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Evaluation of tumor-host interaction and intratumoral heterogeneity in the tumor

microenvironment (TME) is gaining increasing attention in modern cancer

therapies because it can reveal unique information about the tumor status. As

tumor-associated macrophages (TAMs) are the major immune cells infiltrating in

TME, a better understanding of TAMs could help us further elucidate the cellular

and molecular mechanisms responsible for cancer development. However, the

high-dimensional and heterogeneous data in biology limit the extensive integrative

analysis of cancer research. Machine learning algorithms are particularly suitable

for oncology data analysis due to their flexibility and scalability to analyze diverse

data types and strong computation power to learn underlying patterns from

massive data sets. With the application of machine learning in analyzing TME,

especially TAM’s traceable status, we could better understand the role of TAMs in

tumor biology. Furthermore, we envision that the promotion of machine learning

in this field could revolutionize tumor diagnosis, treatment stratification, and

survival predictions in cancer research. In this article, we described key terms

and concepts ofmachine learning, reviewed the applications of commonmethods

in TAMs, and highlighted the challenges and future direction for TAMs in

machine learning.

KEYWORDS

machine learning, tumor microenvironment, tumor-associated macrophages (TAMs),
deep learning, artificial intelligence
1 Introduction

The tumor microenvironment (TME) is a complex system consisting of various

components that would shape tumorigenesis, progression and metastasis. In addition to

cancer cells, numerous innate immune cells reside within the TME, for instance,

macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, etc. In the

complex environment, tumor-associated macrophages (TAMs), the major immune cells
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infiltrating tumors, can orchestrate various aspects of tumor

biology, such as tumor initiation, progression, metastasis, and

even anti-tumor immunosuppression. As crucial drivers in

fostering tumor progression, TAMs are standing out as

promising targets for diagnosis and new treatments in

malignant tumors.

Machine Learning (ML) is a group of data-analytical

methods to build predictive models by summarizing past

empirical or theoretical literature. Deep learning (DL) is

considered an evolution of machine learning. It uses a

programmable artificial neural network (ANN) which is

inspired by a biological nervous system to make accurate

decisions. Recently, ML, DL, in particular, has exhibited a

remarkable development with the support of the rapid

increase in the storage capacity and processing power of

computers. In the era of big data, ML methods have come to

attention as their extraordinary ability to process large and

heterogeneous data sets in complex biological systems. As P4

(Predictive, Preventive, Personalized, and Participatory) and

precision medicine are emerging and gaining traction (1), ML

has become integral to modern biological research for its ability

to solve challenges not well addressed by traditional methods.

There have been many applications of ML in medical research

ranging from cancer classification, subtyping, new biomarker

discovery, and drug discovery (2–5). Considering the crucial role

of TAMs in TME and tumor biology, ML has been widely

employed in TAMs-related studies and has achieved

successful outcomes.

This review is intended for readers with little knowledge of

ML algorithms. Firstly, we briefly review the origins, types, and

functions of TAMs. Secondly, we introduce the basic principles

and key concepts needed to understand how ML methods could
Frontiers in Immunology 02
be applied and utilized in cancer research. Thirdly, we discuss

the methods and applications at the intersection of ML and

TME, especially TAMs. In the end, we highlight the current

challenges in ML that need to be addressed, as well as the future

directions that could be used to fully realize the potential

applications in cancer therapy.
2 Origins and types of TAMs

TAMs comprise almost 50% of immune cells infiltrating

tumors. They are highly heterogeneous cells that can be divided

into two main origins: bone-marrow-derived macrophages

(BMDMs) developing from hematopoietic stem cells and

tissue-resident macrophages (TRMs) from progenitors seeded

into tissues during embryonic development. For a long time,

BMDMs have been considered the main effectors in TAMs, but

nowadays, TRMs have emerged as an inseparable and essential

component in TME (6).

In a simplified view, there are two distinct populations of

polarized macrophages, the classical M1 [upon lipopolysaccharide

(LPS) and IFNG stimulation] and the alternative M2 (upon IL4 or

IL13 stimulation) phenotypes macrophages. Macrophages

undergo polarization and get activated in multiple processes

during physiological and disease processes (7, 8). M1 and M2

macrophages have different markers, including CD surface

receptors, cytokines, chemokines, transcription profiles, etc.

(Table 1). We have listed the characterized biomarkers, CDs,

and cytokines for TAMs identification. M2 macrophages can be

further classified into different subtypes, namely M2a (mediated

by IL4 and IL13), M2b (mediated by immune complexes (IC) with

LPS or IL1R ligand), M2c (mediated by TGFB1, IL10, and
TABLE 1 M1 and M2 macrophages markers.

Characteristics M1 (classical) Reference M2(alternative) Reference

Stimuli LPS/IFNG/CSF2 (9, 10) IL4/IL13/CSF1 (10, 11)

CDs and MHC CD68, CD80, CD86, MHC-II (12–14) CD68, CD204, CD163, CD206 (15)

Cytokines and Chemokines IL1B, IL6, IL12, TNF, IFNG
CXCL9, CXCL10, CXCL11, CXCL16

(9, 11)
(9, 16),

IL10, VEGFA/C, TGFB1
CCL17, CCL18, CCL22, CCL24

(9, 15)

Non-coding RNAs miR-125b-2 (17) miR-375 (18)

miR-16 (19) miR-34a (20)

miR-9 (21) miR-301a (22)

lncRNA-PVT1 (23) miR-934 (24)

lncRNA-MEG8 (25) miR-940 (26)

lncRNA-GAS5 (27) let-7b (28)

miR-155 (29, 30) let-7c (31)

miR-142-3p (32) let-7d-5p (33)

miR-146a (14) miR-19b-3p (34)

lncRNA-MM2P (35)

Others NOS2, ROS, HMGB1 (11, 14, 36–38), PD-1/PD-L1, MMP1/2/9, Arg1,
Chil3, Retnla

(39–43)
fro
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glucocorticoids), and M2d (activated by tumor-associated factors,

the major part of TAMs) (44, 45). In contrast to proinflammatory,

antibacterial, and anti-angiogenic M1 macrophages, M2

macrophages suppress inflammation, facilitate tissue repair,

remodeling, angiogenesis, and retain homeostasis under

physiological conditions (46, 47).

In general, TAMs contain M2 and small populations of M1

cells (48). However, the distinction between the M1 and M2

states is less clear in TME since TAMs probably display

phenotypes anywhere in between these two extremes.

Moreover, the phenotype of TAMs dynamically changes with

the development and progression of tumors. Each macrophage

in TME might show anti- or pro-tumorigenic properties to form

a plastic and heterogeneous tumor-promoting totality in

response to diverse microenvironmental signals (a mixed M1–

M2 phenotype). In a word, the M1 or M2 only phenotype is too

simple to elucidate the intricate roles of TAMs in the TME

(49–53).
3 Roles of TAMs in tumor

Macrophages are considered essential components in

immune defense and immune sentinels combating tumor

growth; however, accumulated evidence supports a new

tumor-promoting role of macrophages as well. Different from

the basic functions of phagocytizing pathogens and apoptotic

cell debris, TAMs are equipped to execute a broad repertoire of

pro-tumorigenic functions as heterogeneous effectors (Figure 1).
3.1 TAMs in tumor initiation
and development

TAMs profusely infiltrate TME with the ability to suppress

anti-tumoral immune surveillance. Accumulating evidence has

suggested that TAMs can express a variety of immunosuppressive

chemokines and factors which promote tumor cell proliferation

and survival, including platelet-derived growth factor (PDGF),

epithelial growth factor (EGF), and transforming growth factor

beta 1 (TGFB1) (54, 55). The abovementioned chemokines and

factors lead to immune cell–cell interactions as well. For instance,

TAMs can inhibit anti-tumor immunity by restraining antigen

presentation and blocking T cells function, in which case T cells

lose their capacity in recognizing and even killing tumor cells (45).

Usually, activated cytotoxic T lymphocytes (CTLs) can attack

cancer cells to suppress tumor growth, while TAMs express

immunosuppressive cytokines, chemokines, and growth factors

like IL10 and TGFB1 to make CTLs hyporesponsive (6). As a

distinct T-cell subpopulation, regulatory T cells (Tregs) are

actively engaged in the maintenance of immunological self-

tolerance (56). IL10 and TGFB1 from TAMs can also induce

Tregs-mediated immunosuppression (57). Besides, TAMs are able
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to recruit Tregs via CCL22 production, which further suppresses

the antitumor immune response of T-cells and fosters tumor

growth (58). Moreover, it is worth noting that cancer cells can

strongly induce TAMs into pro-tumorigenic phenotype by

secreting colony-stimulated factor 1, mucins and exosomes (59–

61). To sum up, all these factors work together and make the TME

a hospitable site.
3.2 TAMs in tumor angiogenesis

Angiogenesis can be briefly defined as the formation of new

capillaries from pre-existing blood vessels. It is generally

accepted that tumor growth largely depends on angiogenesis

since new vessels can supply fresh oxygen and nutrients as well

as remove wastes and metabolites. Furthermore, angiogenesis is

a vital event in hematogenous metastasis (62). Angiogenesis is

activated when pro-angiogenic factors predominate over anti-

angiogenic factors (63). As shown in Table 1, TAMs can produce

diverse pro-angiogenic molecules (VEGF family, PDFG, TGFB1,

etc.) and matrix metalloproteinases (MMP) to facilitate

angiogenesis. In particular, developing tumors consume

oxygen supply rapidly and tend to create an oxygen deficiency

condition (hypoxia). It has been increasingly recognized that

TAMs massively infiltrate hypoxic regions in tumors and

hypoxic macrophages achieve a pro-angiogenic response by

directly upregulating the abovementioned pro-angiogenic

molecules through hypoxia-inducible factor-1 alpha (HIF1A)

(64–67).
3.3 TAMs in tumor metastasis

TAMs demonstrate lots of essential functions in tumor

biology. In tumor metastasis, it is still a puzzling question how

TAMs facilitate tumor spread specifically, though TAMs get

involved in almost every process of metastasis. Herein, we

provide a quick summary of the fundamental mechanics. First,

TAMs within the TME can enhance tumor cell migration and

invasion, thereby enabling the escape of tumor cell from the

confines of the basement membrane into the surrounding

tissues. Second, TAMs are associated with tumor angiogenesis,

which, as was previously mentioned, results in tumor

intravasation and vasculature-based tumor spread (68). Third,

in the immunosuppressive TME, cancer cells can escape from

being killed by T cells and prolong cell survival, which make it

easier to spread to farther tissues and organs (69). It should be

highlighted that tumor metastasis is a process that starts at a very

early stage rather than a late event initiated and shaped in

advanced cancers. Distant organs are conducive to the survival

and outgrowth of primary cancer cells before their arrival. Those

‘primed’ sites are known as ‘pre-metastatic niches’ (PMNs) (70)

and special attention has been given to the key role of TAMs in
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PMNs from clinical evidence (71). Upon the induction of many

tumor-secreted factors, TAMs are recruited into the blood and

then gather at the pre-metastatic sites (70, 72–74). Meanwhile,

TRMs stemming from yolk sac progenitors, like cerebral

microglia, liver Kupffer cells, pulmonary alveolar macrophages,

and osteoclasts, have been resident in the distant sites before

tumorigenesis and get involved in orchestrating PMNs

formation following diverse stimulation as well. These

macrophages guide circulating tumor cells (CTCs) into the

PMNs through enhancing the expression of chemokines and

remodeling the extracellular matrix (ECM) into more tumor-

favorable structures (75).
3.4 TAMs enhance resistance
to chemotherapy, radiotherapy
and immunotherapy

Emerging cancer research depicts that a high proportion of

TAMs infiltration in tumor samples is often associated with

shortened survival and poor prognosis in many tumors (76–79).

Furthermore, TAMs infiltration is thought to offset therapeutic

response to radiotherapy, chemotherapy and targeted therapy,

even leading to treatment failure (80, 81). Regarding underlying

mechanisms, TAMs can reduce the efficacy of radiotherapy by

triggering the anti-apoptotic programs in cancer cells that are
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resistant to radiotherapy. They also secrete a variety of cytokines

and survival factors to mediate the resistance of the solid tumor

to many chemotherapy drugs, including IL6 and milk-fat

globule-epidermal growth factor-VIII (82, 83). Programmed

death ligand 1 (PD-L1), which is thought to be carried by

TAMs and is upregulated in response to stimulation of TME-

derived factors, has been linked to immune exhaustion via the

checkpoint ligand/receptor interaction. However, existing

studies do not depict a comprehensive picture since another

study comes to a contrary conclusion that PD-L1 expression on

TAMs, instead of cancer cells, is positively associated with

patients’ overall survival (84). Thus, further studies addressing

the precise mechanisms involved are urgently needed.

Considering all these functions of TAMs, it is essential to

comprehend heterogeneous TAMs and their roles in tumor

biology to create and enhance more potent treatments. To

date, various molecular strategies against TAMs are currently

in preclinical or clinical trials, trying to overcome the knotty

problem of immune suppression, such as TAMs recruitment,

TAMs depletion and TAMs reprogramming (85).
4 Basics of machine learning

The term machine learning was first coined in the 1950s by

Arthur Samuel, a computer scientist at IBM (86). Since then, ML
FIGURE 1

Roles of TAMs in tumor progression. Overview of TAMs in tumor progression. TAMs can derive from BMDMs and TRMs. TAMs provide a niche
for tumor initiation and development, participate in angiogenesis, promote tumor metastasis, and enhance resistance to chemotherapy,
radiotherapy and immunotherapy. (Created with BioRender.com).
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has evolved considerably and now is playing a critical role in

modern medical science. ML is a subdivision of artificial

intelligence and can be briefly defined as enabling algorithms

to make accurate predictions based on prior experiences (87).

The boundary between conventional statistical techniques and

ML is obscure, whilst some terms in ML have similar functions

to statistical methods. Some conventional statistical techniques,

such as ridge regression can be combined with ML algorithms

for prediction (88). One key distinction between ML and

traditional statistical methods is that conventional statistic

methods focus on the relationship between variables (89).

However, ML contributes to identifying patterns from massive

data and then performing predictions. Moreover, ML aims to

solve more complicated problems, often dealing with high

dimensional variables with the technique of feature selection,

pattern analysis and dimensionality reduction. As a result, it

extends and supplements existing statistical methods by offering

tools and algorithms to decipher patterns in enormous, intricate

and heterogeneous data sets. Common terminologies and

explanations in ML can be seen in Table 2.

In oncology studies, ML can analyze large-scale data in

different format and combine them into predictions for tumor

staging, cancer susceptibility, tumor recurrence, and patient
Frontiers in Immunology 05
survival (90). The process of ML is to extract knowledge from

massive data sets, identify the underlying patterns, build

predictive models, and finally make predictions on unseen

data. A basic explanation of ML in cancer research can be

achieved by considering the example of tumor recurrence

prediction. Features from heterogeneous sources of data

(clinical, imaging and genomic) are extracted by the ML

algorithm. ML algorithm identify the combinations of specific

features and tumor recurrence risk, and then build a prediction

model. After that, when presented with a new case, the algorithm

could provide the likelihood of recurrence for the new case.
4.1 Categories in machine learning

ML techniques can be generally categorized into three main

groups based on whether the labels are required in the training

data (91). Common categories of supervised and unsupervised

learning can be found in Table 3.

4.1.1 Supervised learning
The term ‘supervised’ refers to the technique where a model

is supplied with labels, which are desired outcomes of the

learning target (e.g., correct segmentation or classification

results) (92). Generally, supervised learning is used to build a

model to predict or categorize future events. It primarily focuses

on classification (e.g., classifying benign or malignant tumors)

and regression (calculating the risk of tumor relapse, estimating

individualized disease-free survival, or predicting the length of

patient life) (88).

4.1.2 Unsupervised learning
Unsupervised learning is used when the input data has no

labels. Hence, it learns the relationship between variables and

uncovers patterns in unlabeled data. Supervised learning

primarily addresses classification and regression issues, while

unsupervised learning focuses more on dimensionality

reduction and clustering (88). Clustering refers to identifying

groups of similar cases within a data set based on some specific
TABLE 3 Categories of supervised learning and unsupervised
learning for common algorithms.

Supervised Learning Unsupervised Learning

Ordinary Least Square Regression K-Means

Logistic Regression Principal Component Analysis

Least Absolute Shrinkage Selection Operator
Regression

Information Maximizing
Component

Linear Discriminant Analysis Self-organizing Maps

Ridge Regression Topological Data Analysis

Elastic Net Regression

Support Vector Machines

Bayesian Networks

Naïve Bayes Classifiers

Random Forests
TABLE 2 Common terminologies and explanations in ML.

Artificial
Intelligence

Artificial intelligence is the capability of a computer to perform tasks that are generally completed by humans because they require human
intelligence and conception.

Features Features are the observable quantities and characteristics across all samples in the data set, either raw or mathematically transformed.

Feature selection Feature selection is the process of selecting the most relevant features in developing a predictive model and can reduce the computational cost of
modeling as well as improve the performance of the model.

Data
augmentation

Data augmentation refers to techniques that can increase the diversity of training sets by applying random (but realistic) transformations, such as
image rotation, flipping, scaling, etc.

Overfitting Overfitting refers to a model that performs pretty well on the training data and fails to generalize and perform well in the case of unseen data
scenarios.

Underfitting Underfitting refers to a model that does not work correctly in the training data and also has poor performance in the new data.

Dimensionality
reduction

Dimensionality reduction refers to techniques that reduce the number of random variables to the principal component of a data set.
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features; dimensionality reduction is used to reduce the

complexity and heterogeneity of features extracted from

massive biomedical data sets.

4.1.3 Semi-supervised learning
Semi-supervised learning combines supervised and

unsupervised ML. It can be helpful when only a tiny fraction

of the data is labeled, or the labels on the input data are

incomplete (93). A lack of sufficient labeled data frequently

occurs in medical contexts because, given the complexity and

variability of biomedical data, labeling information (e.g.,

correctly delineating the target in auto-segmentation) can be

labor- and time-consuming. From this respective, semi-

supervised learning can improve the efficiency and accuracy of

information extraction for large data sets.
4.2 General workflow

4.2.1 Data preparation
ML workflow usually starts with data acquisition and pre-

processing. Data sets are typically split into training, validation,

and evaluation sets. The predictive model is constructed on the

basis of the training set and tuned by the validation set; finally,

the model performance is assessed by the held-out evaluation set

(89). In practice, the training set usually accounts for a larger

fraction of the data (70%), whereas validation and evaluation sets

usually make up 15%, respectively.

The prerequisites of ML success are a sufficient number of

samples and high-quality data. To make the most of ML, enough

training data size should be ensured to extract more generic

features from the whole data set without over-emphasizing the

impact from a few certain samples. Besides, the data quality

should be checked to ensure input data’s appropriateness,

reproducibility, and versatility. Specifically, for supervised

learning, the correctness of the ground truth labels is also

quite essential. Incorrect labels can significantly downgrade the

model performance and are difficult to detect during

training (86).

4.2.2 Training and validation
The proper performance of the model relies heavily on

features across sample sets, and model refinement can be

achieved using the technique of feature select ion.

Inappropriate feature selection would undermine the training

performance by straining computational resources, including

time and memory. For ML application in TAMs, thousands of

features can be used to predict the output variables (94), e.g., cell

morphology, the molecular feature of TAMs, immune-related

gene-based novel subtypes, patient characteristics, tumor

infiltration, etc. After feature selection, ML would search for

the optimal parameters and translate the features into accurate
Frontiers in Immunology 06
predictions. The parameters are created through a complicated

calculation process.

After that, a validation set is also needed to optimize the

parameters of the algorithm. In validation, a preliminary

estimate of the model’s generalizability and accuracy is

obtained; errors can be detected and corrected in this phase,

and the process is then repeated (95). In other words, validation

serves as a supplemental role in identifying the errors in a model

in an early phase.

The input data is usually partitioned into k subsets of equal

size. A single subset is retained as the validation set, and the

remaining k-1 subsets are used as training data. The process of

training and validation will continue until there is no further

improvement in model performance.

4.2.3 Evaluation
The evaluation data is used to assess the performance of the

final model on samples outside the input data set (training and

validation set). This process aims to estimate the model

performance in the real-world. The evaluation set should be

utilized at the very end of the research, avoiding the model being

tuned to fit the evaluation set (96). The performance of a specific

model relies on many factors, such as the data size and quality of

training data, as mentioned above. The complexity and the

relationship between the input and output variables, as well as

the computational resources such as available training time and

memory, all play essential roles in achieving high model

performance (94).
5 ML algorithms used in TAMs

In this section, we are going to introduce the most common

utilized ML algorithms applied in cancer research, especially,

TAMs. We also compared the advantages and disadvantages of

different algorithms in Table 4 (97–101). Since the combination

of ML and TAMs is an emerging cross-cutting research field,

most studies were published in the last five years. All the matches

were reviewed for suitability and significance for this review.

Table 5 depicts the publications we found most pertinent to our

topic. Cancer type, sample size, research purpose, as well as the

ML applications are presented in the table.
5.1 Dimensionality reduction

Dimensionality reduction refers to techniques that

transform data in high dimensions into a lower-dimensional

form while preserving the relationships between the data points

as much as possible. In a nutshell, it is a data preparation

technique used for downsizing the input variables and

performed before modeling. By far, Principal Component
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Analysis (PCA) is the most popular multidimensional data

analysis technique (126). It reduces the dimensionality by

eliminating less important components to omit the redundant

dimensions and focusing only on the most important

components that could best explain the heterogeneity in the

data (Figure 2A). Other dimensionality reduction algorithms

include t-distributed stochastic neighbor embedding and

uniform manifold approximation and projection.

PCA is primarily applied to problems where there are a large

number of features, which are referred to as high-dimensional

problems (127). Generally, there are many important applications

of PCA in cancer research because the input variables in oncology

data are complex and massive. For example, PCA is used to
Frontiers in Immunology 07
extract principal components as signature score to calculate the

patients’ risk scores based on meaningful macrophage-related

genes (105, 106). Zhang et al. performed PCA on 487 patients

to reduce the feature dimensions and clearly distinguished high-

risk and low-risk patients (107). Autoencoder in deep learning

neural networks is another method to perform dimensionality

reduction. Encoder is the part of the model prior to the bottleneck.

It aims to compress the data dimension to a bottleneck layer that

is much smaller than the initial input data. Shen et al. developed a

deep learning model through self-supervised feature

representation learning to characterize immune infiltration from

transcriptome (116). The developed model was used to distill

expression signatures of the transcriptome in brain tumor
TABLE 4 Pros and cos of common machine learning algorithms.

Pros Cons

Support Vector
Machine

• Good performance with high dimensional data
• Good performance when classes are separable

• Slow
• Cannot deal with overlapped classes
• Selecting appropriate hyperparameters is essential
• Selecting the appropriate kernel

Principal Components
Analysis

• Reduce overfitting
• Improve visualization
• Improve model performance

• Independent variables become less interpretable
• Data standardization is necessary
• Lose information

Naive Bayes • Fast prediction
• Insensitive to irrelevant features
• Can be used for multi-class prediction
• Perform well with high dimensional data
• Less dependent to data size

• Independence of features does not hold
• Relatively low prediction accuracy
• Zero Frequency

Logistic Regression • Simple to implement and interpret
• Feature scaling is unnecessary
• Perform well for linearly separable dataset
• Tuning of hyperparameters is unnecessary
• Fast at classifying unknown records

• Assumption of linearity between the dependent variable and the
independent variables

• Requires average or no multicollinearity between independent
variables

• High reliance on proper presentation of data

Random Forest • Reduced error with high accuracy (balance the bias-variance
well with multiple trees)

• Good performance on imbalanced datasets
• Can handle linear and non-linear relationships well
• Little impact of outliers
• Not prone to overfitting
• Useful for feature selection

• Features need to have some predictive power
• Predictions of the trees need to be uncorrelated
• Not easily interpretable
• Computationally intensive for large datasets
• Black box nature

Decision Tree • Normalization or data scaling is unnecessary
• Can handle huge amount of data
• Easy to explain
• Easy visualization
• Automatic Feature selection
• Missing values does not affect building decision tree

• Prone to overfitting
• A small change in data can cause large change in structure of

decision tree
• Long training time
• Inadequate for applying regression and predicting continuous

values

K-Nearest Neighbor • Simple to understand and implement
• No assumptions about data
• Constantly evolving model
• Can handle multi-class problem
• One hyper-parameter(k)

• Slow
• Poor performance on datasets with large number of features
• Scaling is necessary
• Imbalanced data causes problems
• Outlier sensitivity
• No capability of dealing with missing values

Artificial Neural
Network

• High Efficiency
• High accuracy
• Multi-tasking
• Able to deal with incomplete information
• Having fault tolerance

• Hardware dependence
• Black Box Nature
• Complex algorithm compared to traditional machine learning

algorithms
• Need large data set
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TABLE 5 ML algorithms and their applications in TAMs.

Authors
and
Years

Cancer Types Sample
Size

ML
Algorithms

Research Purposes ML Applications

Chang
et al. (102)
(2021)

Ovarian cancer 1566 Cox, LASSO To construct macrophage related
prognostic model for ovarian cancer

identify multiple features related to survival (uni-and
multi-variate Cox) and construct the macrophage-
related prognostic model (LASSO)

Rostam
et al. (103)
(2017)

/ Orange Data
Mining Toolbox

To identify different macrophage
functional phenotypes

auto-identification of phenotypes based on cell size and
morphology (Orange)

Zhu et al.
(104)
(2019)

Rectal cancer 46 SVM To investigate the role of tumor-
infiltrating leukocyte cell composition in
the prognosis of radiotherapy for rectal
cancer

classify responsive and non-responsive patients (SVM)

Zhang et al
(105)
(2021)

Glioma 2405 NN, SVM
ER, PCA

To investigate the predictive value of
monocytes in the immune
microenvironment
and prognosis in glioma patients

validate clustering results (NN, SVM) and calculate the
risk scores of patients (ER, PCA)

Zhang
et al. (106)
(2021)

Glioma 2365 Pamr, NN, SVM
ER, PCA

To build a prognostic model based on
the molecular feature of TAMs for
gliomas

validate the clustering results (Pamr, SVM, and NN),
construct risk scores (ER, PCA) and further validate the
clustering results (SVM, NN)

Zhang
et al. (107)
(2020)

Prostate cancer 487 LASSO, PCA To build a model to predict the risk of
prostate cancer based on immune-related
gene-based novel subtypes

determine the properties of the subtypes (PCA) and
build the risk predictive model (LASSO)

Yin et al.
(108)
(2022)

Cervical squamous
cell carcinoma

78 Cox, LASSO, LR,
GMM

To investigate the roles of TAMs in the
development of cervical squamous cell
carcinoma

select immune‐related genes (Univariate Cox and
LASSO), construct the risk score model (multi-variate
Cox), build a diagnosis signature (LR), and then select
the best models (GMM)

Yan et al.
(109)
(2020)

Ovarian cancer 365 Cox, LASSO,
SVM, SVM-RFE

To explore prognostic genes associated
with immune infiltration in ovarian
cancer

identify the most valuable genes related to immune
infiltration (LASSO, Cox), distinguish two different
standards of immune infiltration (SVM), and work out
the most valuable variables of immune infiltration
(SVM-RFE)

Wu et al.
(110)
(2022)

Non-small cell lung
cancer

681 RF To develop a macrophages-based
immune-related risk score model for
relapse prediction in stage I–III non-
small cell lung cancer

screen the robust prognostic markers and construct risk
score to predict disease-free survival (RF)

Wei et al.
(111)
(2020)

Gastric cancer 407 SVM, LASSO,
SVM-RFE

To investigate the effect of various
components in gastric cancer TME and
identify mechanisms exhibiting potential
therapeutic targets

minimize the redundancy of features (LASSO) and rank
the features (SVM, SVM-RFE)

Wang et al.
(112)
(2021)

Lung cancer 507 Mask R-CNN To develop a prognostic model for the
prediction of high- and low- risk lung
adenocarcinoma

segment the nuclei of tumor, stroma, lymphocyte,
macrophage, karyorrhexis and red blood cells (Mask R-
CNN)

Vayrynen
et al. (113)
(2020)

Colorectal cancer 931 inform To investigate the prognostic role of
macrophage polarization in the colorectal
cancer microenvironment

identify macrophages in tumor intraepithelial and
stromal regions (inForm)

Ugai et al.
(114)
(2021)

Colorectal cancer 3092 inform To investigate if the relationship between
smoking and colorectal cancer incidence
varies depending on macrophage
infiltration

perform tissue category segmentation, cell segmentation,
and cell type classification

Starosolski
et al. (115)
(2020)

Transgenic mouse
models of
neuroblastoma

16 Non-parametric
neighborhood
component
analysis

To investigate if nanoradiomics can
differentiate tumors based on TAM
burden

radiomic features selection (the non-parametric
neighborhood component method)

Shen et al.
(116)
(2021)

Brian tumor 3810 A self-developed
deep learning
algorithm based
on contrastive
learning

To stratify brain tumors for better
clinical decision-making and prognosis
prediction

distill expression signatures of transcriptome (DL)

(Continued)
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samples. The application of PCA in TAMs research could

potentially be promising in enhancing predictive accuracy when

inpu t va r i ab l e s and the i r in t e r - connec t i ons a r e

remarkably complicated.
5.2 Regression

Regression analysis is a method to mathematically describe

the relationships between the outcome of interest (e.g., patient

survival or relapse risk) and one or more features, also termed as

variables (Figure 2B) (128). It answers the questions: Which

variable is the most significant? What’s the connection among

these variables? And, perhaps most importantly, how certain are

we about all of these variables? Regression analysis has been
Frontiers in Immunology 09
applied to cancer research for decades, from survival analysis

with Cox’s proportional hazard regression to Least Absolute

Shrinkage Selection Operator Regression (LASSO) regression for

significant feature selection.

Linear regression is the most common and simplest model

for discovering how one or more explanatory variables

determine the dependent variable (129). Logistic regression is

extended by a linear regression model for classification

problems. However, it differs from linear regression by being

employed when the outcome variable is binary. Yin et al. built a

diagnosis signature by logistic regression based on selected

significant factors correlated with TAMs. They found that

these factors were conducive to distinguish normal tissues

from tumor (108). Cox proportional hazard is generally used

when the outcome is the time to an occurrence (for example,
TABLE 5 Continued

Authors
and
Years

Cancer Types Sample
Size

ML
Algorithms

Research Purposes ML Applications

Nakamura
et al. (117)
(2019)

Ovarian carcinoma 1656 SVM, RF, NN,
LDA

To identify relationships between the
expression of immune and inflammatory
mediators and patient outcomes

classify ovarian cancer and normal tissue (SVM, RF, and
NN) and map high-dimensional input data into a two-
dimensional space (LDA)

Liang et al.
(118)
(2021)

Various cancers 9881 CART, LR, LDA,
K-Neighbors
Classifier,
Gaussian Naive
Bayes, SVM

To investigate the inflammasome
signaling status to clarify its clinical and
therapeutic significance

classify samples and validate gene set enrichment (all 6
ML methods)

Li et al.
(119)
(2021)

Bone-related
malignancies

1675 RF To investigate if a distinct immune
infiltrative microenvironment exists in
malignant bone-associated tumors and
build a model for tumor diagnosis and
prognosis

develop a bone-related tumor differential diagnosis
model (RF)

Li et al.
(120)
(2022)

Gliomas 652 NN, LSTM, Cox,
LASSO,
RF

To predict survival and tumor-infiltrating
macrophages in gliomas using MRI
radiomics

extract significant radiomic features to construct a
prediction model (NN, LSTM, Cox, LASSO, RF)

Kuang
et al. (121)
(2021)

Hodgkin
lymphoma

130 LASSO, Cox,
RF

To investigate potential markers for the
diagnosis and prediction of classic
Hodgkin lymphoma prognosis

identify prognostic genes and build a model for
prognosis (LASSO, Cox, RF)

Hagos et al.
(122)
(2022)

Follicular
lymphoma

32 ConCORDe-Net To identify cell phenotypes and spatial
distribution of immune cell subsets in the
inter‐follicular area of follicular
lymphoma TME

detect different immune cells within and outside
neoplastic follicles (ConCORDe-Net)

Guo et al.
(123)
(2021)

Pulmonary
sarcomatoid
carcinoma

97 Cox, RF To build an immune-based risk-
stratification system for prognosis in
pulmonary sarcomatoid carcinoma

construct a predictive model and rank the predictive
ability of each variable (Cox, RF)

Lange et al.
(124)
(2018)

Uveal melanoma 64 HCA, PCA To study the immune environment and
explore whether absolute T-cell
quantification and expression profiles can
dissect disparate immune components

reveal cell-specific expression patterns in gene selection
(HCA, PCA)

Lin et al.
(125)
(2022)

Adamantinomatous
craniopharyngioma
(ACP)

57 RF, LASSO To study the molecular immune
mechanism in ACP and find potential
biomarkers for the targeted therapy for
ACP

screen diagnostic markers (RF, LASSO)
Cox, Cox Proportional-hazards Regression; LSSO, Least Absolute Shrinkage and Selection Operator; PCA, Principal Component Analysis; ER, Elastic Regression; SVM, Support Vector
Machine; Pamr, Prediction Analysis for Microarrays; LR, Logistic Regression; GMM, Gaussian Mixture Model; LDA, Linear Discriminant Analysis; SVM-RFE, Support Vector Machine
Recursive Feature Elimination; NN, Neural Network; RF, Random Forest; CART, Classification and Regression Trees; ConCORDe-Net, Cell Count Regularized Convolutional Neural
Networks; HCA, Hierarchical Cluster Analysis; LSTM, Long short-term memory; MLP, Multi-layer perceptron; Weka, Waikato Environment for Knowledge Analysis; ROF,
Rudin-Osher-Fatemi.
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time to death, time to relapse). The results of Cox are explained

in terms of a hazard ratio, indicating the risk of an event at a

given time. Ridge regression and LASSO regression are variants

of linear regression (linear regression appended with a

regularization term) introduced for more accurate prediction.

Ridge and LASSO are commonly used to reduce model

complexity and prevent potential over-fitting. Typically,

LASSO and Cox are combined together for disease prognosis.

These studies generally use univariate Cox regression and

LASSO regression to identify the significant characteristics and

multivariate Cox regression to build risk score models (108).

Another variant of linear regression is elastic net regression.

It integrates the LASSO and ridge regression methods by

learning from their drawbacks to improve the regularization of

statistical models. Thus, it achieves a more stable and better

prediction than LASSO and ridge regression in less training

samples. In two studies that intended to develop a prognostic

model based on the molecular feature of TAMs, they both used

elastic net to construct risk scores (105, 106). Especially, in

Zhang et al’s study, they found that glioma with higher risk

scores is populated by macrophages comprising both the

traditional M1 and M2 phenotypes, which further indicates

that M0/M1/M2 is a continuum rather than two extremes (106).
5.3 Classification

5.3.1 Support vector machine
Support Vector Machine (SVM) is a powerful method that

can be used for both regression and classification tasks (130).

However, it mostly works as a classifier and aims to create a

decision boundary, also termed as hyperplane, between two

classes that distinctly classifies the data into different categories

(131). The objective of SVM is to maximize the margin to select

the best hyperplane, which offers some reinforcement so that

subsequent data points can be classified with greater confidence.

The margin is determined by a series of hyperplanes parallel to

the decision boundary whose distance to the nearest data point is

the largest in either the positive or negative class, as depicted

in Figure 2C.

As a classifier, SVM is frequently used in TAMs. Patients can

be classified into different groups based on the significant tumor-

infiltrating immune cell proportions. For instance, patients with

rectal cancer can be classified into responsive and non-

responsive groups through the ML method based on the

tumor-infiltrating immune cell composition and achieved an

accuracy of 65% (104). Nakamura et al. applied SVM to

discriminate between malignant and non-malignant tissues in

ovarian cancer patients and malignant ovary samples through

the immune signatures including M1 macrophage mediator

signatures (117). Yan et al. used SVM to explore prognostic

genes associated with immune infiltration and the classification

accuracy reached as high as 0.934. Also of note, the high and
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low-risk groups exhibited significantly different proportions of

TAMs (104). Some researchers used SVM to further validate the

clustering results (105, 106). In an article by Liang, the authors

applied six ML algorithms to predict inflammasome clusters, in

which macrophages were the major immune cell population

enriched in inflammasome complexMid and inflammasome

complexHigh clusters. In this paper, SVM achieved a highest

prediction accuracy of 96% (118). Some researchers also use

SVM-RFE, a feature selection algorithm that ranks the features

according to the recursive feature deletion sequence, to identify

prognostic genes associated with TAMs infiltration (109, 111).

The strength of SVM is that it can be used for complex data

sets with many variables or dimensions. However, when it comes

to high dimensions, SVM achieves a powerful model at the cost

of easy interpretation of which features are influencing

the model.

5.3.2 Random forest
Random forest (RF) is an ensemble decision tree classifier

combining multiple tree predictors introduced by Leo Breiman

(132). As an ML algorithm near the top of the classifier

hierarchy, the RF classifier is capable of ranking the predictive

ability of each variable and constructing a predictive model

(110). Generally, RF is based on the aggregation of a large

number of uncorrelated and weak decision trees, and each

uncorrelated tree casts an individual prediction. The final

decision is made by majority voting of all trees, which

outperform any single classifier (Figure 2D). RF models are

considered less vulnerable to overfit the training data set given

the large number of trees built, making each tree an independent

model. Given a large number of trees ensembled and each tree

indicating an independent model, random forest models are

thought to be less susceptible to overfitting. The ability of RF to

precisely classify observations is extremely valuable in oncology

applications, such as predicting patient death or tumor relapse.

So far, RF has been applied to many TAMs studies for

classification. They are generally used to screen TAMs-related

markers and construct an immune-related risk score for risk

prediction (110, 121, 123, 125). By utilizing RFs, a diagnostic

model based on immune infiltration can accurately perform the

differential diagnosis of bone-related malignancies (119).

Nakamura et al. used RF to investigate whether genes

identified by literature search or other analysis can distinguish

between normal tissues and cancer tissues (117). In many

studies, RFs also worked with other algorithms to screen the

overlapping markers, e.g., LASSO (121, 125).

Overall, the advantage of RF is that it is an ensemble

algorithm which has more accuracy than any individual

prediction, especially when multi-modality variables are

combined (133). However, the high dimension of all the

features in cancer research and their complex interactions

make it very difficult for humans to interpret the model

and results.
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5.4 Neural networks and deep learning

Deep learning (DL) is a notable sub-class of ML which has

a remarkable ability to learn patterns from raw, unstructured

input data by incorporating artificial neural networks (ANN)

(134). ANN is inspired by the structure and function of the

brain. It attempts to use multiple layers of calculation units to

imitate how the human brain processes input information. It is

essentially a mathematical model consisting of an input layer,

multiple hidden layers, and an output layer, as shown in

Figure 2E. Each layer has multiple artificial neurons, also

known as nodes in neural network. The nodes in input layers

gather source material such as image pixels and numerical data.

Hidden layers in the middle connect nodes to the next layer,

creating non-linear representations between source data and

the output layer (135).

Despite deriving from ANN, the DL framework differs from a

straightforward neural network. Overall, DL networks are larger

and consist of more layers and nodes, making it possible to reflect

complicated interrelationships precisely. DL is able to process

plenty of features across a large number of samples and derive

neural network-based ‘representations’ quickly. Many specialized

DL models have outperformed traditional ML models for various
Frontiers in Immunology 11
tasks, such as medical image segmentation and image-based

tumor staging. Classical DL algorithms include Convolutional

Neural Network (136), Recurrent Neural Networks (137), Radial

Basis Function Networks (138), Long Short-Term Memory

Networks (LSTMs) (139), Self-Organizing Maps (140),

Autoencoders (141), etc., which have been proved to achieve

state-of-the-art performance in specific applications (142–144).

Applications of neural networks and DL in TAMs focusmore on

classification and medical image segmentation. Li et al. developed an

MRI radiomics approach to predict survival and tumor-infiltrating

macrophages in gliomas (120). They used two neural networkmodels

and one long short-term memory DL model to divide patients into

long and short-term survival clusters. In research conducted byWang

et al. (112),Mask R-CNN, a DL-basedmodel, was applied to segment

the nuclei of the tumor, lymphocyte, stroma, karyorrhexis, red blood

cells and macrophage from pathology images. In addition to the

existing segmentation algorithms, some studies developed their own

DL segmentation models to characterize immune infiltration. Risom

et al. segmented cell nuclei using Msmer, a DL-based algorithm

developed in their lab (145), and Hagos et al. used ConCORDe-Net

to detect cells in multiplex immunohistochemistry images (122).

Meanwhile, commercial and Open-source software could also be

used for segmentation in cancer research. For example, inForm
B C

D E

A

FIGURE 2

Basic principles of standard ML algorithms. (A) PCA reduces the dimensionality of a data set consisting of plenty of interrelated variables. (A)
illustrates a series of data points viewed from another angle with approximately the same value on that dimension. It shows that the distinction
between the data points can be represented by a principal component. (B) Regression analysis determines the relationship between factors and
disease outcomes or identifies relevant prognostic factors for diseases. (B) illustrates regression estimating a mathematical formula that relates
input variables to the output variable. (C) SVM generates a hyperplane in higher-dimensional feature space and maximizes the margin of error to
select the best hyperplane. The best hyperplane would serve as a decision boundary for classification. (D) RF model ensembles a large number
of small decision trees. Each tree is capable of making an individual prediction. (E) Neural networks tend to resemble the connections of
neurons and synapses in human brain. The input data is assigned initial weights and transferred to output layers for classification. Hidden layers
would tune the initial wrights to minimize the neural network’s prediction error.
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software package (Akoya Biosciences) has been applied in some

studies to automatically perform tissue category segmentation, cell

segmentation, and cell type classification (113, 114). InForm software

is a powerful software that enables per-cell analysis of

immunohistochemistry and immunofluorescence. It allows the

separation and measurement of weak and spectrally overlapping

markers and automatic detection and segmentation of specific tissues.

Orange Data Mining Toolbox is another open-source software.

Rostam et al. used it to automatically identify different macrophage

functional phenotypes based on cell size and morphology (103).

Interest in DL models has grown in recent decades owing to rapid

advances in high-performance computing infrastructure, such as cloud

andGPUcomputing (146).However, it is still far frommeeting the vast

amounts of data needed for medical research. Developing deep neural

networks and then training is time-consuming and computationally

expensive compared with traditional ML methods.
6. Challenges

Despite such exciting research, various limitations or

requirements must be addressed before ML can realize its full

potential in the studies focusing on TAMs. As most ML models

are data-driven, the most critical challenge is the requirement of

tremendous and valuable data sets (147). Generally, data related

to TAMs can be incredibly complex, with thousands of variables

capturing different facets of the TME system. However, these

data sets are still too small for ML modeling, especially for

unsupervised learning. The lack of sample size might lead to

poor model performance or overfitting. Deep neural networks

are especially vulnerable to overfitting because they have

thousands to millions of parameters.

Moreover, data quality and completeness are also

challenging in the studies of tumor prognosis, in which patient

follow-up might be irregularly collected or lost, and different

institutions may use various standards of testing. In response to

the challenge of massive clinical data acquisition, some cloud-

based cancer repositories such as Gene Expression Omnibus

(GEO) and The Cancer Genome Atlas (TCGA) have been

created to enable cross-institution data sharing and data

quality assurance. We hope with the emergence of more open-

source data sets and data standardization, these restrictions will

be less of an issue in the future.

Clinical translation is also a challenge for ML. Many trials are

still in the stage of by-proof-test. Research groups and companies

are facing the challenges of making their products more reliable

and practical in large-scale implementations or even real usage

scenarios. Similarly, many innovative solutions, generated from

the frontiers of ML research and shown to be theoretically

powerful, have yet to integrate into day-to-day clinical use. In

modeling, most models take fixed training and testing data set,

which is impractical in real clinical practice. Considering the rapid
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changes in tumor data, continuous updating and reevaluation are

required to monitor the model performance and guarantee model

consistency. In addition, most of the current ML-based tumor

models are single-center studies. There are considerably fewer

external validation studies of TAMs in the published papers.

Future studies should involve external or cross-institution

validation to ensure the test set is diversified enough with

different clinic scenarios involved. We believe the robust

external validation and improvements in interpretability and

generalizability may boost clinician confidence in ML and

facilitate further incorporation ofMLmodels into clinical practice.

Furthermore, after reviewing papers combining ML with

TAMs, we come to realize that the complexity and heterogeneity

of TAMs in TME are far from being fully elucidated. As discussed

above, the dichotomy of TAMs is too simple to clarify macrophage

activation states in vivo. What should be noted is that M0/M1/M2 is

a continuum in vivo instead of well-delineated categories. TAMs are

characterized by its remarkable plasticity. The phenotypes can

switch between the two extremes, while most existing studies still

regard TAMs as two distinct extremes. Besides, subtypes of M2-

TAMs can be further identified and classified as M2a, M2b, M2c

(148, 149), and M2d in TME. Identifying complexity and

heterogeneity of TAMs in vivo and the subtypes of M2

macrophages more precisely to reduce side effects of cancer

therapy using ML methods can be challenging but promising.

Therapies addressing the recruitment, depletion and

repolarization of M2 are promising strategies for tumor

treatment. With the help of ML, many studies are enabled to

identify specific molecules involved in polarization of M0

macrophages towards M1/M2 macrophages and TAMs

recruitment. However, the key biomarkers in depletion and

repolarization of M2 based on ML have not received a lot of

attention. By integrating more medical images and omics data, it is

anticipated that ML will have broader prospects on exploring,

validating and implementing critical genes in the repolarization of

TAMs to further facilitate precision oncology.
7. Future directions

ML in cancer research is still in the early stage of exploration.

More investigations and efforts are required to break through

current limitations. In terms of reducing the need for a large data

set, Generative Adversarial Networks (GAN) are receiving

attention. GAN has two neural networks, which are generative

and discriminator networks. They contest with each other in a

zero-sum game and generate new and synthetic instances of data

that can ‘fool’ the discriminator network.

Precision medicine is the future direction of cancer therapy, in

which case patients can get optimized management and treatment to

improve survival. An important part of precision oncology involves

understanding cancer genomics, radiomics and the complex

heterogeneity of TME. With the help of ML, scientists are able to
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disentangle more cancer characteristics, enabling precision oncology.

One of the popular and evolutionary directions in ML is

reinforcement learning. It learns to achieve goals in an uncertain

and complex environment. Due to the non-stationary tumor

environment with changing conditions and stimuli, reinforcement

learning has the potential to offer computer-guided decision support

for personalized treatment. Currently, its applications in medicine are

mainly focus on medical image analysis, disease screening and

personalized treatment recommendations. In the future, we

envision that it could be employed for dynamic cancer treatment

regimens after personalized tumor prognosis, tailoring the treatment

for each individual.

Overall, the combination of ML and TAMs is relatively

young and far from fulfilling its potential in cancer research.

The distinctive nature of cancer studies makes accuracy and

interpretability extremely crucial. We still have a long way to go

to uncover and harness the intricacies of ML and the

complexities of TME. Hopefully, with ever-evolving

algorithms, more potent supercomputers, and substantial

investment being involved in this field, these applications will

be more intelligent, cost-effective, and time-efficient. In the

future, ML is expected to play a more critical role in TAMs

analysis and precision oncology.
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