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HER2-positive (HER2þ) breast cancer (BC) is a heterogenous and multifaceted disease, with interesting
therapeutic implications. First, all intrinsic molecular subtypes can be identified in HER2þ tumors, with
the HER2-enriched being the most frequent. Such subtypes do not differ much from their counterparts in
HER2-negative disease, apart for the high expression of genes in/near the HER2 amplicon on chromo-
some 17. Intrinsic subtyping, along with the quantification of ERBB2 mRNA levels, is associated with
higher rates of pathologic complete response across neoadjuvant trials of dual HER2 blockade and might
help select patients for de-escalation and escalation treatment strategies. Secondly, HER2þ tumors have
a broad range of DNA alterations. ERBB2 mutations and alterations in the PI3K/Akt/mTOR pathway are
among the most frequent and might predict benefit from potent pan-HER, PI3K and mTOR inhibitors.
Moreover, HER2þ tumors are usually infiltrated by lymphocytes. These tumor infiltrating-lymphocytes
(TILs) predict response to neoadjuvant anti-HER2-based treatment and exert a prognostic role. PD-L1,
detected in ~42 % of HER2þ BC, might also be useful to define patients responding to novel anti-PD1/
PD-L1 immunotherapies. New multiparametric clinicopathologic and genomic tools accounting for this
complexity, such as HER2DX, are under development to define more tailored treatment approaches.
Finally, HER2-targeted antibody-drug conjugates (ADC) such as trastuzumab deruxtecan might be active
in tumors with low expression of HER2. Overall, there is a need to molecularly characterize and develop
novel targeted therapies for HER2þ disease.
© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

HER2-positive (HER2þ) breast cancer (BC) represents 10e20 %
of all breast tumors [1] and are characterized by the amplification of
the ERBB2/HER2 gene and/or overexpression of its related kinase
receptor protein [2]. This confers a more aggressive behavior,
leading to a reduced disease-free survival (DFS) and overall survival
(OS) [2,3]. However, the introduction of the humanized anti-HER2
monoclonal antibody trastuzumab in clinical practice and the
subsequent development of several other anti-HER2 targeted
agents (i.e. lapatinib, pertuzumab and T-DM1), have lowered the
risk for relapse in the early stage disease and/or significantly
improved survival in the metastatic setting [4]. Despite therapeutic
improvements, around 4e23 % of patients with localized disease
still experience relapse after (neo)adjuvant anti-HER2-based regi-
mens and become metastatic [5,6]. When systemic, the disease
remains incurable, though median survival rates have improved
consistently over the years, now reaching a median of ~57 months
[7].

HER2þ BC is clinically defined, according to the ASCO/CAP
guidelines [8], when a complete and intense circumferential
membrane staining for the HER2 protein in>10 % of tumor cells (3þ
score) is found at immunohistochemistry (IHC) and/or the HER2
gene (ERBB2) is amplified at in situ immunofluorescence (ISH)
techniques, with an HER2/CEP17 ratio �2.0 and an average HER2
gene copy number�4.0 signals/cell.This definition is based on the
one adopted for HER2þ clinical trials evaluating trastuzumab,
pertuzumab and T-DM1. However, under the curtain of clinical (c)
HER2þ disease lies a more complex and heterogenous disease that
needs to be appropriately dissected, to develop and validate novel
and more effective diagnostic and therapeutic approaches.
1.1. Clinically HER2þ disease based on hormone receptor status

Breast tumors are usually classified in 4 IHC subtypes (Luminal
A-like, Luminal B-like, HER2-positive and triple-negative) that
mostly overlap with four different corresponding molecular sub-
types (Luminal A, Luminal B, HER2-Enriched [HER2-E] and Basal-
like, respectively) [9,10]. The IHC-surrogate classification of
cHER2þ disease endorsed by the St. Gallen Expert Consensus di-
vides cHER2þ tumors into two. More precisely, a Luminal B-like
subtype that features estrogen (ER) and/or progesterone receptor
(PgR) expression (roughly 40e50 % of cHER2þ tumors) [11], and an
HER2-E-like, which does not express both hormone receptors (HR)
[9].

The IHC-based categorization of HR-positive (þ) vs. HR-negative
cHER2þ disease is undoubtedly useful in the clinical setting to
indicate the need for endocrine therapy (ET). Nonetheless, HR
status within cHER2þ BC is relevant from other points of view. For
example, several meta-analyses regrouping neoadjuvant trials in
cHER2þ disease have demonstrated a strong association between
HR-negative status and pathologic complete response (pCR)
[12e14] and better outcomes in HR-negative tumors compared
with HR þ disease [14]. Moreover, albeit pCR was found to be
associated withmore favorable survival outcome compared to non-
pCR, the strength of the association was more evident in the HR-
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negative disease than in the HRþ [12].
According to several studies, cHER2þ tumors also differ in main

clinicopathological features and natural history of disease
depending on HR expression. More specifically, cHER2þ/HR-
negative tumors are more likely to present with high histologic
grade and higher tumor stage, less likely to first relapse in bone and
more likely to recur in brain, than cHER2þ/HRþ disease. Moreover,
patients with cHER2þ/HR-negative tumors vs. cHER2þ/HR þ seem
to be at increased risk of early death (i.e. first 5 years of follow-up)
[15]. An exploratory analysis from the ALTTO adjuvant phase III trial
of CT combined with trastuzumab, lapatinib or both, compared
survival outcomes periods 0e5 years versus >5 years based on HR
status. Patients with HR þ tumors had better DFS, distant disease-
free survival (DDFS) and OS for years 0e5 compared to HR-negative
disease. Nevertheless, survival outcomes at 8 years were similar
between the two groups [16].

Regarding the benefit to trastuzumab, the joint analysis of two
large adjuvant randomized controlled trials (RCT), the NCCTG
N9831 and the NSABP B-31, comparing different chemotherapy
(CT) regimens ± trastuzumab in cHER2þ BC, revealed that the 10-
year DFS and OS rates were similar between HR-negative vs.
HR þ tumors [17]. Concordant results were observed also in the
adjuvant trastuzumab pivotal trial HERA [18]. Yet, the levels of ER
protein might help to identify a subgroup of patients with cHER2þ/
HR þ disease who might not benefit much from trastuzumab. In
fact, a retrospective population-based study on 872 HR þ cHER2þ
BC patients treated with adjuvant CT ± trastuzumab, revealed a
clear benefit from its addition, in the overall population; however,
the effect on BC specific survival (BCSS) in tumors expressing ER in
>30 % of cells was not statistically significant (p ¼ 0.26). Further-
more, adjuvant trastuzumab did not improve both Relapse-Free
Survival (RFS) and BCSS in tumors with ER overexpressed in
>50 % of cells, as opposite to the significant effect observed in case
of ER staining in �50 % of tumor cells [19]. A possible explanation
might reside in a higher dependency on the ER rather than HER2
pathway for tumor growth and survival, which might limit the
therapeutic efficacy of agents specifically blocking the HER2
downstream signaling pathway as their main mechanism of action.

Although these findings will require further validation, they do
suggest that a subgroup of HR þ tumors with high luminal features
and hormone-dependency might not benefit much from (neo)
adjuvant trastuzumab.
1.2. The intrinsic subtypes within cHER2þ disease

The four BC molecular subtypes, also called intrinsic subtypes,
have shown different outcome patterns and response to therapy
[20e22]. Clinically HER2þ BC has been considered a single tumor
entity for a long time; however, in 2012, The Cancer Genome Atlas
(TCGA) project demonstrated that not all cHER2þ BC had the same
genomic profile. More precisely, only 50 % of cHER2þ tumors were
HER2-E, while the other half were Luminal A or B, with high
expression of typical luminal genes such as ESR1, GATA3 and BCL2,
among others [23]. More recent studies have revealed the presence
of cHER2þ Basal-like tumors, especially in HR-negative disease
[24e30]. Among the different subtypes within cHER2þ disease, the
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HER2-E is characterized by the highest levels of ERBB2 mRNA,
phosphorylated (p)HER2, total HER2 protein, pEGFR and EGFR
protein, suggesting that this group has the highest activation of the
HER2 signaling pathway [23e25].

In summary, cHER2þ tumors comprises all of the 4 BCE intrinsic
subtypes, with the HER2-E being the most frequent (~47 %), fol-
lowed by Luminal B (~18e28 %), Luminal A (11e23 %) and Basal-like
(7e14 %) [10,24]. Yet, the distribution seems to be heavily influ-
enced by HR status, with HER2-E subtype representing 30 % of
molecular subtypes within HRþ/cHER2þ BC and 75 % in HR-
negative/cHER2þ tumors [10,26e30] (Fig. 1). Although related,
the concordance rate between the pathology-based subtypes and
the intrinsic subtypes is moderate (67.4 %; kappa statistic: 0.50)
[28].

An important question to address was how different an intrinsic
subtype is when it is cHER2þ versus cHER2-negative. The answer is
that a given subtype within cHER2þ disease is largely undis-
tinguishable, biologically speaking, from its cHER2-negative coun-
terpart, except for the high expression of genes in, or near, the HER2
amplicon on chromosome 17 in cHER2þ disease [24,31]. Further-
more, HER2 status is an independent prognostic factor beyond
clinical-pathological variables, but such prognostic relevance dis-
appears when intrinsic subtypes are considered [24].
1.3. Intrinsic subtype, ERBB2 mRNA and treatment response

Results from 6 randomized phase III, 5 randomized phase II, 3
single arm phase II, 2 non-randomized neoadjuvant clinical trial
and 1 retrospective observational study evaluating several anti-
HER2-based treatment regimens, þ/� CT, concordantly suggested
the association between the HER2-E subtype and pCR
[25e30,32e42]. A subsequent trial-level joint analysis of such
studies confirmed a strong association between the HER2-E mo-
lecular subtype with pCR (pooled odds ratio [OR]: 3.50, p < 0.001),
also beyond HR status (p < 0.001) and CT use (p < 0.001) [13]. These
results suggest that intrinsic subtypes might identify a subgroup of
cHER2þ tumors that benefit the most from anti-HER2 therapies,
Fig. 1. Intrinsic subtype distribution in cHER2þ tumors.Legend. HR: hormone receptors; þ
HER2þ tumors.
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irrespective of CT and HR status.
Furthermore, 3 of those trials reported ERBB2 mRNA-high tu-

mors achieving more frequently a pCR, compared to mRNA-low
tumors (41.9e79.3 % vs. 25.5e51.72 % pCR rates) [26,39,43], albeit
with different methodologies and cut-offs for defining high vs. low
levels. Another secondary analysis from the GeparQuattro neo-
adjuvant trial evaluating anthracyline/taxane-based
CT þ trastuzumab, showed that the response to the combination
correlated to ERBB2 mRNA levels [44]. Finally, high ERBB2 mRNA
levels were found associated with better tumor responses and
progression-free survival (PFS) in the metastatic setting and higher
rates of pCR in the neoadjuvant setting, when treated with the
antibody-drug conjugate (ADC) ado-trastuzumab-emtansine (T-
DM1) [45].

It is interesting to note that the combination of the HER2-E
subtype with ERBB2 mRNA expression levels might better predict
response to anti-HER2-based treatments than each variable alone.
In fact, in a combined retrospective analysis of the TBCRC006 and
PAMELA CT-free neoadjuvant trials of double anti-HER2 blockade
(lapatinib þ trastuzumab ± ET) in cHER2þ BC, our group evaluated
intrinsic subtypes and ERBB2 mRNA levels of expression, dichoto-
mizing the latter as low or high. As expected, pCR was more likely
to occur in HER2-E tumors compared to non-HER2-E (35.1 % vs.
9.9 %; p < 0.001), but also in tumors with ERBB2 mRNA high
compared to low levels (36.1 % vs. 8.2 %; p < 0.001). Notably, HER2-
E/ERBB2 mRNA high BC showed pCR rates higher than the rest
(adjusted OR: 6.0; p < 0.001), suggesting that combining HER2-E
subtype and ERBB2 mRNA levels better identifies anti-HER2
sensitivity than each variable alone [46]. The most likely explana-
tion is that the HER2-E subtype is more indicative of the activation
of the HER2 signaling pathway than the expression of the HER2
protein or mRNA, which are more representative of the presence of
the therapeutic target (Fig. 2). This might open up the possibility of
de-escalating neoadjuvant systemic therapy to avoid CT, at least for
a small proportion of patients carrying cHER2þ BC and with high
“molecular addiction” to HER2 (i.e. HER2-E/ERBB2 mRNA high) and
low-risk clinicopathological prognostic parameters (e.g. node
: positive; -: negative. Number of samples: 3390 HRþ/HER2þ tumors and 2567 HR-/



Fig. 2. HER2-dependent pathway for proliferation and survival in HER2þ breast cancer.Legend. cHER2þ: clinically HER2-positive; HER2-E: HER2-Enriched. The red cone visually
suggests a higher activation of the HER2-related pathway in cHER2þ/HER2-E tumors, compared to cHER2þ/non-HER2-E.
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negative, small primary tumor). Ultimately, more data are needed
to draw definitive conclusions.

Differently, no evidence of an added predictive value for the
ERBB2mRNA levels beyond molecular subtypes has been evaluated
in the context of CT þ anti-HER2 therapy, so far.

Interestingly, an ongoing single arm phase II trial in cHER2þ BC
cases with high molecular HER2 addiction as previously defined
and clinical low risk (clinically node negative, unifocal primary
lesion of �2 cm), is evaluating the omission of surgery and sentinel
lymph-node dissection, in case of achievement of a radiologic
complete response at magnetic resonance, following neoadjuvant
therapy with trastuzumab, pertuzumab and paclitaxel (ELPIS trial,
NCT04301375). Results might be important to prove for the first
time that in cHER2þ early stage BC, a combination of molecular and
clinical tumor characteristics might be useful to de-escalate the
therapeutic strategy, this time focusing on surgery, rather than
systemic treatments. Recruitment is currently ongoing.

1.4. Intrinsic subtypes and survival outcome

Retrospective analyses from (neo)adjuvant trials evaluated the
association of the intrinsic molecular subtypes with survival out-
comes within the cHER2þ disease. By using archived tumor blocks
of cHER2þ disease from the NSABP B-31 adjuvant trial, 47 % sam-
ples were classified as HER2-E. Similar DFS benefit was observed for
trastuzumab in HER2-E and non-HER2-E tumors [47]. Differently, a
retrospective analysis from the N9831 trial showed that HER2-E
and Luminal tumors derived benefit from adjuvant trastuzumab
in terms of relapse-free survival (RFS), while Basal-like did not [48].
In addition, another analysis from the adjuvant pertuzumab
APHINITY trial showed that the Luminal A subtype was associated
with strikingly better outcomes, mostly when compared to patients
with a Basal-like subtype. However, no significant interaction was
observed between intrinsic subtypes and treatment [49].

As opposite to previous evidence, a novel molecular analysis
from the phase III Short-HER study of 1 year vs 9 weeks of adjuvant
trastuzumab demonstrated that the HER2-E subtype was associ-
ated with worse metastasis-free survival (MFS) compared to the
other intrinsic subtypes taken together, both in the short and
standard arm [50]. Within the NeoALTTO trial there was no
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association between the HER2-E subtype and event-free survival
(EFS), although the authors accounted for an overall low statistical
power to perform this analysis [33]. The NSABP B-41 trial demon-
strated that OS was increased in patients who achieved pCR, with
no significant differences in pCR according to treatment arm. With
respect to intrinsic subtyping, HER2-E patients on trastuzumab-
based arms had higher pCR than those on the lapatinib arm,
though no differences in terms of EFS and OS were observed [30].
Finally, albeit demonstrating better pCR rates for the HER2-E sub-
type compared to the others, a post-hoc analysis from the CALGB
40601 trial showed that the Luminal A subtype was favored over
the HER2-E in terms of invasive DFS (iDFS). Moreover, within
HR þ disease, the Luminal A subtype was associated to a longer
iDFS compared to those with Luminal B or HER2-E tumors [51].

1.5. Molecular alterations: focus on ERBB2, PIK3CA and PTEN

Recent studies have addressed the molecular complexity that
characterize cHER2þ and HER2-E tumors. Analysis of somatic
mutations from the TCGA showed that, other than ERBB2 amplifi-
cation, cHER2þ primary tumors were characterized by a broad
range of infrequent mutations (<10 %), including in ERBB2 (3.6 %).
However, the most frequent mutations were observed in PIK3CA
(~31 % cases) and in TP53 (40 % cases) (Fig. 3).

Similarly, the HER2-E subtype, showed frequent TP53 (72 %) and
PIK3CA mutations (39 %), as well as other mutated genes (i.e. PTEN,
PIK3R1), albeit at significantly lower frequencies (usually <10 %)
and ERBB2 amplification in 80 % cases [23,52].

ERBB2 mutations are infrequent with respect to amplifications;
however, they can exert an oncogenic effect by constitutively acti-
vating HER2 tyrosine kinase activity or by increasing HER2 dimer-
ization with other member of the EGFR family. These mutations
have been found to cluster in the tyrosine kinase and extra-cellular
domains of the HER2 protein and might be counterbalanced by
irreversible TKI inhibitors like neratinib [53]. The most frequent
activating mutations identified are the G309A, D769H, D769Y,
V777L, P780ins, V842I, del755e759 and R896C, while the L755S,
despite being not activating, seem to induce lapatinib resistance
[53]. These mutations were mostly characterized in HER2-non-
amplified tumors. Interestingly, in a recent study, the mutational



Fig. 3. Mutational spectrum of cHER2þ primary tumors.Legend. cHER2þ: clinically HER2-positive.
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landscape of ERBB2 was also assessed in HER2 amplification-
positive patients. The study showed a higher ERBB2 mutation fre-
quency in HER2-amplified tumors than in HER2-negative (19.5 % vs.
4.8 %; p < 0.001) [54]. One-hundred-ninety-four ERBB2 variants
were predicted as driver mutations and 192 variants were pre-
dicted as passenger mutations. The top three frequency mutations
were represented by the already known V777L, L755S and D769Y
and were all predicted as driver mutations [54]. These rare muta-
tions, at least in part, seem to be induced by HER2-targeted therapy
and ET, and prevails in metastatic tumors, compared to primary
ones [54e56]. Furthermore, in case of concomitant HER2mutations
and amplification, resistance to trastuzumab has been detected
[54]. Conversely, in this cHER2þ subset, the tyrosin kinase inhibitor
(TKI) neratinib showed promising activity [57], such as the TKI
pyrotinib in BC with HER2 mutations without amplification [58].
However, randomized studies are needed to validate these pre-
liminary findings.

PIK3CA, which codifies for the phosphatidil-inositol-3-kinase
(PI3K), is on the top of a cascade that positively modulates cell
survival, proliferation and metabolism. The pathway is negatively
regulated by PTEN, which codifies for a protein/lipid phosphatase
[59]. Usually, oncogenic PTEN and PIK3CA mutations do not occur
together [23,60]. In cHER2þ tumors PIK3CA mutations have been
shown to be associated with trastuzumab resistance in preclinical
models [61e63]. Therefore, PIK3CA and PTEN potential role as
prognostic and predictive biomarkers of response to treatments
was further investigated in cHER2þ BC.

Retrospective studies on tumor samples deriving from adjuvant
trastuzumab trials found PIK3CA mutations in ~25 % cHER2þ BC,
but failed to find an association with trastuzumab benefit [47,64].
At the same time a prognostically favorable effect was observed,
albeit this effect disappeared after 3 years [64]. On the other hand,
PIK3CA mutational status might be relevant in the neoadjuvant
setting. Indeed, a patient-level pooled-analysis involving 5 neo-
adjuvant RCT investigating trastuzumab-/lapatinib-based treat-
ments proved that PIK3CA-mutant/cHER2þ tumors had
significantly lower pCR rates compared to wild-type tumors (16.2 %
vs. 29.6 %; p < 0.001). However, such results seemed to be mostly
driven by the HRþ/cHER2þ cohort, for which the pCR rates dif-
ferences were significantly more pronounced (7.6 % in PIK3CA
mutant vs. 24.2 % in thewild-type group; p < 0.001) than in the HR-
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negative/cHER2þ cohort (p ¼ 0.125) [65]. Mutational status did not
affect the outcome in terms of DFS and OS in the overall population
examined, though. However, HRþ/PIK3CA-mutant patients seemed
to have significantly worse DFS (p ¼ 0.050) [65].

A possible explanation for PIK3CA influence on response to anti-
HER2 agents might lie in the fact that the rates of PIK3CA mutation
seem to be inversely proportional to ERBB2 mRNA levels (raw data
obtained from a TCGA-derived dataset of 94 cHER2þ patients).

Interestingly, in advanced setting, PIK3CA mutational status
proved to be a relevant prognostic marker for patients treated with
pertuzumab þ trastuzumab þ docetaxel, in a biomarker analysis of
the first-line CLEOPATRA trial. More specifically, longer median PFS
was observed for patients whose tumors expressed wild-type
versus mutated PIK3CA in the pertuzumab groups (21.8 v 12.5
months), as well as in the control group (13.8 v 8.6 months).
However, pertuzumab showed a PFS benefit independently from
PIK3CA mutational status, making it not suitable for selecting pa-
tients that might benefit from this drug [66]. Similar results were
observed in a post-hoc biomarker analysis of the EMILIA and
TH3RESA phase III RCT, where T-DM1 proved its effectiveness in
both cHER2þ PIK3CA-mutant and wild-type patients over the
therapeutic standard of second and subsequent lines [47,67].
Interestingly, PIK3CA-mutant patients appeared to better respond
to lapatinib þ capecitabine in the control arm of the EMILIA trial,
both in terms of median PFS (mutant vs. wild type: 4.3 vs. 6.4
months) and OS (17.3 vs. 27.8 months) [67].

Concerning PTEN, retrospective analyses from the NeoALTTO
and N9831 trials respectively showed no correlation between low
levels of PTEN and pCR [75] and that the benefit from adjuvant
trastuzumabwas not affected by PTEN levels [76]. On the contrary, a
retrospective analysis from the neoadjuvant TBCRC006 trial, where
double blockade therapy with lapatinib þ trastuzumab was
administered without CT, showed that high levels of PTEN were
associated to higher rates of pCR, compared to low PTEN levels (32 %
vs. 9 %; p ¼ 0.04). Moreover, in case of a combination of PTEN loss/
low expression and PIK3CA mutation, pCR was achieved signifi-
cantly less than in case of wild-type PIK3CA and high PTEN
expression levels (4 % vs. 39 %; p ¼ 0.006) [77].

In advanced setting, low PTEN levels were associated with better
PFS outcome but, surprisingly, with worse OS in the CLEOPATRA
trial. However, as observed with PIK3CA mutational status, a
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consistent PFS benefit from pertuzumab was shown independently
from the expression levels of any biomarker [66]. Within the
EMILIA, T-DM1 was associated with longer median PFS and OS
compared to lapatinib þ capecitabine, regardless of PTEN expres-
sion. Anyway, in case of low/absent PTEN, the PFS benefit obtained
with T-DM1 appeared to be more pronounced than in case of
normal/high PTEN expression. This relationship was not observed
for OS [67].

Two recent phase III trials, BOLERO-1 and BOLERO-3 evaluated
the addition of the mTOR inhibitor everolimus to trastuzumab and
CT (paclitaxel or vinorelbine, respectively) in cHER2þ advanced BC.
The serine/threonin kinase mTOR is a downstream effector of the
PI3K pathway. A joint analysis on 377 samples from both trials was
performed to evaluate genomic alterations. The overall genetic
landscape was similar between the 2 trials. Nevertheless, PTENwas
altered in 1.5 % of the BOLERO-1 samples, compared to the 8 % in
BOLERO-3. Differently from pertuzumab and T-DM1, a statistically
significant PFS benefit from the addition of everolimus was only
observed in patients with PIK3CA mutations, PTEN loss or hyper-
active PI3K pathway (namely, low PTEN expression/mutation and/
or known PIK3CA and/or other activating mutations in the down-
stream pathway) [60]. These findings suggest that PIK3CA and/or
PTENmutational status might be considered a predictive biomarker
for everolimus efficacy in this BC subtype. However, the clinical
development of this drug in cHER2þ BC in first-line setting has
been somewhat stopped by the introduction of pertuzumab-based
regimens in first-line and T-DM1 in second-line, given the
outstanding performances observed in their pivotal trials [68e70].
Its role might be revalued in more advanced treatment lines, in
patients with hyperactivation of the PIK3CA pathway, albeit trials
designed to prospectively assess the efficacy and safety of this drug
in patients with alterations in the PI3K pathway are needed to
confirm this hypothesis.

1.6. TILs and immune system

A constantly growing body of evidence strongly suggests that
cancer can induce an immune response by producing new antigens
and modulate such immune response through the induction of
microenvironmental changes and interplay with immune cells and
immune response (cancer immunoediting) [71,72]. Being this
process heavily related to T cells activity, tumor-infiltrating lym-
phocytes (TILs) have been claimed to be a morphological repre-
sentation of the complex interplay between cancer and immune
system [73]. Interestingly, there are several evidences reporting a
previously unacknowledged interaction between anticancer treat-
ments and immune system. For example, CT and radiotherapy seem
to elicit an immune system activation against cancer cells [74],
while trastuzumab anticancer activity seems to heavily rely also on
antibody-dependent cellular cytotoxicity and complement-
dependent cytotoxicity, rather than merely blocking the HER2
pathway. Such activity might be in turn modulated by the innate or
adaptive cancer immune status [75e77]. Therefore, the biological
complexity of cHER2þ BC not only lies in its molecular heteroge-
neous profile, but also in its microenvironmental features. Indeed,
cHER2þ tumors are characterized by differential levels of TILs,
which seems to play a role in modulating the responsiveness to CT
and anti-HER2 treatments. In fact, it has been reported that in early
stage, around 50 % of cHER2þ BC present with �10 % TILs, around
20 % shows �20 % and about 10 % � 40 % TILs (Fig. 4) [78e80].

A recent study showed that cHER2þ HER2-E and Basal-like
subtypes were also characterized by higher levels of PD-L1,
compared to the Luminal A and B [80]. PD-L1 is a transmembrane
protein that is implied in suppressing the adaptive immune
response by interacting with the PD1 on the surface of T cells,
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reducing the proliferation of antigen-specific T-cells in lymph
nodes, while simultaneously reducing apoptosis in immunosup-
pressive T-regulatory (Treg) cells [81]. Recent studies have
observed the presence of PD-L1 in ~42 % of cHER2þ BC, with
different detecting assays [82,83]. PD-L1 levels correlate with
response to anti-PD-L1 immune-checkpoint inhibitors (ICI), as
observed in the phase III trial IMPASSION130 in advanced triple
negative breast cancer (TNBC), as well as in other trials in different
solid tumors [81,84]. In cHER2þ disease, the phase I/II trial
PANACEA showed that only PD-L1þ tumors responded to the
combination of trastuzumab with the anti-PD1 pembrolizumab, in
a group of trastuzumab-pretreated metastatic cHER2þ BC patients
[82]. Similarly, the randomized phase II KATE-2 showed a trend for
a PFS benefit in pretreated HER2þ PDL1þ tumors with T-DM1 and
the anti-PD-L1 atezolizumab, with no benefit for the overall pop-
ulation enrolled, or in the PD-L1-negative subset [83].

Up to now, the role of TILs as prognostic/predictive factor has
been more extensively studied than PD-L1 in several clinical trials
involving cHER2þ BC. In the adjuvant setting, contrasting results
have been reported so far, based on retrospective analyses from
adjuvant trastuzumab trials [85,86]. Conversely, more interesting
results have come from neoadjuvant anti-HER2-based trials. A
retrospective analysis of the NeoALTTO from Salgado et al. showed
that levels of TILs greater than 5 % were associated with higher pCR
rates independent of treatment group (p ¼ 0.01). Moreover, every
1 % increase in TILs was associated with a 3 % decrease in the rate of
an event (p ¼ 0.002) across all treatment groups [78]. In the CHER-
LOB trial, both stromal (Str)TILs and intratumoral (It-)TILs were
significantly associated with pCR, also independently from ER sta-
tus [29]. However, continuous TILs levels significantly predicted
pCR only for patients in lapatinib-containing arms, while no sta-
tistically significant effect was observed in the CT þ trastuzumab
group. In a dichotomous comparison between low-TILs BC and
high-TILs BC, with a cut-off for TILs levels of 60 %, pCR rates were
64.7 % for high-TILs BC and 25 % for low-TILs BC patients, respec-
tively (p < 0.001). Of note, molecular intrinsic subtypes out-
performed TILs evaluation in predicting pCR at the multivariate
analysis [29].

Opposite results were observed in the NeoSphere trial, where
both TILs and PD-L1 did not associate with pCR [35]. Conversely,
TILs as continuous variable and high vs low TILs were significantly
linked to pCR in the HER2þ cohort of the neoadjuvant GeparSixto
trial, where an anthracycline/taxane-based CT regimen with
trastuzumab þ lapatinib ± carboplatin was tested [87].

A retrospective analysis on 175 patients with primary cHER2þ
BC receiving neoadjuvant CT ± trastuzumab failed to demonstrate a
correlation between pCR rates and basal TILs levels. However, TILs
levels decreased during treatment in 78 % of the patients and TILs’
variation was strongly associated with pCR (p < 0.001). Further-
more, post-neoadjuvant TILs were strongly associated with post-
neoadjuvant tumor residue parameters and were higher in tu-
mors with aggressive characteristics (p < 0.001), high nodal
involvement (p ¼ 0.054) and large nodal metastases (p ¼ 0.001). In
the population of patients that failed to achieve pCR, levels of TILs
in residual tumor higher than 25 % were an independent poor
prognostic factor at the multivariate analysis [88].

In a secondary analysis of the PAMELA trial, the rates of pCR in
high-level TILs BC vs. non-high-TILs BC were 58.3 % and 27.2 %,
respectively (p ¼ 0.024). However, basal TILs lost their association
with pCR at the multivariable analysis. Interestingly, the higher the
TILs at day 15 (D15), the higher the odds of achieving a pCR and the
correlation between D15 TILs and pCR was retained at the multi-
variate analysis. This study also proposed a mathematic model
based on tumor cellularity and TILs at D15 (the CelTIL) to predict
benefit from anti-HER2 therapy. The CelTIL was significantly



Fig. 4. Representative sections of TILs in early-stage HER2þ breast tumors.Legend. TILs: tumor-infiltrating lymphocytes. TILs levels increase from left to right.
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associated with pCR in univariate and multivariate analysis either
as a continuous variable or using a pre-specified cut point [89].

Notably, there are accumulating data on the capability of TILs or
specific TILs subpopulations (e.g. CD8þ) to predict clinical benefit of
ICI in solid tumors like melanoma [90e92]. Whether this might be
the case for cHER2þ BC is yet to be assessed. Moreover, the prog-
nostic impact of specific immune cell infiltration (e.g. monocytes, B
lymphocytes, T lymphocytes) is still a matter of debate. In this
context, a more a favorable outcome was observed in cHER2þ BC
with lymphocyte infiltration and expression of lymphocyte-related
genes [93]. Other groups discovered several immune-system-
related metagenes regrouping specific clusters of genes that seem
to be representative of different tumor-infiltrating immune cell
subpopulations (e.g. the IgG metagene related to B lymphocytes,
the LCK metagene related to T lymphocytes, the HCK metagene
related to macrophages and monocyte/myeloid lineage), with
different prognostic implications according to HR status [94,95].
More recently, a cluster of immune-related genes contained in a
bigger six-metagene signature (138 genes), was found to be asso-
ciated with higher pCR rates (p ¼ 0.019) following neoadjuvant CT
and better prognosis in cHER2þ/HR-negative BC (p ¼ 0.026). Im-
munity metagene expressionwas also associated with the presence
of tumor-infiltrating lymphocytes (TILs) in the same study [96].
Overall, there is an accumulating evidence supporting the prog-
nostic and predictive roles of immune gene signatures, especially in
primary BC [97]. However, the published signatures are numerous
and partially overlapping. Their prognostic and/or predictive role
has been tested in different therapeutic contexts, as well. Therefore,
a better harmonization and characterization of these signatures is
required to properly understand their clinical utility and applica-
bility [97]. Furthermore, whether the prognostic and predictive
information captured by gene-expression-based signatures can be
predicted by the assessment of cheaper and easy-to-detect
immunologic peripheral blood markers is also yet to be deter-
mined. At present, it is also unknown the capability of immune
metagenes to predict any benefit from novel immunotherapies.

Importantly, multiple evidences show that the HER2-E intrinsic
BC subtype is associated with higher levels of TILs infiltration,
compared to the others [29,75,89]. A possible explanation might
reside in the fact that HER2-E subtype is frequently characterized
by the lack of co-amplification of the 17q12 chromosomal region,
which contains genes encoding chemokines, and is located prox-
imal to the HER2 gene amplicon [71]. Such lack of co-amplification,
which as opposite is relatively frequent in cHER2þ Luminal tumors,
results in higher levels of T-cells infiltration [98]. Additionally,
several data confirm a link between APOBEC-mediated
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mutagenesis and the acquisition of subclonal mutations, leading to
genomic instability, potential neoantigens expression and subse-
quently more immune tumor infiltration, as well as better response
to ICI [99e101]. This might be particularly relevant for cHER2þ BC,
considering that APOBEC genetic signature is frequently associated
to the HER2-E subtype [22,102].
1.7. Beyond HER2 overexpression: HER2-low breast tumors and
HER2 heterogeneity

Based on IHC assays, current ASCO/CAP guidelines recommend
to classify tumors characterized by an HER2 IHC score of 1þ or 2þ
(with the latter accompanied by an ISH negative result) as HER2-
negative BC, for which there is no clinical recommendation for
anti-HER2 targeted agents. However, 2 of the pivotal trials that
demonstrated the efficacy of trastuzumab-based adjuvant thera-
pies were found to contain a cohort of patients without amplifi-
cation/overexpression of HER2 on tissue submitted for central
testing. These so-called HER2-low cohorts appeared to benefit from
the addition of trastuzumab, retrospectively [103], but the phase III
RCT NSABP B-47 failed to demonstrate prospectively this benefit
[103]. Similarly, the 3-year results of the KRISTINE trial demon-
strated that replacing systemic CT with T-DM1 in a pertuzumab-
containing neoadjuvant regimen leads to a greater risk of relapse,
mostly locoregional. Interestingly, tumors from these early-
relapsing patients had lower HER2 expression (2þ vs. 3þ) and
HER2 2þ/3þ heterogeneity (focal vs. heterogeneous), compared to
those from other patients in the same treatment arm [104]. How-
ever, recent phase I trials of potent ADC trastuzumab deruxtecan
and trastuzumab duocarmazine showed impressive response rates
and median PFS in heavily pretreated metastatic HER2-low BC
[105,106], leading to their further clinical development, along with
other promising anti-HER2 ADC (e.g. MEDI4276 and XMT-1522)
[107].

Our group conducted a large retrospective study on more than
3500 patients and comprehensively dissected HER2-low clinico-
pathological and molecular features [108]. Overall, we observed
that HER2-low disease within HER2-negative BC is frequent (65 %
of HRþ/HER2-negative tumors and 37 % of TNBC) and mostly
characterized by Luminal A/B tumors. Nevertheless, TNBC/HER2-
low showed higher levels of Basal-like tumors, compared to HRþ/
HER2-low. However, while intrinsic subtypes’ distribution, Basal-
and proliferation-related genes levels of expression were higher in
TNBC, with no differences between HER2 0 and HER2-low tumors,
Luminal genes, as well as ERBB2 and its companion gene GRB7were
significantly more expressed in HRþ/HER2-low than in both HRþ/
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HER2 0 and TNBC, irrespectively of HER2 status. These findings
were also accompanied by a higher prevalence of Luminal A/B
subtypes in HRþ/HER2-low compared to the rest [108]. Interest-
ingly, the higher the HER2 IHC score, the higher the ERBB2 mRNA
levels [108]. This finding was also confirmed in a following study
were we showed a significant positive correlation between ERBB2
mRNA levels and HER2 protein levels (Spearman
Correlation ¼ 0.531, p < 0.001) [109]. Finally, we found no survival
differences between HER2-low vs 0 tumors, however the large
biological heterogeneity observed, confirmed by a following study
based on TCGA data, might have potential therapeutic implications
[108,110]. An exemplification of the correlation between HER2
protein and mRNA levels is reported in Fig. 5.

Notably, about 1e34 % of breast tumors are characterized by
heterogeneity in HER2 expression levels, which is responsible for
poor response to anti-HER2-based regimens and worse prognosis,
compared to cHER2þ BC [108,111]. This feature is more common in
tumors with an HER2 equivocal status [111]. A recent single arm
phase II trial of neoadjuvant T-DM1þpertuzumab in centrally
confirmed cHER2þ BC, tested tumor tissues for HER2 intratumor
heterogeneity (ITH-HER2), defined as the presence in at least one
tumor area of either 1) HER2 positivity by ISH in >5 % and <50 % of
tumor cells or 2) an area of tumor that tested HER2 negative. ITH-
HER2 was more frequent in ER þ tumors compared to ER-negative
(81 % vs 19 %) and no pCR was observed among cases classified as
Fig. 5. HER2 protein levels detected by immunohistochemistry and ERBB2 mRNA levels acc
cHER2-negative tumors courtesy of the Hospital Clinic of Barcelona Pathology Department an
in 146 metastatic samples analyzed at the Translational Genomics and Targeted Therapies in
right. HER2þ: HER2-positive; IHC immunohistochemistry.
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heterogeneous. A significant association between ITH-HER2 and
pCR stratified by ER status (p < 0.0001) was observed. This study
suggests that, if further validated, a routine ITH-HER2 assessment
might be an additional biomarker for selecting patients for (de)
escalated therapeutic approaches [112].

1.8. HER2DX

The increasingly complex and rich molecular and clinicopath-
ological heterogeneity that characterizes cHER2þ BC, is negatively
counterbalanced by a substantial absence of clinically validated
biomarkers other than HER2 and HR status. In order to help predict
treatment benefit and better personalize the therapeutic ap-
proaches, we and others developed a prognostic assay that in-
tegrates multiple data types for predicting survival outcome in
patients with newly diagnosed HER2-positive breast cancer. This
so-called HER2DX combined prognostic model, was built on
retrospective clinicopathological and genomic data from patients
who participated in the previously mentioned Short-HER phase 3
trial. The final prognostic model was then evaluated in an inde-
pendent combined dataset of patients with early-stage cHER2þ BC
treated with different neoadjuvant and adjuvant anti-HER2-based
combinations from four other studies with available DFS data
[113]. The model included tumor dimension, nodal status, StrTILs,
PAM50 subtypes, and expression of 13 genes [113].
ording to HER2 IHC status.Legend. Representative pathological images of cHER2þ and
d ERBB2 mRNA expression levels (log2 values) across HER2 IHC categories, as observed
Solid Tumors laboratory at IDIBAPS. HER2 protein and mRNA levels increase from left to



Fig. 6. Personalized medicine in cHER2þ breast cancer.Legend. TILs: tumor-infiltrating lymphocytes.
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HER2DX score as a continuous variable was significantly asso-
ciatedwith DFS and distant metastasis-free survival (DMFS) but not
with pCR. The model could also stratify patients in low-, interme-
diate- and high-risk categories. Study results suggested that a
substantial proportion of early-stage cHER2þ BC might not need
additional treatments (e.g. pertuzumab, neratinib, T-DM1) other
than CT þ trastuzumab (and ET in HR þ tumors) [113].

2. Conclusions

cHER2þ BC is a complex and multifaceted disease. Molecular
profiling, gene expression patterns, clinicopathological tumor fea-
tures and microenvironmental features altogether provide a
faceted portrait of a nosological entity that no longer we should
consider as one. Importantly, the integration of multiple bio-
markers, also depending on the clinical setting, might lead towards
different therapeutic strategies, depending on the presence/
absence/value of several tumor/microenvironmental features or
scores/categories identified by their combination (Fig. 6). In fact, in
the era of personalizedmedicine [114], a multiple biomarker-driven
diagnostic and therapeutic approach is progressively replacing the
old “one-size-fit-all” formula, and single-biomarker-driven ap-
proaches, when possible.

For example, themultiparametric score HER2DXmight be useful
in the (neo)adjuvant setting to select candidates for (de)escalated
therapeutic approaches, while the identification of HER2-E/ERBB2
mRNA-high cHER2þ tumors might be useful to select candidates
for CT-free anti-HER2-based regimes, in early and advanced setting
[25,45,113]. Similarly, the detection of TILs and PD-L1 might be
crucial to identify candidates for ICI with anti-HER2 combinations
[82,83]. Alterations of the PIK3CA/Akt/mTOR pathway might play a
role in selecting patients that might gain benefit with PI3K-, Akt-
and mTOR-inhibitors [60,66,67]; similarly, ERBB2 mutations might
be overcomewith potent anti-HER family TKI such as neratinib and
pyrotinib [57,58]. Finally, the novel category of HER2-low tumors
seems to benefit from new potent anti-HER2 ADC, such as trastu-
zumab deruxtecan [105,106]. All these strategies are worthy of
further investigation and need to be tested in prospective clinical
trials.

The final goal will be to avoid or reduce treatment toxicity
where unnecessary, without compromising patient's outcome at
the same time, or correctly use escalated regimens to gain the
maximum benefit at the cost of higher toxicity only in the most
appropriate candidates. These tools might also help to correctly
allocate financial resources, in a context where novel targeted
agents are reaching unsustainable costs and their use is substan-
tially unfeasible for numerous countries all over the world
347
[115e117].
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