C/5.0 kg; PP: 230 ◦C/2.16 kg; filled PA66: 290 ◦C/5.0 kg.

2.2. Governing Equations

The conservation equations for a compressible, generalized Newtonian fluid (GNF) in
3-D transient nonisothermal motion are [1]

∂ρ

∂t
+∇ · ρv = 0 (1)

∂

∂t
(ρv) +∇ · (ρvv + τ) = −∇p + ρg (2)

ρĈp

(
∂T
∂t

+ v · ∇T
)
= ∇ · (k∇T) + η

.
γ

2 (3)

where v is the velocity vector, τ is the total stress tensor, p is the pressure, g is the acceler-
ation vector of gravity, η is the shear viscosity, and

.
γ is the shear rate (the magnitude of

the rate-of-strain tensor
.
γ). For a polymer melt modeled as a GNF, the stress tensor can be

expressed as
τ = −η

(
∇v +∇vT

)
(4)

The Cross viscosity model is employed to describe the polymer viscosity [38]

η =
η0

1 +
(

η0
.
γ

τ∗

)1−n (5)

where η0 is the zero-shear-rate viscosity, n is the power-law index, and τ∗ is the critical
stress upon which shear thinning commences. The temperature dependence of η0 is
expressed as the William–Landel–Ferry (WLF) equation, which has been found to hold for
a wide variety of polymers [39,40]

η0 = η0,r exp
[
−A1(T − Tr)

A2 + (T − Tr)

]
(6)

where η0,r is the zero-shear-rate viscosity at the reference temperature Tr, and A1 and A2
are the WLF coefficients. For simplicity, Tr is taken to be the glass-transition temperature
and A2 = 51.57 is used [1]. The conservation equations of mass, momentum, and energy
(Equations (1)–(3)) can be simultaneously solved, along with appropriate boundary condi-
tions, to obtain the temperature, pressure, and velocity profiles for a compressible fluid
under nonisothermal conditions by Moldex3D flow solver. We assumed fully developed
flow at the inlet plane of the barrel and 1 atmosphere pressure at the outlet plane of the
capillary exit (Figure 1). Two types of thermal boundary conditions were studied: (i)
The isothermal wall boundary condition and (ii) the heat transfer boundary condition.
The former assumes sufficiently effective cooling of isothermal die walls, while the latter
accounts for the contact resistance between the die and the melt by applying Newton’s law
of cooling with a heat transfer coefficient h (HTC).
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Figure 1. 3-D and partial view of the two meshes used in the capillary flow simulations for (a) ܮ ⁄ܦ ൌ 0.2	ሺܦ ൌ 1	mm and 2߶ ൌ 90°) and (b) ܮ ⁄ܦ ൌ 30	ሺܦ ൌ 1	mm and 2߶ ൌ 180°). 
2.3. Meshes for Capillary Flow Simulation 

We performed the 3-D flow simulations in the capillary dies (Figure 1, ܮ ⁄ܦ ൌ0.2	and	30) with the viscous Cross-WLF model (Equations (5) and (6)). For the mesh ar-
rangement, we chose a grid that progressively adds more elements toward the singularity 
in the entrance region of the capillary die, while the elements become bigger when going 
downstream of the inlet. A 3-D view and a partial view of the grids in the neighborhood 
of contraction are shown in Figure 1 for ܮ ⁄ܦ ൌ 0.2	and	30. The domains represent a 15:1 
circular contraction at an entry angle 2߶ ൌ 90	or	180°. Exponential biasing was used to 
generate elements in the axial and radial directions so as to reflect the large velocity gra-
dients in the contraction regime and near the die wall. The grids were chosen after we 
confirmed that the subdivision of each element into four sub-elements to form denser 
grids gave virtually grid-independent results (less than 0.5% difference in the total pres-
sure loss). Once the geometry was fixed, the only parameter left to vary was the apparent 
shear rate in the die ߛሶୟ ൌ 4ܳ ⁄ଷܴߨ , where ܳ is the volume flow rate and ܴ is the die 
radius. 

2.4. Temperature Profiles and Capillary Pressure Drops 
To validate the computed temperature profiles for capillary flow with viscous heat-

ing, we compared our simulation result with the analytical solution of a power-law fluid 

Figure 1. 3-D and partial view of the two meshes used in the capillary flow simulations for (a) L/D = 0.2 (D = 1 mm and
2φ = 90◦) and (b) L/D = 30 (D = 1 mm and 2φ = 180◦).

2.3. Meshes for Capillary Flow Simulation

We performed the 3-D flow simulations in the capillary dies (Figure 1, L/D = 0.2 and 30)
with the viscous Cross-WLF model (Equations (5) and (6)). For the mesh arrangement, we
chose a grid that progressively adds more elements toward the singularity in the entrance
region of the capillary die, while the elements become bigger when going downstream of
the inlet. A 3-D view and a partial view of the grids in the neighborhood of contraction
are shown in Figure 1 for L/D = 0.2 and 30. The domains represent a 15:1 circular
contraction at an entry angle 2φ = 90 or 180◦. Exponential biasing was used to generate
elements in the axial and radial directions so as to reflect the large velocity gradients in the
contraction regime and near the die wall. The grids were chosen after we confirmed that
the subdivision of each element into four sub-elements to form denser grids gave virtually
grid-independent results (less than 0.5% difference in the total pressure loss). Once the
geometry was fixed, the only parameter left to vary was the apparent shear rate in the die
.
γa = 4Q/πR3, where Q is the volume flow rate and R is the die radius.

2.4. Temperature Profiles and Capillary Pressure Drops

To validate the computed temperature profiles for capillary flow with viscous heating,
we compared our simulation result with the analytical solution of a power-law fluid [1,3],
assuming (i) the die wall is maintained at a fixed temperature T0; (ii) the fluid is described
adequately by a power-law viscosity, η = m

.
γ

n−1, with m and n independent of temperature;
(iii) the velocity profile is fully developed at the die entrance; (iv) ρ, Ĉp, and k do not vary



Polymers 2021, 13, 4094 6 of 21

with temperature or pressure. An example of such calculation is provided for the filled
PA66 in Figure 2a. The melt had the following physical properties at T0 = 290 ◦C (Table 1):
ρĈp = 2.68× 106 J/m3 · K; k = 0.282 W/m · K; m = 4.05× 103 J/Pa · sn; n = 0.50. The

flow curve in Figure 2c manifests a power-law flow regime η ∼ .
γ
−(0.50±0.05). At a fixed

axial distance z = 15 mm (i.e., midpoint of the 30-mm-long capillary die depicted in
Figure 1b), the temperature profiles at

.
γa = 50− 5000 s−1 are plotted in Figure 2a. As our

simulation (Simulation A) is subject to the same assumptions (i−iv) as in the analytical
power-law model [1,3], the agreement between Simulation A (filled symbols) and the
analytical solution (dash-dot lines) is remarkably good, except that the simulation predicts
an extra temperature rise by ∼0.5 ◦C near the tube center. The small discrepancy is caused
by a small viscous heating contribution when the fluid undergoes a sudden contraction
upon entering the tube (i.e., entrance effects). At high shear rates, there is a peak in the
temperature profile near the wall where the velocity gradient and also the viscous heating
are large. In this isothermal-wall case, where the heat transfer at the wall is extremely
effective, the temperature rise can still be as large as ∼12 ◦C. It is thus evident that viscous
heating can produce nonignorable temperature rises in actual capillary rheometry.
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.
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calculated capillary pressure drop ∆Pcap are, respectively, shown in (c,d). Simulation A: η 6= η(T) and isothermal wall;
Simulation B: η = η(T) and isothermal wall; Simulation C: η = η(T) and finite heat transfer at the wall.
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In contrast to the analytical power-law model where the temperature-independent
viscosity is assumed, we next took into account the temperature dependence of m in the
same figure (Figure 2a, Simulation B). Since the temperature rise can now result in a lower
viscosity (and hence less viscous heating), we find in Figure 2a that the temperature rises
from Simulation B (open symbols) begin to fall below those from the analytical power-law
model above a critical shear rate 1000 s−1. The departure from the analytical power-law
model indicates that the viscosity change, however, cannot be ignored if the temperature
rise is more than a few degrees (∼2 ◦C) [1]. Later, we demonstrate that the onset of viscous
heating can be reliably predicted by the Nahme number [25,40,41], whose magnitude gives
an indication of the relative importance of the rate of heat generation by viscous dissipation
and the rate of heat removal by conduction at the capillary wall.

The temperature distribution in the example above is subject to the isothermal wall
boundary condition. In fact, neither an isothermal nor an adiabatic wall exists [4,16]. In the
next example, it was assumed that there is a finite amount of heat lost through the die wall.
The heat transfer coefficient h at the polymer-mold interface is known to depend on a host
of physical quantities (e.g., cavity pressure, surface roughness, etc.) [42], and the reported
values in injection molding are in the range of 500−5000 W/m2 ·K [43–45]. For simplicity,
a constant heat transfer coefficient h = 1500 W/m2 ·K was used throughout. When the
temperature-dependent viscosity and the more realistic thermal boundary condition are
simultaneously taken into account in the simulation (Simulation C, dashed lines), we see in
Figure 2b that the corresponding temperature rise becomes more pronounced near the wall,
where the dissipated energy is the maximum. Due to the contact resistance between the
melt and the die, the temperature rise is more considerable than that of the isothermal wall
(e.g., 20 ◦C vs. 10 ◦C at

.
γa = 5000 s−1). In Simulation C, the maximum temperature rise at

the tube exit (z = 30 mm) can reach 24 ◦C, which explains why large surface temperature
rises of extrudates were reported in the literature [16,19,23]. As the finite heat transfer
boundary condition is physically more realistic, hereafter it is assumed in nonisothermal
capillary flow simulations.

For capillary flow involving flow through a contraction of a certain entry angle, the
total pressure drop ∆Ptotal (from the barrel to the capillary exit) mainly consists of two
components and may be written as [35,37]

∆Ptotal ≈ ∆Pent + ∆Pcap (7)

where ∆Pent is the entrance pressure drop, which is mainly due to the elongational flow at
the entrance, and ∆Pcap is the pressure drop over the length L of the capillary, where the
flow is shear-dominated; the pressure loss in the exit region of the capillary is presently
ignored. Since the analytical power-law model is derived for a straight tube of radius R [1,3],
for comparison with theory, we had to present our experimental and simulation results
in terms of ∆Pcap (≈ ∆Ptotal − ∆Pent). In Figure 2d, the agreement between the measured
∆Pcap and the analytical power-law model is simply fortuitous, whereas the discrepancy
between experiment and the simulation (both Simulations B and C) is very likely due to
the neglect of viscous heating correction of the shear viscosity for large temperature rises,
in particular at high shear rates. In fact, the trend in the observed deviation in Figure 2d
is universal for all the samples investigated in this study, and highlights the necessity of
viscous heating correction to the shear viscosity.

3. Results and Discussion
3.1. Definition of Average Wall Shear Viscosity

An average wall shear viscosity η that was used in the temperature correction method
(Figure 3a) is defined here. For a straight capillary of uniform cross-section, we postulated
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a solution of the form vz = vz(r), vθ = 0, vr = 0, P = P(z), and T(r, z). The z-component
of the equation of motion, in terms of τ, is [1,37]

− dP
dz

=
1
r

d
dr

(rτrz) (8)

This may be integrated to give

τrz = −
dP
dz

r
2
+

C1

r
(9)

The constant C1 has to be zero, since one does not expect to have an infinite momentum
flux at the axis of the tube. Here, dP is the pressure drop over a distance dz along the
capillary. Equation (9) is therefore the result of the application of the equation of motion
and is suitable for conditions where the fluid properties change appreciably along the
capillary. At r = R, Equation (9) becomes

τw = −R
2

dP
dz
|
r=R

(10)

where τw is the wall shear stress. By integrating this equation over the capillary of length L
and then applying the mean value theorem for definite integrals, we obtain the capillary
pressure drop ∆Pcap in nonisothermal flow

∆Pcap =
2
R

∫ L

0
τw(z)dz =

2L
R

τw(z∗) =
2L
R

τw(T∗) (11)

where z∗ exists in [0, L] and T∗ is the local fluid temperature at z∗. We assume that T∗ is
close enough to the mean fluid temperature Tw, averaged over the wall surface along the
tube, so that

∆Pcap ≈
2L
R

τw
(
Tw
)

(12)

Hereafter, the mean value along the die wall is designated by an overbar. Substitution
of the material function τw

(
Tw
)
= η

(
Tw
) .
γ (Tw) into Equation (12) gives the following

definition of the average shear viscosity η of fluids:

η = η
(
Tw
)
≈

R∆Pcap

2L
.
γ
(
Tw
) (13)

We emphasize that the development here has been given for mean rheological proper-
ties of the fluids at the wall. As suggested by Equation (13), η may be better evaluated by
using the mean fluid temperature at the wall Tw, instead of the bulk temperature, as previ-
ously assumed. Throughout the iterative process described next in Figure 3a, Equation (13)
was used to calculate η, in which τw (= τw

(
Tw
)
) is set equal to the experimental wall shear

stress and
.
γ (=

.
γ
(
Tw
)
) is determined from the simulation. It is worth mentioning that

our simulation results presented later seem to lend support to the use of Equation (13) in
nonisothermal capillary flows.
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Figure 3. (a) Flow chart illustrating the viscous heating correction of the shear viscosity η (
.
γ). (b) Uncorrected steady-state

shear viscosity η (
.
γ) for HIPS.

3.2. Temperature Correction of Shear Viscosity

A flow chart detailing the approach for performing the correction of shear viscosity for
fluid temperature rises is given in Figure 3a, where the Cross-WLF model is used to model
the flow curve in both Newtonian and shear thinning regimes. As an illustration of the ap-
proach, we discuss the results for HIPS. The procedure for correcting the shear viscosity is
as follows: (i) Apply, respectively, the Bagley correction and the Weissenberg-Rabinowitsch
correction to the apparent viscosity data; (ii) Fit the uncorrected viscosity data determined
from step (i) at the measurement temperatures (T0 = 170, 180, 190, 200, 220, and 240 ◦C)
to obtain an initial guess for the Cross-WLF model parameters (n, τ∗, η0,r, and A1) in
Equations (5) and (6) (see Figure 3b and the model parameters in Table 2); (iii) Perform the
nonisothermal runs (ith iteration) at

.
γa = 50–5000 s−1 and T0 = 200, 220, and 240 ◦C to ob-

tain the respective average fluid temperatures and shear rates at the capillary wall, and then

replace the values from the (i− 1)th iteration: with T(i−1)
w replaced by T(i)

w and
.
γ
(i−1)

by
.
γ
(i)

for each
.
γa; (iv) Calculate the average viscosities η using Equation (13) at fixed values of τw

(which are set equal to experimental values) and then fit η at the corresponding new fluid
temperatures and shear rates to optimize the four Cross-WLF model parameters. Repeat

steps (iii) and (iv) with improved model parameters until
∣∣∣T(i)

w − T(i−1)
w

∣∣∣ < ε is satisfied,
where the tolerance ε is set equal to 0.1 ◦C (usually 4−6 iterations suffice the purpose).
Because the iterative process ensures self-consistency between the optimized Cross-WLF
model parameters and the resultant temperature profiles, the approach ultimately yields
a reliable equivalent shear viscosity (see Figure 4a and the corrected n value in Table 2).
Considering that the viscosity curve is well into the power-law regime such as those shown
in Figure 4a–e, one may need to correct the power-law index n only, due to the fact that the
viscous heating occurring at high shear rates does not affect the onset of shear thinning
(τ∗), as well as the temperature dependence of the viscosity at low shear rates (η0,r and A1).

For all the melts studied in Figure 4a–e, the equivalent shear viscosity at T0 has
been obtained by shifting the corrected shear viscosity, according to the WLF temperature
shifting factor aT, via the relations: η(T0) = η

(
Tw
)
/aT and

.
γ(T0) = aT

.
γ
(
Tw
)
. The

equivalent shear viscosity data are found to superpose onto the Cross-WLF model fit based
on the corrected n. The temperature correction ultimately gives an equivalent viscosity that
is more viscous (i.e., larger n) and will augment ∆Pcap. This can be seen from Equation (13)
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that η is proportional to ∆Pcap. Thus, as observed in Figure 4a–e, an enhancement of
viscosity as large as ∼30% at high shear rates could result in a similar increase in ∆Pcap, as
discussed later in Figure 7.

Table 2. Cross-WLF model parameters for polymer melts.

Sample n Corrected n τ* (Pa) η0,r (Pa·s) Tr (K) A1 A2

HIPS 0.272 0.293 2.30× 104 5.94× 1011 373.15 26.86 51.57
GPPS 0.246 0.261 2.42× 104 1.94× 1013 363.15 31.29 51.57
ABS 0.237 0.277 6.17× 104 7.14× 1013 363.15 31.99 51.57
PP 0.299 0.310 1.59× 104 3.92× 1019 263.15 46.48 51.57

Filled PA66 0.368 0.463 6.02× 104 1.73× 1025 373.15 65.22 51.57

Figure 4. Cont.
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Figure 4. Steady-state shear viscosity η (
.
γ) with and without temperature correction for (a) HIPS, (b) GPPS, (c) ABS, (d) PP,

and (e) filled PA66. The open and filled symbols represent, respectively, the uncorrected and the equivalent η (
.
γ). The

Cross-WLF model fits based on the corrected n are shown by lines.

3.3. Rheological Properties at Wall in Nonisothermal Flow

Figure 5 shows the results of nonisothermal capillary flow simulations for HIPS, based
on shear viscosities with and without temperature correction. Because, in both cases (n
vs. corrected n), the trends in the rheological properties with axial coordinate z are very
similar, we therefore focused on the simulated results based on the temperature-corrected
shear viscosity (solid line) in this illustrative example. The simulation results for the other
test polymers were qualitatively the same as those observed for HIPS and are hence not
shown here. We can see in Figure 5a that, in the contraction region, the iso-contours of
pressure become virtually independent of r after a small entrance length ∼0.2 mm. This
clear evidence is in support of the assumption made in the derivation of Equation (13)
that only the axial variation in pressure is present (i.e., P = P(z)), whereas the radial
variation is small enough to ignore (i.e., dP/dr ≈ 0). As there is a sharp corner in the
contraction regime, the steep stress gradient at z ≈ 0 (see Figure 5b) is then associated
with the singularity (i.e., high stresses generated at the entrance to the smaller channel).
In Figure 5b, the shear stress τw and fluid temperature Tw at the wall are plotted versus
z for

.
γa = 5000 s−1 and T0 = 220 ◦C (z = 0 corresponds to the die entrance), where it

can be observed that Tw increases in the flow direction due to viscous heating, while τw
shows the opposite due to a progressively smaller pressure gradient (Figure 5c). The fluid
temperature profiles T(r, z) at different z are plotted in Figure 5d, where it can be seen
that the fluid reaching one-third of the die length (i.e., z = 10 mm) has attained a fluid
temperature close to its average (Tw = 234 ◦C), therefore Tw does not vary in a linear
fashion with z. Furthermore, the viscous heating causes a fluid temperature rise as large as
∼20 ◦C at the tube exit (z = 30 mm), clearly indicating the necessity of the temperature
correction to the shear viscosity.
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Figure 5. Graphs elucidating the simulated rheological properties along the capillary wall for HIPS at
.
γa = 5000 s−1 and

T0 = 220 ◦C, based on η (
.
γ) with and without temperature correction: (a) Pressure iso-contours in the contraction region

and axial variations of (b) shear stress τw and fluid temperature Tw, (c) capillary pressure drop ∆Pcap and polymer viscosity
η, (d) fluid temperature profile T(r, z), and (f) shear rate

.
γ. The data of (b) are replotted against Tw in (e) to reveal an

approximately linear relationship between τw and Tw.

When τw is plotted versus Tw in Figure 5e, we see a nearly linear relation between the
two quantities, especially when the entrance length has been exceeded (i.e., z > 0.2 mm).
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Thus, it explains why, in going from Equation (11) to (12), we have used the mean shear
stress τw and fluid temperature Tw in determining the mean shear viscosity η. In Figure 5c,
the change in viscosity after the correction is ∼ 15%, therefore one can see a similar
increment in the overall ∆Pcap in the same figure, in accordance with Equation (13). With
regard to the flow field, it can be seen from Figure 5f that the wall shear rate

.
γ is not

disturbed much by the temperature rise along the die, and that its average magnitude
is close to that estimated by the Weissenberg–Rabinowitsch equation, which is 9600 s−1.
After applying the temperature correction to the shear viscosity, one can see in Figure 5e
that the measured shear stress at

.
γa = 5000 s−1 (τw = 0.16 MPa) can now correspond to

the mean fluid temperature at the wall (Tw = 234 ◦C), instead of the inlet temperature
(T0 = 220 ◦C). From the above analysis, we conclude that the simulation can provide the
detailed rheological properties that would otherwise be difficult to access experimentally.
Importantly, the simulation also lends support to the use of Equation (13) to determine η
under nonisothermal conditions.

3.4. Assessment of Temperature-Corrected Shear Viscosity

The effects of viscous heating (or temperature thinning) on experimentally measured
shear viscosity are investigated for three types of thermoplastic melts, including amorphous
polymers (HIPS, GPPS, and ABS), a crystalline polymer (PP), and a filled polymer (PA66).
We began the nonisothermal capillary flow simulations with the viscous Cross-WLF model
for the orifice die depicted in Figure 1a (L/D = 0.2), based on the shear viscosities with and
without temperature correction. It is known that the contraction flow has an elongational
character along the centerline [35,37,46] and that a purely viscous model has a much
lower elongational viscosity than a viscoelastic model, therefore it is not surprising to see
that the viscous Cross-WLF model severely underpredicted the entrance pressure drop
∆Pent [35,47–57]. This is illustrated for GPPS in Figure 6a, where ∆Pent were measured
using the 0.2-mm-long orifice die. As expected, ∆Pent increases significantly with increasing
.
γa, and its value is higher at lower measurement temperature. For the 30-mm-long die
(depicted in Figure 1b), however, we see in Figure 6b that ∆Pent is not a small portion of the
total; ∆Pent /∆Ptotal can be as large as 0.1–0.2 at

.
γa = 5000 s−1. Considering that viscous

heating occurs mainly along the capillary die, and that the measured ∆Pent are available for
all the test samples, in the following discussion, we concerned ourselves primarily with the
pressure drop over the length of the capillary ∆Pcap (≈ ∆Ptotal−∆Pent). The purpose of this
analysis is two-fold: First, viscous heating contribution to ∆Pcap can be better quantified
without being influenced by the contraction flow. Second, the GNF is expected to hold well
for the shear-dominated capillary flow.
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To evaluate the role of viscous heating in pressure loss, it is instructive now to consider
the purely viscous Cross-WLF model and neglect viscous heating correction of shear
viscosity (i.e., using the uncorrected viscosity). For all the samples studied, the experimental
∆Pcap are compared with the Cross-WLF model predictions (dashed lines) in Figure 7a–e.
Whereas the viscous model describes the measured pressure drops very well at low shear
rates, it begins to underpredict the experimental data above a critical apparent shear rate
(200 or 500 s−1). As discussed later, the Nahme number (Na) can be used to delineate the
flow regimes. In Figure 7a–e the trend in the observed deviation is universal for all the
melts investigated and is reminiscent of the comparison made earlier in Figure 2d, where
the likely underestimate of experimental ∆Pcap is, to a large extent, ascribed to neglecting
the effect of the fluid temperature rise on shear viscosity. Moreover, it can be seen in
Figure 7c,e that, due to their large shear stresses and sensitivity of viscosity to temperature
(i.e., large αη), the extent of disagreement is comparatively large for ABS and filled PA66.

Figure 7. Cont.
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Figure 7. Measured capillary pressure drop ∆Pcap (symbols, L/D = 30) vs. viscous Cross-WLF model prediction based
on η (

.
γ) with and without temperature correction (lines) as a function of

.
γa for (a) HIPS, (b) GPPS, (c) ABS, (d) PP, and

(e) filled PA66.

To show the viscous heating contribution to ∆Pcap, we next used the temperature-
corrected shear viscosity in the nonisothermal capillary flow simulation; the corrected flow
curves have been presented earlier in Figure 4 for all the samples studied. The increase in
shear viscosity after performing the viscous heating correction is evident from the increased
n value (see Table 2 for n vs. corrected n) and is reflected in larger ∆Pcap, in accordance
with Equation (13). Using the equivalent viscosity η in the simulation, in Figure 7, we
see a close agreement between experiment and model prediction (solid lines) over the
entire range of shear rates. Thus, the proposed methodology in Figure 3a permits a reliable
temperature correction for melts in capillary rheometry. Note once again that we have
evaluated η in Equation (13) using the average fluid temperature at the wall Tw instead of
the bulk fluid temperature, as previously assumed. Among the samples studied, viscous
heating occurs to a significant degree for ABS and filled PA66, and the correction becomes
clearly significant at the lowest measurement temperature. This can be easily understood
to stem from the large fluid temperature rises at the wall as shown in Figure 8a–e (symbols),
where it can be seen that viscous heating can result in pronounced deviations from the inlet
temperature by 10–25 ◦C.

Figure 8. Cont.
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Figure 8. Temperature rise at the wall (Tw − T0) vs. apparent shear rate
.
γa for (a) HIPS, (b) GPPS, (c) ABS, (d) PP, and

(e) filled PA66. Lines are predictions of Equation (18).

At this point, one might reasonably wonder whether or not the high-pressure effect
on viscosity plays a minor role under the pressure conditions of these experiments. Ac-
cording to the Barus equation, η0,p = η0 exp

(
βp p

)
[58,59], the reciprocal of the pressure

coefficient βp may indicate a critical pressure pc, above which the pressure dependence
of viscosity cannot be neglected. Reported βp values are 10 < βp (GPa−1) < 43 for PS,
24 < βp ( GPa−1) < 33 for ABS, and 16 < βp (GPa−1) < 24 for PP [33,60–62], correspond-
ing to pressure ranges of 23 < pc (MPa) < 100 for PS, 30 < pc (MPa) < 42 for ABS, and
42 < pc (MPa) < 63 for PP. For the materials studied in Figure 7, the measured ∆Pcap are
comparatively small, so that the pressure dependence of viscosity may be safely neglected
in the present analysis.

3.5. Material-Independent Scaling Relation

In capillary rheometry, it is of practical importance to know the onset of nonisothermal
flow. A dimensionless group was used for characterizing the severity of viscous heating
in the individual melts. In fact, the equation of motion (Equation (2)) and the equation of
energy (Equation (3)) are coupled through the temperature-dependent viscosity. The extent
of the coupling increases with the value of the Nahme number [25,40,41,63]

Na = v2
zαηη0/k (14)
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where vz is the average axial velocity (= 4Q/πR2), αη is the temperature coefficient of
viscosity (= −∂η/η∂T), and η0 is the characteristic viscosity evaluated at a characteristic
shear rate (vz/R) and characteristic temperature (T0). Equation (14) can be rewritten in
terms of the familiar

.
γa as Na = R2 .

γ
2
aαηη0/k. It can be seen from the relation that, at

a given
.
γa, Na ∼ R2, whereas, at a given Q, Na ∼ R−4. The former case has been

demonstrated for flow of a polymer melt through two capillaries of different diameters but
the same L/R [41], while the later indicates that the viscous heating occurs to a significant
degree when R is very small.

For a self-consistent analysis of the calculated temperature rises in Figures 8 and 9,
the Na number has been determined using αη and η0 that are numerically evaluated from
the temperature-corrected viscosity, not the uncorrected one. The Na number compares
the viscous dissipation term and the conduction term in Equation (3). For values of
Na greater than 0.5–1 (depending on the particular die geometry and thermal boundary
conditions), the viscous dissipation can cause nonignorable viscosity changes. Indeed,
when the temperature rises of Figure 8 are replotted in terms of the Na number, as in
Figure 9a, they begin to increase rapidly upon the onset of viscous heating at Na ≈ 1.
Thus, the transition is correctly captured by our simulation. Among the materials studied,
ABS and filled PA66 can attain a comparatively large Na number ∼70 at the highest shear
rate, therefore the viscosity augmentation (hence increased pressure loss), after the viscous
heating correction, is the most significant (Figure 4c,e or Figure 7c,e). By contrast, due to
the small Na number ∼ 7 it attains, PP requires a small correction to the viscosity.
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Since the Nahme number is a ratio of the temperature rise characteristic of the viscous
heating in the capillary flow problem to the temperature change necessary to alter the
viscosity [1,41], we next introduced a quantity, Θ = αη

(
Tw − T0

)
, made dimensionless

with αη , and the data of Figure 9a are replotted in Figure 9b. Interestingly, we find that the
effect of viscous heating on temperature rise can be summarized in Figure 9b by a near
material-independent scaling relation

Θ = c1Nac2 (15)

where c1 = 0.039 and c2 = 0.72. This finding may imply a strong correlation between
the dimensionless temperature rise and the Na number for all the thermoplastic melts
investigated in this study. In obtaining Equation (14), it has been assumed that, over small
ranges of temperature, the viscosity varies with temperature as [25,40,64]

η = η0 exp
[
−αη(T − T0)

]
(16)
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Thus, a rise in fluid temperature can result in a reduced fluid viscosity by the relative
amount

η0 − η

η0 = Θ = αη

(
Tw − T0

)
(17)

Therefore, Θ may be interpreted as the ratio of the amount of viscosity correction (η0 − η)
to the uncorrected viscosity η0. Accordingly, in Equation (15), the power-law dependence
manifested by Θ can be interpreted as follows: An increase in the Na number causes the
fluid temperature rise due to viscous heating as well as the resultant viscosity change (or
viscosity correction needed). For instance, when Na = 1 and 10, the maximum percentage
errors in the viscosity are approximately 5 and 20%, respectively.

To check the prediction of the power-law scaling relation (Equation (15)) for the
temperature rises reported in Figure 8, we substitute the expression for the Na number into
Equation (15) and get

Tw − T0 =
c1

αη

(
R2 .

γ
2
aαηη0

k

)c2

(18)

The derived correlation can be directly applied to correct the melt viscosities from a capillary
die having similar dimensions so as to minimize the computational effort required. Here,
an expression for αη in the power-law regime can be found by equating the temperature
shifting factors in Equations (6) and (16), and one arrives at the following,

αη =
nA1(T − Tr)

(A2 + T − Tr)(T − T0)
(19)

in which the values of the Cross-WLF model parameters can be used. For an accurate
determination of αη , Tr needs to be close to T0. For n = 1, Equation (19) reduces to
the expression for Newtonian fluids. Equation (18) is for the convenience of making
calculations and to show the extent of agreement with the simulation data. The temperature
increase determined from the equation can be seen in Figure 8 (lines), where the accuracy
of the predictions is acceptable for most of the materials studied. For some purposes, the
prediction of Equation (18) for the mean fluid temperature rise in thermally developing
capillary flows may be adequate, especially for order-of-magnitude estimates.

4. Conclusions

We have systematically investigated the viscous heating correction (or the temperature
thinning effect) and extracted its contribution to the capillary pressure drop in thermally
developing capillary flows for a series of injection molding grade thermoplastic melts
(amorphous, crystalline, and filled polymers). To highlight the importance of applying
the temperature correction to the shear viscosity, we begin by showing that the power-
law model based on the uncorrected viscosity substantially underestimates the capillary
pressure drop ∆Pcap (Figure 2d), and that the trend in the observed deviation is universal
for all the melts investigated (Figure 7a–e). A viscous heating correction method for
determining the equivalent viscosity is then developed to take into account the considerable
temperature rises. As suggested by the theoretical derivation and the 3-D nonisothermal
simulations, the average shear viscosity η has to be evaluated by using the average fluid
temperature at the wall Tw, rather than the bulk temperature, as previously assumed. Only
by performing the simulations is it possible to obtain the detailed temperature profiles over
the capillary die, which would be otherwise difficult to access experimentally.

The subtraction of the entrance pressure drop ∆Pent from the total pressure drop ∆Ptotal
allows us to investigate the viscous heating contribution to the capillary pressure drop
∆Pcap in the shear-dominated capillary flow. To assess the generality of the temperature
correction, we applied the approach to several polymer melts, and the predictions of the
viscous Cross-WLF model are found to be in good to excellent agreement with experimental
∆Pcap. In every case, the onset of viscous heating is observed to coincide with Na ≈ 1
and corresponds to a temperature rise of a few degrees (∼ 2 ◦C). We also report a strong
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correlation between the dimensionless fluid temperature rise and the Nahme number that
can be summarized by a near material-independent scaling relationship: Θ ∼ Na0.72, from
which the fluid temperature rise due to viscous heating as well as the resultant viscosity
change can be predicted. The inferred correlation may not only be directly applied to
correct the melt viscosities from a capillary die having similar dimensions, but also lend
additional support to the idea that η has to be evaluated by using Tw.

Judging from its success in retrieving the reliable equivalent shear viscosity from the
3-D nonisothermal capillary flow simulation, the methodology described in this study may
be applicable to dies of different lengths or radii, or of an annular or slit cross-section, where
the viscous heating becomes an issue. As the calculated fluid temperature rise at the wall
highly depends on the thermal boundary conditions specified, it would be important to
combine experimental and numerical approaches to determine the heat transfer coefficient
at the polymer-mold interface, as well as to study its influence on the capillary flow data.
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