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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) continues to be a significant challenge
in cancer management, with predictions indicating it will become the second leading cause of
cancer-related death by 2030. The persistent poor outcomes in PDAC are partly attributed to a
complex tumor microenvironment (TME) that inhibits anti-tumor immunity, restricts the penetration
of therapeutics, and facilitates cancer dissemination. Only a few aspects of the TME are routinely
documented in the clinical setting, but this may evolve as new TME-directed therapies are developed.
In this review, we cover relevant aspects of modern PDAC management, summarize TME-related
biomarkers and clinical trials, and discuss the potential challenges associated with evaluating the
TME in a clinical context.

Abstract: Advances in our understanding of pancreatic ductal adenocarcinoma (PDAC) and its tumor
microenvironment (TME) have the potential to transform treatment for the hundreds of thousands
of patients who are diagnosed each year. Whereas the clinical assessment of cancer cell genetics
has grown increasingly sophisticated and personalized, current protocols to evaluate the TME have
lagged, despite evidence that the TME can be heterogeneous within and between patients. Here,
we outline current protocols for PDAC diagnosis and management, review novel biomarkers, and
highlight potential opportunities and challenges when evaluating the PDAC TME as we prepare to
translate emerging TME-directed therapies to the clinic.

Keywords: pancreatic ductal adenocarcinoma; pathology; management; biomarker; tumor microen-
vironment

1. Introduction

By 2030, pancreatic ductal adenocarcinoma (PDAC) is projected to be the second
leading cause of cancer-related death [1]. There remains a significant need to improve
therapeutic outcomes for PDAC patients.

As the era of precision oncology unfolds, it is becoming standard for modern pathology
laboratories to perform next-generation sequencing (NGS) and other ancillary studies to
diagnose, subtype, and identify actionable mutations within tumors. Not only is it crucial
to characterize the cancer cells themselves, but also the tumor microenvironment (TME).
The TME includes the non-tumor cells, extracellular matrix, and local microbiota [2], as well
as the biochemical, biophysical [3], and bioelectric conditions of the stroma and interstitial
fluid that exist in and around a tumor [4,5]. Our basic understanding of the PDAC TME is
rapidly evolving, and a combination of experimental and observational evidence indicates
that the TME affects clinical outcomes in PDAC by influencing its outgrowth and responses
to therapy [6,7].

Whereas cancer cell profiling has become sophisticated, current clinical protocols to
evaluate the tumor microenvironment lag. The standard methodology involves manual
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morphologic identification and reporting of perineural invasion (PNI) and lymphovascular
invasion (LVI) on routine histologic sections. Various TME cell types are not routinely
identified, quantified, phenotyped, or reported in standard pathology practice. Yet, imple-
mentation of future TME-targeted therapies may require a more personalized evaluation of
each tumor’s specific microenvironmental characteristics.

Here, we review how PDAC specimens are currently evaluated through histology and
sequencing. We then briefly discuss actionable genetic alterations in PDAC tumor cells.
We next summarize advances in the basic understanding of the PDAC TME, with a focus
on current and prospective biomarkers that may impact the clinical laboratory (Figure 1).
Our aim is to present an overview of our expanding understanding of the PDAC TME,
specifically TME heterogeneity, and to contrast that with the simplistic methods of TME
evaluation in current clinical practice. To harness the potential of TME-directed therapies in
PDAC, both basic scientists and practicing pathologists may wish to consider whether key
TME changes are universal, and, if not, how to evaluate and account for this heterogeneity.
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Figure 1. Current and prospective biomarkers for evaluation of PDAC and its TME. PDAC cancer-
cell-specific biomarkers include mismatch repair deficiency (dMMR) and targetable molecular alter-
ations [8], “classical” and “basal-like” gene expression profiles [6], FAK expression [9], and neoad-
juvant treatment response [10,11]. Nerve-related biomarkers include perineural invasion [12], PNI
severity [13,14], parasympathetic neurogenesis [15], and Schwann cell area [16]. Stromal biomarkers
include tumor–stroma ratio [17], “normal” vs. “activated” gene expression profile [6], and “deserted”
vs. “reactive” sub-TMEs [18]. Fibroblast-related biomarkers include expression of CD105 [19] and
FAP [20]. Immune-related biomarkers include CD8+ T cell infiltration [21–23], CD11b/CD18 myeloid
cell expression [24], CD40 macrophage expression [25–27], tumor mutational burden, PD-L1 expres-
sion and T-cell-inflamed gene expression profile [28], neoantigen character [22], and tertiary lymphoid
aggregates [29]. Vascular biomarkers include lymphovascular invasion [30,31] and microvascular
structure [32]. Created with BioRender.com.
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2. Overview of PDAC Management and Specimen Acquisition

Patients with PDAC usually present with fatigue, weight loss, abdominal pain, dark
urine, or jaundice [33]. Less commonly, patients can present with an incidentally discov-
ered pancreatic mass or biliary abnormality on imaging [34]. After dedicated computed
tomography (CT) or magnetic resonance imaging of the pancreas for staging and eval-
uation of tumor resectability, additional imaging is pursued to evaluate for metastatic
disease [35–37]. Histologic confirmation of malignancy follows. In the absence of obvious
metastases, patients usually undergo endoscopic ultrasonography (EUS) and EUS-guided
biopsy [36–38]. Fine-needle biopsy is superior to fine-needle aspiration and cytologic eval-
uation [38]. Conversely, if metastatic (approximately 50% of patients) [39], biopsy from a
more easily accessible metastatic site is preferred. For all needle biopsies, it is recommended
that two extra needle passes be performed to collect material for future NGS analysis. For
patients with biopsy-proven metastatic disease, recommendations include genetic testing
for inherited mutations, molecular profiling of tumor tissue, and complete staging, followed
by clinical trial placement, systemic therapy, or palliative care as clinically indicated.

Patients without detectable metastases are evaluated for resectability of the primary
tumor [35]. Preferably, resections are performed at institutions that perform at least
15–20 annual procedures [40–43]. Those with resectable disease undergo surgery with
or without neoadjuvant therapy and may go on to receive adjuvant treatment. Those with
borderline resectable disease may be referred to a high-volume center for evaluation and
consideration of endoscopic retrograde cholangiopancreatography with stent placement
and neoadjuvant therapy with repeat assessment. Therapies may include clinical trials, a
combination of systemic or induction chemotherapy and/or chemoradiation, or stereotactic
body radiation therapy, depending on whether the patients are candidates for induction
chemotherapy [44–46]. Genetic testing for inherited mutations and molecular profiling of
tumor tissue may be recommended in these patients as well. Most treatment protocols
require biopsy confirmation of adenocarcinoma. However, the lack of a diagnostic biopsy
should not delay surgical resection when the clinical suspicion of pancreatic cancer is high.

As outlined above, biopsy material is important for diagnostic purposes, but also to
provide tissue for molecular profiling. Currently, it is recommended to specifically test for
potentially actionable somatic findings including, but not limited to, fusions (ALK, NRG1,
NTRK, ROS1, FGFR2, and RET), mutations (BRAF, BRCA1/2, KRAS, and PALB2), amplifi-
cations (HER2), microsatellite instability (MSI), mismatch repair deficiency (dMMR), and
tumor mutational burden via an FDA-approved and/or validated next-generation sequencing
(NGS)-based assay [8]. RNA sequencing assays are preferred for detecting fusions.

Although targeted molecular testing is preferably performed on tumor tissue, “liquid
biopsy” of circulating tumor DNA (ctDNA) testing is an emerging option for diagnosis,
prognosis, disease monitoring, and potentially screening. Given its high prevalence in
PDAC, mutant KRAS is a promising biomarker for this purpose. A 2017 study found that
KRAS mutations were detectable in 30% of patients with resectable PDAC, and the rate
of detection was proportional to tumor size [47]. Combining the assay with CA 19-9 and
three other plasma protein markers further increased the sensitivity to 64%, with specificity
exceeding 99%. The strategy was incorporated into an expanded ctDNA assay for eight
different cancer types, termed CancerSEEK [48].

3. Genomic Drivers of PDAC

Approximately 12–25% of pancreatic cancers contain actionable molecular alterations,
and patients who receive a matched therapy have significantly improved overall sur-
vival [49].

Oncogenic KRAS mutations are likely the initial driver mutation in the majority of
PDAC cases, regardless of whether tumors arise from PanIN or cystic mucinous neoplasms.
Small-molecule inhibitors targeting KRASG12C (sotorasib and adagrasib) are approved
in the United States; this mutation occurs in the majority of non-small cell lung carcino-
mas but only 1–3% of PDAC cases (<3%) [50]. Approaches targeting the more common
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KRAS mutations in PDAC, such as KRASG12D (~40%), KRASG12V (~40%), and KRASG12R

(~15–20%), are in development [51]. In particular, there has been recent progress targeting
KRASG12D with a current Phase 1 clinical trial in progress (NCT05382559) [52–54], and
the first pan-RAS inhibitor (RMC-6236) is being evaluated in phase I clinical trials with
promising preliminary results (NCT05379985). KRAS genotyping will be an important
aspect of pathologic testing of PDAC as these inhibitors gain approval, especially if they
are allele specific.

The approximately 10% of PDAC tumors that have wild-type KRAS have a distinct
molecular profile and are more likely to harbor oncogenic fusion events [55], which are
frequently actionable. This has led Topham et al. to advocate for KRAS mutation panel
analysis with subsequent NGS testing for KRAS wild-type tumors.

Small percentages of PDAC tumors bear other targetable molecular alterations. For
example, the RET inhibitor selpercatinib is approved for cancers harboring a RET gene
fusion, which was identified in 0.6% (1/160) of PDAC cases in one study [56]. NTRK gene
fusions are now amenable to targeting with larotrectinib and entrectinib; however, they are
also rarely identified in PDAC, occurring in less than 1% of cases [57,58].

Around 5–7% of PDAC patients carry a germline mutation in genes associated with
Fanconi anemia (BRCA1, BRCA2, and PALB2), affecting proteins crucial for homologous
recombination DNA repair [59]. Tumors with loss of the remaining wild-type allele are
more sensitive to platinum-based chemotherapy and PARP inhibitors [60]. A clinical trial
in PDAC patients with germline BRCA1/2 mutations showed improved progression-free
survival with PARP inhibitors [61]. In addition to germline mutations, some tumors with
somatic mutations of BRCA1/2 and PALB2 and established homologous repair deficiency
also show benefit from PARP inhibitors [62].

The genes belonging to the chromatin-remodeling and switch/sucrose non-fermentable
(SWI/SNF) complex are among the most commonly altered class of genes in PDAC [63–66],
often through deletions [67]. Considering how often PDAC cases involve changes in these
genes, a handful of experimental therapeutic options have been proposed [68–70]. Tumors
with COMPASS-like complex gene alterations exhibit squamous morphology or are poorly
differentiated and are associated with poor survival [71].

Tumors with dMMR arise sporadically due to inactivating mutations in MLH1, PMS2,
MSH2, and MSH6, or due to MLH1 promoter methylation; they also arise in the context of
Lynch syndrome. Such tumors are characterized by microsatellite instability (MSI-high).
However, only 0.7–2% of PDAC are dMMR [72,73]. dMMR PDAC is associated with
medullary or mucinous/colloid histology [74–76]. Across a variety of cancers, tumors
with dMMR are generally more responsive to immune checkpoint blockade, which is
attributed to a high rate of frameshift mutations and thus production of mutation-associated
neoantigens [72]. While an initial study including a limited number of dMMR PDAC cases
reported that checkpoint inhibitor therapy had a promising overall response rate in five
of eight cases [72], a subsequent trial reported a response rate of 18.2% (four of twenty-
two) among non-neuroendocrine pancreatic cancer cases with dMMR [77]. It has been
shown that dMMR tumors are dependent on the RecQ DNA helicase WRN for genome
maintenance, and loss of WRN is a synthetic lethality in dMMR cells [78]. This discovery
has led to the potential for targeting WRN in patients with dMMR tumors who are refractory
to immune checkpoint blockade [79]. A first-in-class WRN inhibitor (RO7589831) is already
in a phase I clinical trial against dMMR/MSI-high tumors (NCT06004245).

Other biomarkers that are associated with improved response to immune checkpoint
blockade across a variety of tumor types include high tumor mutational burden, positive
PD-L1 expression (in cancer cells and cells in the TME), and T-cell-inflamed gene expression
profile [28]. In the KEYNOTE-028 trial (NCT02054806), which examined the efficacy of
checkpoint blockade with the anti-PD-1 mAb pembrolizumab in various PD-L1 positive
tumors, including 24 PDAC cases, PDAC showed the lowest overall response rate across
20 tumor types (zero responders), which precluded evaluation of these biomarkers [28].
Similarly, a study of 65 PDAC cases reported a 3.1% response rate to checkpoint inhi-
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bition, the low rate again precluding assessment of biomarkers [80]. Thus, it remains
unclear whether additional biomarkers beyond microsatellite instability/dMMR predict
responsiveness to checkpoint inhibition in PDAC.

Mutations in the DNA replication and proofreading enzymes POLE and POLD1 lead
to “ultramutated” tumors with improved prognosis and, in limited studies to date, an
improved response to immune checkpoint inhibition [81,82]. Again, such mutations appear
to be rare in PDAC; one study found no pathogenic POLE exon 9 or 13 mutations in a
cohort of 115 cases [83].

SMAD4 and TP53 are both considered late alterations in PDAC development [84].
TP53 and SMAD4 alterations may confer prognostic significance and can be assessed via
immunohistochemical (IHC) stains [85]. CDKN2A alterations, which can be detected by
p16 protein loss by IHC, are also very common in PDAC and are associated with aggressive
tumors [84]. These tumors are associated with the adenosquamous variant of PDAC, as
well as tumors with foci of unconventional morphologic features such as conspicuous
cribriform, clear-cell, papillary, gyriform, or micropapillary features [84].

As the list of actionable molecular targets lengthens, pathologists will play a greater
role in IHC interpretation, assessment of tissue adequacy for molecular studies, and direct-
ing appropriate testing based on the amount of available tumor tissue.

4. Transcriptional Subtypes of PDAC

Numerous efforts to molecularly characterize PDAC have led to the recognition of
two major subtypes, termed “classical” and “basal-like” [86]. The classical subtype is
GATA6-expressing and KRAS-dependent [87]. On histologic evaluation, mucinous tumors
more commonly fall into the classical subtype [6].

The basal-like subtype, which accounts for approximately one third of PDAC cases,
has been shown to lose expression of GATA6, and these tumors are less responsive to first-
line 5-fluorouracil-based therapies [88–90]. GATA6 RNA in situ hybridization is a surrogate
biomarker for basal-like PDAC and may eventually become routine for evaluation of
PDAC specimens [91]. These tumors tend to show higher histologic grade compared to the
classical subtype [6].

Although the classical and basal-like subtypes were initially described as distinct
entities, single-cell RNA sequencing studies of PDAC tumors have uncovered that the
majority of tumors are composed of a mixture of the two subtypes [7,92]. In one set of
experiments, a specific cell clone isolated from a metastatic PDAC lesion transitioned from
a basal-like signature to a classical-like signature in ex vivo organoid culture [7]; adjusting
media conditions could induce cell clones to transition between transcriptional subtypes
and altered responses to chemotherapy [7]. These findings underscore the marked effect of
the TME on gene expression and therapeutic response. A summary of genomic drivers and
alterations studied in PDAC, and the clinical implications and pathologist’s role for each, is
provided in Table 1.

Table 1. Common genomic drivers and alterations studied in PDAC.

Alteration/Category Morphologic Correlate Translational Impact Pathologist Role Publication(s)

CDKN2A

Altered CDKN2A/p16
associated with

adenosquamous or PDAC
with complex component

None p16 IHC interpretation Schlitter et al., 2017 [84]

SMAD4, TP53 Unknown None SMAD4, p53 IHC
interpretation Schlitter et al., 2017 [84]

KRAS altered

-Classical PDAC
-Intestinal type IPMN and
colloid carcinomas (GNAS

and KRAS)

FDA-approved for
small-molecule inhibitors

targeting KRASG12C,
others (including pan-RAS
inhibitors) in development

-Tissue adequacy
-KRAS genotyping

Cox et al., 2014 [50],
Moore et al., 2020 [51],

Tang and Kang 2022 [52],
Hallin et al., 2022 [53],
Koltun et al., 2021 [54],
Arbour et al., 2023 [93]
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Table 1. Cont.

Alteration/Category Morphologic Correlate Translational Impact Pathologist Role Publication(s)

KRAS wildtype

PDAC variants (colloid,
papillary, medullary,

tubular) more frequent in
KRAS wildtype

10% of PDACs that are
KRAS wildtype have

distinct molecular profiles
and are more likely to

have fusions, which are
frequently actionable

-Tissue adequacy
-KRAS genotyping

Schlitter et al., 2017 [84],
Topham et al., 2022 [55]

BRCA1/2 Unknown May benefit from
PARP inhibitors Tissue adequacy Golan et al., 2019 [61],

Momtaz et al., 2021 [62]

SWI/SNF
COMPASS-like complex
genes (KDM6A, KMT2C,

KMT2D, KMT2A, KMT2B)

Correlate with poor
differentiation, squamous

features, aggressive
behavior, and increased

concurrent
TP53 mutations

Activin A might be used
as a therapeutic target for

KDM6A- or
KMT2D-deficient PDACs

SMARCA4/A2 IHC
interpretation

Andricovich et al.,
2018 [68], Yi et al.,

2022 [70], Hissong et al.,
2023 [71], Lu et al.,

2023 [94]

Alternative drivers: ALK,
TRK, RET, NRG1, EGFR Unknown

-Typically fusions,
younger patients

-Many are
actionable targets

-Tissue adequacy
-NGS panel

Kato et al., 2017 [56],
Solomon et al., 2020 [57],
Okamura et al., 2018 [58]

Mismatch-repair-deficient
(dMMR)

Medullary or mucinous/
colloid histology

May benefit from immune
checkpoint blockade

-MMR IHC interpretation
-MSI testing

Goggins et al., 1998 [74],
Laghi et al., 2012 [75],

Wilentz et al., 2000 [76],
Marabelle et al., 2020 [77],

Le et al., 2017 [72]

Transcriptional subtypes Basal like—loss of GATA6
by IHC

Basal like—less responsive
to first-line 5-fluorouracil-

based therapies
GATA6 IHC interpretation

O’Kane et al., 2020 [88],
Duan et al., 2021 [89],
Chan-Seng-Yue et al.,

2020 [90]

Molecular testing for
early detection N/A

-Circulating biomarkers or
cystic analysis

-PanIN/IPMN/MCN
-Cystic lesions

Tissue/fluid triaging Singhi et al., 2021 [95],
Paniccia et al., 2023 [96]

5. The PDAC TME

While determining genetic alterations within PDAC tumor cells is crucial, the TME
is also recognized to play a major role in PDAC. Several therapies targeting the TME
are presently being tested in clinical trials (Table 2). To date, few trials have employed
biomarkers to select patients who are most likely to benefit from treatment. We anticipate
that TME evaluation will become increasingly important as more is learned about TME
heterogeneity between patients, particularly as trials progress into later stages that aim to
establish therapeutic efficacy.

Table 2. Selected clinical trials targeting the PDAC TME.

TME Target Molecular Agent Biologic Hypothesis Biomarker-Related
Inclusion Criteria Phase NCT Number(s)

Angiogenesis,
Immune

Surufatinib (TKI
targeting VEGFR, FGFR,

CSF-1R) and KN046
bi-specific Ab targeting

PD-L1 and CTLA-4

Test whether Tyr kinase inhibition
mitigates angiogenesis and

immunosuppression

No
biomarker-specific
inclusion criteria

1/2 NCT05832892

CAF TGFβ-B-15 peptide
vaccine

Test whether TGFβ-B-15 peptide
vaccine potentiates immune

checkpoint inhibition

No
biomarker-specific
inclusion criteria

1 NCT05721846

CAF Vismodegib (SHH
inhibitor)

Test whether hedgehog inhibition
reduces stromal fibrosis and

increases perfusion

No
biomarker-specific
inclusion criteria

1 NCT01713218
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Table 2. Cont.

TME Target Molecular Agent Biologic Hypothesis Biomarker-Related
Inclusion Criteria Phase NCT Number(s)

CAF, Immune
(TAM, MDSC, Treg)

Itacitinib (JAK inhibitor),
INCB050465 (PI3K-delta

inhibitor),
pembrolizumab

(anti-PD-1)

Multiple hypothesized
mechanisms: JAK/STAT signaling
hypothesized to expand MDSCs
and Tregs; PI3K-delta inhibition

hypothesized to decrease
immunosuppressive TAMs and
disrupt tumor–stromal signaling

No
biomarker-specific
inclusion criteria

1 NCT02646748

CAF, PSC, Immune
(CD8+ T cells)

Proglumide
(cholecystokinin

receptor antagonist)

Examining effects of
cholecystokinin receptor blockade

on TME

PDAC with
adenocarcinoma as
dominant histology

2 NCT05827055

Immune Influenza vaccination Test whether flu shot potentiates
checkpoint inhibitor therapy

No
biomarker-specific
inclusion criteria

2 NCT05116917

Immune
Lenvatinib

(multi-tyrosine
kinase inhibitor)

Test whether the
immunomodulatory effects of

levatinib contribute to
anti-tumor activity

No
biomarker-specific
inclusion criteria

1/2 NCT05327582

Immune
Olaparib (PARP inhibitor)

and durvalumab
(anti-PD-L1)

Test whether PD-L1 inhibitors
synergize with PARP inhibitors in

tumors with homologous
repair deficiency

DNA damage repair
gene

mutation present
2 NCT05659914

Immune
Olaptesed pegol

(NOX-A12,
CXCL12 inhibitor)

Test whether disruption of the
CXCL12–CXCR4 axis promotes T

cell anti-tumor responses

No
biomarker-specific
inclusion criteria

1/2 NCT03168139
(completed)

Immune Paricalcitol
(vitamin D agonist)

Test whether paricalcitol
potentiates checkpoint inhibition

by sensitizing immune cells

No
biomarker-specific
inclusion criteria

2 NCT03331562
(completed)

Immune Plerixafor
(CXCR4 antagonist)

Test whether CXCR4 inhibition
potentiates response to

checkpoint blockade

No
biomarker-specific
inclusion criteria

1 NCT02179970
(completed)

Immune Plerixafor
(CXCR4 antagonist)

Test whether disrupting the
CXCL12–CXCR4 signaling axis
increases intratumoral T cells

No biomarker-related
inclusion criteria 1 NCT03277209

Immune Sirolimus
(mTOR inhibitor)

Test whether mTOR inhibition
inhibits tumor cell proliferation

and promotes T cell
anti-tumor response

No
biomarker-specific
inclusion criteria

1/2 NCT03662412

Immune Tocilizumab (anti-IL-6)
Test whether inhibition of IL-6

alleviates tumor-induced
immunosuppression

No
biomarker-specific
inclusion criteria

2 NCT04258150
(terminated)

Immune (dendritic
cells, CD8+ T cells)

Rintatolimod
(TLR-3 agonist)

Test whether increasing dendritic
cell maturation and CD8 T cell

cross-priming with a TLR-3 agonist
potentiates anti-PD-L1 immune

checkpoint blockade

CA 19-9 < 1000 kU/L 1/2 NCT05927142

Immune (in setting of
deficient homologous
recombination repair)

Niraparib (PARP
inhibitor) and
dostarlimab

(anti-PD-1 mAb)

Assess TME for immune-related
changes following PARP inhibition
and immune checkpoint blockade

Germline or tumor
BRCA1/BRCA2/
PALB2 mutation

2 NCT04493060

Immune (M2 TAM) Pexidartinib (CSF-1R
tyrosine kinase inhibitor)

Test whether CSF-1R inhibition
depletes immunosuppressive M2

TAMs and potentiates
checkpoint inhibition

No
biomarker-specific
inclusion criteria

1 NCT02777710
(completed)

Immune
(MDSC, Treg) Zolendronic acid

Test whether zolendronic acid and
gemcitabine target MDSC and Treg

to improve anti-tumor
immune response

No
biomarker-specific
inclusion criteria

1 NCT00892242
(terminated)
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Table 2. Cont.

TME Target Molecular Agent Biologic Hypothesis Biomarker-Related
Inclusion Criteria Phase NCT Number(s)

Immune (TAM) GSK3145095
(RIPK1 inhibitor)

Test whether RIPK1 inhibition
promotes adaptive
immune infiltration

No biomarker-related
inclusion criteria 2 NCT03681951

(terminated)

Immune, CAF Defactinib
(FAK inhibitor)

Test whether FAK inhibition
reduces tumor fibrosis and

potentiates immune
checkpoint blockade

No biomarker-related
inclusion criteria 1 NCT02546531

Immune, CAF Defactinib
(FAK inhibitor)

Test whether combining standard
chemotherapy with FAK inhibition

potentiates anti-PD-1 therapy

Elevated CA
19-9 > 200 2 NCT03727880

Immune, CAF Defactinib
(FAK inhibitor)

Test whether FAK inhibition
improves responses to stereotactic

body radiotherapy in PDAC

No
biomarker-specific
inclusion criteria

2 NCT04331041,

Immune, Metabolism TTX-030 (CD39 inhibitor)

Test whether CD39 inhibition
increases pro-inflammatory ATP

and reduces
immunosuppressive adenosine

No
biomarker-specific
inclusion criteria

1
NCT04306900,
NCT03884556
(completed)

Metabolism, Immune Epacadostat
(IDO1 inhibitor)

Test whether IDO1 inhibition
potentiates immune
checkpoint blockade

No biomarker-related
inclusion criteria 1/2 NCT02600949

Metabolism, Immune Epacadostat
(IDO1 inhibitor)

Test whether IDO1 inhibition
potentiates immune
checkpoint blockade

No biomarker-related
inclusion criteria 1/2 NCT03085914

(completed)

Metabolism
(adenosine) PT199 (anti-CD73 mAb)

Test whether anti-CD73 therapy
counters adenosine-mediated

immunosuppression

No
biomarker-specific

inclusion criteria (but
includes assessment
of CD73, PD-L1, and

other biomarkers)

1 NCT05431270

Metabolism
(adenosine) SRF617 (CD39 inhibitor)

Test whether CD39 inhibition
increases pro-inflammatory ATP

and reduces
immunosuppressive adenosine

No
biomarker-specific
inclusion criteria

1 NCT04336098

PSC Paricalcitol
(vitamin D agonist)

Test whether inactivation of
vitamin D signaling reduces PSC

activation and fibrosis

No
biomarker-specific
inclusion criteria

N/A NCT02030860
(completed)

Tumor acidity,
hypoxia

L-DOS47
(anti-CEACAM6

conjugated to urease)

Test whether L-DOS47 treatment
increases tumor pH

No biomarker-related
inclusion criteria 1/2 NCT04203641

5.1. General Considerations for TME Evaluation in PDAC

As outlined above, many treatment decisions in PDAC are based on analysis of
biopsy material from primary or metastatic sites. These core biopsies also provide the first
opportunity to directly assess the TME, raising important questions and possible challenges
(Figure 2).
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Figure 2. General considerations for pathologic evaluation of the PDAC TME include the lack of TME
information in cytology specimens, sampling issues pertaining to small biopsy specimens [18,92], pos-
sible TME differences between primary and metastatic sites [39,97–99], and the effects of neoadjuvant
treatment [18,100,101]. Created with BioRender.com.

5.1.1. Sampling the TME in Small Biopsies

Do biopsies sample enough material to assess the TME? Tumor cellularity varies
among cancer types, and PDAC is hypocellular compared to many other tumors, with
a median cellularity of 26% [102,103]. Biopsies obtained via EUS-FNA are small and do
not always supply sufficient material for sequencing [104]; by their nature, these cytology
samples disrupt tissue architecture and would not permit TME assessment. A few examples
of pancreatic core biopsies are shown in Figure 3. Although tissue architecture is preserved,
these biopsies often show only a small fraction of tumor cells, with a predominance of blood
and fragments of nonneoplastic pancreatic parenchyma in the background. Contaminating
gastrointestinal mucosa can be seen. There is often tumor-associated desmoplastic stroma,
but this can be challenging to differentiate from the fibrosis and atrophy seen in the
background pancreas, which are common concurrent findings in PDAC patients. The
hypocellularity, small size, artifacts, and mimics may complicate assessment of the TME
from biopsy material.

Another question is whether small biopsy samples are representative of the entire
tumor given regional and microenvironmental heterogeneity. In one study, Ino et al.
compared the level of tumor-infiltrating lymphocytes in PDAC resections to simulated
FNA “biopsies” taken from the resection specimen, finding that the level of CD8+ T
cells was only moderately correlated (r = 0.46) [100]; the group estimated that averaging
measurements from five biopsies would be required to achieve a near-perfect correlation.
Further highlighting possible sampling issues, Tahkola et al. found that measurements of
immune infiltration in tumor microarray-like “hotspots” were more variable and overall
inferior to whole-slide measurements for prognostication [101].
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pancreatic needle biopsies, which may include large amounts of blood (^) with fewer cores of 
Figure 3. Pancreatic core needle biopsies. (A,B) H&E (1×) shows the general composition of
pancreatic needle biopsies, which may include large amounts of blood (ˆ) with fewer cores of
pancreatic tissue (*) (A), or predominately hypocellular stroma (B). (C–F) Carcinoma cells may
represent a small percentage of the overall biopsy volume (H&E; C,F, 20×; D, 10×; E, 40×). The
arrows designate tumor cells.

Furthermore, pathologists frequently need to allocate precious biopsy material for
a variety of purposes, including diagnosis, ancillary tests for mismatch repair deficiency,
and tumor molecular profiling for potentially actionable somatic findings. Tissue may be
limited for additional studies that may be needed to characterize the TME.

5.1.2. TME Differences between Primary and Metastatic Sites

Few studies have compared TME characteristics between primary and metastatic
PDAC lesions. One study by Whatcott et al. found similarities among certain characteristics;
in a small cohort of seven paired primary and metastatic tumors, the degree of desmoplasia
was similar [98]. A rudimentary analysis of a larger cohort of over one-hundred non-
paired metastatic and primary lesions suggested that the total percent areas of various
collagens and SMA+ stromal cells were statistically indistinguishable or only marginally
different [98]. In contrast, another study reported that metastatic lesions had a lower tumor
stromal density than paired primary PDAC lesions [97]. Comparison of metastatic (liver)
and pancreatic TME using single-cell RNA sequencing showed that mesenchymal cells
differed by site, while immune populations had a similar distribution [7]. There also appear
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to be differences among metastatic sites, with PDAC lung metastases showing greater
immune cell infiltration than liver metastases in a PDAC mouse model and small cohort
of paired human samples [99]. Overall, it remains an open question whether histologic
assessment of the TME in a metastasis can provide information that is applicable to the
primary site as well.

5.1.3. Gross and Microscopic Evaluation of PDAC Resections

Surgical resections are the other main category of specimens pathologists evaluate
in PDAC patients. Resection specimens require expert gross evaluation to ensure proper
orientation and margin assessment, determine the size and extent of the tumor, and provide
proper sections for microscopic analysis. Current grossing protocols for resections are cited
in the College of American Pathologists (CAP) protocol [105,106]. PDAC masses often show
indistinct borders on gross examination and may show gross features similar to fibrosis
secondary to chronic pancreatitis or pancreatic atrophy. Because of this, sections to assess
margins and determe the extent of the tumor are carefully and thoroughly submitted for
microscopic examination. As the importance of TME assessment increases, considerations
may include the diagnostic difficulty in differentiating TME changes from background
pancreatitis and the significance of TME changes at margins. Will current grossing protocols
need to change to accommodate future TME-directed therapies?

Microscopic evaluation protocols are specified by governing bodies such as the CAP.
Currently, microscopic evaluation is used to confirm tumor size and stage, evaluate histo-
logic diagnosis of PDAC with histologic type and grade, and report margins and lymph
node status. No further subtyping is currently standard. Pathologists also report the
presence or absence of PNI and LVI (Figure 3). Reporting the presence and extent of
tumor-infiltrating lymphocytes is not standard, as is the case in melanoma profiles, for ex-
ample [107]. This reporting could change dramatically with the emergence of TME-directed
therapies, as we discuss in more detail below.

5.1.4. Effect of Neoadjuvant Treatment on the PDAC TME

Another consideration as pathologists evaluate tissue specimens is the potential im-
pact of neoadjuvant treatment on tumor cells and the TME. Neoadjuvant regimens are
becoming more frequent at high-volume centers, potentially affecting the assessment of
resection specimens or biopsies for metastatic disease or local disease recurrence. Typically,
neoadjuvant therapy is recommended for patients with borderline resectable and locally
advanced disease with no distant metastasis with a goal of downstaging and achieving
more definite surgical resection. Neoadjuvant therapy may also be recommended in certain
localized resectable tumors to reduce the risk of intraoperative tumor spillage and sterilize
the lymph nodes and may improve response to postoperative treatment. However, there
is limited evidence to recommend specific neoadjuvant regimens off-study, and practices
vary regarding the use of chemotherapy and radiation [108].

In cases of neoadjuvant therapy prior to resection, pathologists evaluate the treatment
effect percentage. CAP recommends reporting of the generic modified Ryan scheme
tumor regression score [109], although in PDAC a three-tier system (no residual, less
than 5% residual tumor, or >5% residual tumor) was found to correlate with disease-free
survival [10,11].

Neoadjuvant treatment otherwise affects the tumor cells and TME in several ways.
Chemotherapy affects residual tumor cell gene expression [110]. Neoadjuvant chemother-
apy was associated with a decrease in intercellular interactions (as predicted by the compu-
tational inference of ligand–receptor interactions from single-cell RNA sequencing data),
including a reduction in the inhibitory checkpoint molecular expression of CD8+ T cells
and cancer cells (TIGIT-PVR signaling), indicating that chemotherapy alters the TME
in PDAC [92]. These results imply that chemotherapy changes TME behavior and may
alter responsiveness to TME-directed therapies. In the same study, there was variation
in the proportion of myofibroblastic and inflammatory CAFs across 27 patient tumors,
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with no correlation to the proportion of classical vs. basal-like cancer cells (i.e., indepen-
dent of Moffit PDAC subtype) [92]. Additionally, some have suggested that neoadjuvant
chemotherapy may affect stromal ratio, depending on therapy type [111]. In routine prac-
tice, several pathologic changes are noted more frequently in tumors that are analyzed
following neoadjuvant therapy. Pathologic features reportedly associated with therapeutic
effects include foamy gland changes, mucus lake (mucin pool) formation, fibrosis, foamy
macrophages, cholesterol clefts, and calcifications (Figure 4B–D) [112,113]. How these
substantial treatment-induced microenvironmental changes could affect the response to
TME-directed therapies remains an open question.
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Figure 4. Surgical resection specimen findings in PDAC. (A) H&E (20×) shows PDAC (black ar-
rows) with TME constituents of lymphocytic inflammation (black circle), lymphovascular spaces (red
arrows), and stromal fibroblasts (blue arrows). (B–D) Images show foamy gland change, which is
associated with neoadjuvant therapy (tumor cells designated by black arrows). PNI is also demon-
strated in (C,D) (asterisk denotes nerves). (H&E; B, 20×; C, 10×; and D, 10×). (E,F) H&E (20×)
shows LVI identified on resection specimens (vessels are marked by red arrows and the black arrows
show tumor within the lymphovascular spaces).

5.2. Heterogeneity of the PDAC TME
5.2.1. Inter-Patient Heterogeneity

Molecular studies demonstrate that, like the mutational landscape of tumor cells,
the TMEs of different PDAC tumors are heterogeneous. In one study, Moffitt and col-
leagues applied a “virtual microdissection” approach to bulk microarray data from PDAC
tumors and normal samples, computationally identifying two stromal subtypes that are
independently prognostic, termed “normal” and “activated” [6]. “Activated” stromal gene
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signatures corresponded to a 38% reduction in median survival compared to the “normal”
subtype [6]. The “normal” stroma signature is characterized by pancreatic stellate cell
(PSC) markers and expression of smooth muscle actin, vimentin, and desmin; a diverse
group of genes driving an “activated” stromal signature included fibroblast activation
protein (FAP), the integrin ITGAM, chemokines CCL13 and CCL18, macrophage-associated
genes, WNT family members WNT2 and WNT5A, MMP9, MMP11, and SPARC [6]. In
PDAC xenograft models, mouse stromal cells recapitulated elements of “activated” and
“normal” signatures; however, engrafted tumors exhibit a bias toward the “activated”
signature, and it remains unclear how faithfully the murine stromal cells recapitulate the
human TME [6]. Interestingly, there was no statistical association between tumor subtype
and stromal subtype—rather, each stromal subtype was seen to occur in “classical” and
“basal-like” tumor subtypes and was independently linked to prognosis [6].

In a separate transcriptomic study of formalin-fixed paraffin-embedded (FFPE) PDAC
specimens, Puleo et al. identified four independent stromal gene components (activated
stromal, structural vascular, inflammatory stromal, and inflammatory) [114]. While tumor-
cell-specific gene signatures validated the previously described “classical” and “basal-like”
subtypes, they described two additional subtypes that arose from low-tumor-burden sam-
ples with high stromal content: “stroma-activated” PDAC was characterized by high
expression of ASMA, SPARC, and FAP [114], whereas “desmoplastic” PDAC was charac-
terized by high expression of structural and vascularized stroma components [114]. This
study corroborates Moffitt et al. in demonstrating that the PDAC TME differs between
patients. Interestingly, they identified an opposite prognostic impact of the TME depending
on whether the tumor had a classical or basal-like subtype; non-immune stroma subtypes
had negative prognostic impact on classical tumors, but a positive prognostic impact on
basal-like tumors [114]. Collisson et. al. proposed a harmonized nomenclature including
two stromal subtypes (activated and normal) that accompany the different tumor-cell
subtypes [86]. Overall, these molecular studies established that important TME differences
exist between patients and demonstrate that prognostically relevant information can be
gleaned from TME transcripts that “contaminate” a bulk transcriptomic study.

5.2.2. Intra-Tumoral Heterogeneity

The TME is not only heterogeneous between patients, but also within a single PDAC
tumor. Grünwald et al. reported that spatially confined “sub-TMEs” exist in PDAC, and
that intratumoral variation in TME was a poor prognostic indicator [18]. Neoadjuvant
treatment affected the TME, which was less likely to show a “reactive” state and more likely
to show a “deserted” or intermediate state [18]. There are practical challenges to evaluation
of sub-TMEs; evaluation of sub-TMEs in biopsies may be impossible due to sampling (the
authors did not attempt to quantify sub-TMEs in biopsies, only resections). Furthermore,
although sub-TMEs were initially described by H&E morphology, the exact criteria were
not precisely defined.

5.3. Nerve
5.3.1. Perineural Invasion

PDAC is notorious for PNI, and PNI is reported in about 70–80% of cases [115], with
some studies reporting an incidence of 100% [13,115]. In comparison to other gastroin-
testinal malignancies, PNI in PDAC is more prevalent [13]. Although not a factor in TNM
staging criteria, perineural invasion is an independent indicator of poor prognosis and is a
mandated reporting element in CAP guidelines [106].

A systematic review and meta-analysis found that PNI reduced overall survival
(hazard ratio 1.68) and disease-free survival (hazard ratio 2.53) [115]. The prognostic
impact of PNI was found to be independent of LVI in PDAC patients who underwent
pancreaticoduodenectomy [30]. In an analysis that also included patients who underwent
pancreaticoduodenectomy for other malignancies, the adverse prognostic impact of PNI
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was independent of margin status, tumor size, tumor differentiation, and regional lymph
node status [30].

The close association of PDAC with nerves complicates resection and leads to clinical
complications such as rapid gastrointestinal transit and pain [116]. PDAC frequently in-
vades posteriorly along autonomic nerves associated with the superior mesenteric artery
and celiac axis, sometimes making complete excision impossible. Resection of these au-
tonomic nerves denervates the small bowel and can lead to rapid gastrointestinal transit,
nutritional depletion, and dependence on total parenteral nutrition [116]. PNI enables
the local outgrowth of tumor cells, and in some cases may provide a conduit to the lym-
phatic system [117]. The severity of PNI has also been inversely correlated to CD8+ T cell
infiltration in human PDAC samples [118].

How should pathologists report PNI, and what exactly constitutes PNI? An early
and widely adopted definition of PNI described the phenomenon broadly as tumor cell
invasion in, around, and through the nerves [119]. A prominent review by Liebig et al. also
advocated for a broad definition of PNI: a tumor in close proximity to nerves and involving
at least 33% of its circumference or tumor cells within any of the three layers of the nerve
sheath [120]. In our view, pathologists should use the definition(s) of PNI that were applied
in the studies that determined its clinical significance in each malignancy. In PDAC studies,
PNI was defined more narrowly as viable tumor cells within the perineural space [12,14,30].
The presence of acellular mucin within a nerve was not sufficient to call PNI, nor was the
presence of neoplastic glands abutting a nerve [12].

A handful of studies found that more prognostic information may be gleaned by
moving beyond dichotomous assessment of PNI (present vs. absent). For example, the size
of involved nerves correlates with poorer margin status; PDAC cases with PNI involving
larger nerves > 0.8 mm were approximately fourfold more likely to have positive resection
margins compared to cases where PNI involved only nerves ≤ 0.8 mm [12]. Intraneu-
ral invasion, defined as tumor invasion into the axon of the nerve, was associated with
1.3-fold increased frequency of recurrence compared to cases with PNI but not intraneural
invasion [12]. Whether the PNI was intratumoral or extratumoral, or intrapancreatic vs
extrapancreatic, did not seem to affect clinical outcomes [12]. The location of tumors within
the pancreas (head vs. body-tail) also did not correlate with differences in PNI in one
preliminary analysis [14].

The extent of PNI may also hold additional prognostic significance: Liebl et al. formu-
lated a neural invasion “severity” score encompassing epineural, perineural, and intraneu-
ral involvement [13]. By this metric, tumors with more severe neural invasion correlated
with worse overall survival. Assessment of a similar PNI scoring system found that while
PNI severity is associated with more aggressive disease, PNI severity was not significant in
multivariate analysis [14].

For now, the simple presence or absence of PNI remains the standard. Methods
evaluating more detailed assessment of PNI will require prospective validation, which is
anticipated in the ongoing VANISSh trial (NCT04024358). Future studies should clearly
state their definition of PNI. While sophisticated scoring algorithms would be more bur-
densome to pathologists, studies have demonstrated that artificial intelligence (AI) can aid
in the detection of PNI [121], including one study where AI-assistance augmented PNI
detection by pathologists from 52% to 81% of PDAC cases [122].

5.3.2. Nerve–PDAC Interactions

The topic of nerve–PDAC interactions has been reviewed extensively [123–125]. Both
PDAC and chronic pancreatitis (a known PDAC risk factor) are associated with nerve
hypertrophy and increased neural density [126]. The pancreas is innervated by a variety of
nerve fiber types which have distinct interactions with PDAC.

Sensory and parasympathetic nerves are generally associated with a pro-tumor role.
Notably, ablation of sensory neurons during the neonatal period delays development
of precursor PanIN lesions and improves survival in a mouse model of PDAC [127].
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Sympathetic activity, including chronic stress, promotes PDAC growth; experiments in
animal models have linked this to direct adrenergic-mediated proliferation of PDAC
cells [128], as well as immunosuppressive effects [129,130]. Sensory and sympathetic axons
within the PDAC microenvironment metabolically support PDAC by releasing serine,
which supports translation in nutrient-depleted cancer cells [131]. In turn, tumor cells
secrete NGF, promoting tumor innervation, with inhibition of the Trk-NGF axis reducing
the growth of PDAC tumors in mice. Epidemiological studies have uncovered modest yet
significant improvements in the survival of PDAC patients who take beta blockers [132,133],
who have reduced nerve density on resection [128].

There are conflicting reports on the effect of parasympathetic pathways. In support
of a pro-tumor role, acetylcholine signaling was shown to impair the recruitment of CD8+
T cells in PDAC mouse models, with vagotomy improving survival [118]. The density of
VACht-labeled parasympathetic fibers was also found to be an adverse prognostic indicator
that was associated with tumor budding in one study [15]. In contrast, other studies found
that vagotomy accelerated PDAC in mouse models [134,135].

Schwann cells may also have a role in the PDAC TME. Co-culture with Schwann
cells induces PDAC cell migration and invasive behavior in vitro [136,137]. The area of
Schwann cells in histologic sections was found to be an adverse prognostic indicator in one
PDAC cohort [16]. Spatial transcriptomics analysis suggested that perineural areas had
an increased basal-like tumor cell signature and a more inflammatory cancer-associated
fibroblast (iCAF) signature; areas further from nerves harbored classical- and myofibroblast-
related signatures [16], suggesting that Schwann cells induce the conversion of tumor cells
and cancer-associated fibroblasts (CAFs) to alternative states.

In summary, the interactions between PDAC cells and various nerve types are intricate
and potentially targetable. Identification of PNI within resection specimens is the current
standard given its prognostic significance, and studies should clearly define and ideally
harmonize their criteria for PNI. Additional biomarkers including PNI severity, nerve
hypertrophy, parasympathetic innervation, and Schwann cell area have been described;
however, the limited additional prognostic value and added complexity may limit their
adoption.

5.4. Fibroblasts
5.4.1. Cancer-Associated Fibroblast Populations

Fibroblasts are the predominant cell type within the PDAC TME, and thus considerable
attention has been dedicated to understanding stromal fibroblast populations. Fibroblasts
are largely responsible for the deposition of extracellular matrix within PDAC; however,
diverse subtypes of these cancer-associated fibroblasts (CAFs) are being investigated with
possible inflammatory and/or anti-inflammatory properties. The earliest subtypes of
CAFs identified were a myofibroblast-like population (myCAF) and an inflammatory
fibroblast population (iCAF) [138]. Additional populations of CAFs include fibroblasts with
antigen presentation properties similar to myeloid populations, termed antigen-presenting
CAFs [139].

CAFs have also been subtyped by the expression of certain cell surface markers.
Single-cell mass cytometric analysis has identified the marker CD105 to differentiate func-
tionally distinct populations of CAFs, including tumor-permissive CD105+ CAFs and
tumor-suppressive CD105− CAFs [19]. These fibroblast compositions could potentially be
delineated by pathologists utilizing IHC stains for the cell surface marker CD105. However,
tumor heterogeneity could make this assessment difficult, and the TME may vary among
PDAC patients depending on the influence of genetic mutations. In addition, it may be
difficult to ensure that CD105 is expressed on a fibroblast without multiplex IHC, which
poses technical, logistical, financial, and regulatory challenges.

Another CAF population with functional relevance is those expressing fibroblast
activation protein (FAP) and high levels of CXCL12, which inhibits T cell infiltration.
Depletion of this subtype of CAFs sensitizes PDAC tumors to immune checkpoint therapy
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in pre-clinical models [20]. A subset of CAFs in PDAC mouse models also express LRRC15,
which was not expressed in normal pancreas and was postulated to promote tumor growth
and inhibit anti-tumor immune responses [140].

While the exact functions of various CAF subgroups remain under investigation,
there is optimism that targeting certain CAF populations may potentiate existing systemic
therapy, either via modulating the extracellular matrix or promoting the immune response.
For example, hedgehog signaling contributes to desmoplasia in PDAC, and inhibition of
hedgehog signaling improves the delivery of chemotherapeutics to PDAC tumors [141].
Pathologists may be called upon to perform ancillary studies such as IHC to characterize
the CAF populations within a tumor for therapeutic purposes.

5.4.2. Focal Adhesion Kinase

One target that has emerged in the fibrotic PDAC TME is Focal Adhesion Kinase
1 (FAK). It has been reported that around 80% of PDAC tumors express FAK and phospho-
rylated FAK, both in stromal cells and particularly in tumor cells [9]. A series of preclinical
experiments supported a model whereby FAK activity in PDAC cancer cells led to cy-
tokine production that promoted a fibrotic and immunosuppressive TME rich in CAFs,
myeloid-derived suppressor cells, and regulatory T cells (Tregs); small-molecule inhibition
of FAK reversed these phenomena and led to an increase in CD8+ T cells that controlled
tumor growth, as well as a potentiated response to immune checkpoint inhibition. A subse-
quent study by the same group provided evidence that the fibrotic PDAC stroma limits
the efficacy of radiotherapy in mouse models by reducing interferon signaling, apoptosis,
and immune priming [142]; FAK treatment “reprogrammed” CAFs, rescued radiation-
induced interferon signaling, and promoted anti-tumor immune responses. Whether FAK
inhibition can augment responses to radiotherapy and checkpoint inhibition in PDAC is
currently under investigation in clinical trials (NCT04331041, NCT03727880). FAK has
also been found to have a kinase-independent function in antigen presentation on MHC-1
that had a stronger association with the “classical” PDAC subtype [143]. Generally, high
expression of FAK is associated with worse overall survival across solid carcinomas [144],
although studies evaluating FAK expression in PDAC have not shown an association with
survival [145,146]; further studies evaluating whether FAK expression has prognostic or
treatment implications in PDAC may be warranted given the emergence of FAK inhibition
as a promising therapeutic strategy.

In addition to the potential biomarkers listed above, characterizing the unique CAFs
of PDAC may help aid pathologists diagnostically. As mentioned previously, PDAC
tumor detection can be difficult in small pancreatic biopsies. An immunostain that could
distinguish CAFs from the reactive fibroblasts found in chronic pancreatitis could facilitate
detection in otherwise non-diagnostic biopsies.

5.4.3. Tumor–Stroma Ratio

Another stroma-related biomarker with potential clinical significance is the evaluation
of tumor–stroma ratio. Tumors with a low tumor–stroma ratio (i.e., tumors that have
more tumor cells than stroma) had worse prognosis in one study analyzing whole-slide
images [17]; however, another study that quantified a 10× field near the invasive front
found that tumor–stroma ratio had no association with prognosis [147].

5.5. Metabolism and Autophagy
5.5.1. Altered Metabolism in PDAC

PDAC metabolism is an extensive topic that has been reviewed elsewhere [148].
The fibrotic, hypovascular PDAC TME is associated with hypoxia and altered nutrient
profiles, including a relative scarcity of glucose, glutamine, and serine and abundant amino
acids compared to neighboring benign pancreatic parenchyma [149]. Oncogenic KRAS
mutations lead to substantial metabolic reprogramming in cancer cells [150], and PDAC
exploits macropinocytosis [151], extracellular vesicle signaling [152], and autophagy [153] to
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scavenge nutrients and flourish. Metabolic “subtypes” of PDAC have been described, and
metabolic heterogeneity has been described at the inter- and intratumoral level [154,155].

5.5.2. Metabolic Interplay of the PDAC TME

The TME engages in complex metabolic crosstalk with cancer cells that includes
competing for nutrients, sharing nutrients, and utilizing metabolites as signaling molecules
(reviewed in [156]). There are numerous ways in which TME metabolites support tumor
growth. Alanine secreted from pancreatic stellate cells (PSCs) is a major source of carbon
for PDAC cells, decreasing their dependence on glucose and nutrients from the blood
supply [157]. PDAC also scavenges nutrients from extracellular matrix components, such
as collagen and hyaluronic acid [151,158,159], as well as from exosomes [152,160]. Further,
PDAC-derived TGF-β reprograms CAFs to catabolize branched-chain amino acids and
secrete branched chain α-ketoacids that support PDAC growth [161].

Metabolites also serve as signaling molecules in the PDAC TME. PSCs secrete phos-
phatidylcholines which are converted into the potent signaling molecule lysophospha-
tidic acid in the extracellular space, fueling PDAC growth [162]. Conversely, the KRAS-
dependent production of lactate and G-CSF were found to be crucial for the programming
of TAMs [163].

5.5.3. Nutrient Recycling and Autophagy

PDAC is known to have autophagy addiction or an increased engagement of the
“self-eating” recycling program [164–166]. Besides its function in organelle maintenance,
autophagy also plays a crucial role in regulating nutrient availability within PDAC cells.
This reliance on autophagy leads to selective vulnerabilities in PDAC cells. Mukhopadhyay
et al. found that the oxidized cysteine (cystine) transporter SLC7A11 requires autophagy
machinery for proper membrane localization, and inhibition of autophagy restricts cystine
availability and slows the growth of PDAC cells [167]. Mechanistically, depletion of
SLC7A11 selectively leads to PDAC ferroptosis [168], a means of programmed cell death
whereby iron catalyzes catastrophic lipid peroxidation.

This example is but one of many complex roles for autophagy that have been described
in PDAC initiation and development (reviewed in [169]). Clinical trials of autophagy
inhibitors in PDAC have yet to show efficacy; one phase II trial found that hydroxy-
chloroquine monotherapy reduced autophagy but had negligible efficacy in patients with
previously treated metastatic PDAC [170].

It was discovered that the TME promotes resistance to autophagy inhibition in PDAC
by buffering the nutrient supply. For example, PDAC requires autophagy of ferritin
(ferritinophagy) for iron homeostasis; yet, during autophagy inhibition, CAFs compensate
for the drop in labile iron [171]. Furthermore, genetic abrogation of ferritinophagy led to
increased CD68+ macrophage infiltration in a PDAC mouse model, suggestive of further
nonautonomous compensatory mechanisms [172]. The specific transporters required for
this nutrient sharing may be targetable [173], suggesting that combinatorial approaches
could overcome PDAC resistance to autophagy inhibition. In another example of TME
metabolites thwarting PDAC treatment, the release of pyrimidines from PSCs and TAMs
was found to promote gemcitabine resistance [174,175].

A handful of prognostic markers related to metabolism and autophagy have been
identified. Expression of GFAT1, the rate-limiting enzyme of hexosamine biosynthesis,
correlates with poor prognosis [176]. An elevated ferritinophagy gene signature and
elevated protein levels of Ferritin Heavy Chain 1 (FTH1) were each associated with poor
prognosis in PDAC [172]. Another report found that poor prognosis was associated with
the expression of the transcription factor EB (TFEB), a central regulator of autophagy, as
well as its direct target RAB5A [177].
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5.6. Immune Cells

PDAC is an immunologically “cold” tumor. Myeloid cell populations are the largest
immune constituent in PDAC tumors. This includes neutrophils, which are thought to
support an immune-suppressive tumor environment [178–182]. Promising pre-clinical
data have emerged via targeting CD11b/CD18 reception on tumor-infiltrating myeloid
subsets [24]. Another approach is to utilize CD40 agonists to program tumor-associated
macrophages to a less immunosuppressive status, ultimately leading to CD8 T cell infiltra-
tion with possible implications for more successful immunotherapy options [26,27,183]. The
immune-suppressive tumor environment in PDAC additionally shows a lack of antigen-
presenting dendritic cells, and increasing this population of immune cells is also a thera-
peutic interest [25,184]. For all of the above, pathologists may be asked to identify these
components of the immune system via IHC.

Several studies have found that adaptive immune cells have prognostic significance
in PDAC. In a study that employed multiplex IHC imaging with digital image analysis to
examine the spatial relationships of PDAC cells and immune cells, infiltration of PDAC
by T cells (total T cells, CD8+ cytotoxic T cells, and CD4+ T effector cells) was found to be
an independent positive prognostic indicator [21]. Specifically, close spatial proximity of
CD8+ T cells to tumor cells (within a 20-micron radius) correlated with improved survival.
In another report, CD3+ lymphocytes and high collagen correlated with improved survival
in multivariate analysis [185]. A study of long-term survivors of PDAC found patients
with both high CD8+ T cell infiltration and high neoantigen quantity to have particularly
good prognosis [22]. Neoantigens with predicted cross-reactivity to microbial epitopes
appeared to be particularly potent in evoking anti-tumor immunity. Additional evidence
for the quantification of immune cells includes studies showing that tumor-infiltrating
lymphocytes have a prognostic impact [100,101], including a study showing that the
level of CD8+ T cells in PDAC resections was prognostic in a multivariate analysis [23].
Additionally, within PDAC resections, the presence of B-cell-rich tertiary lymphoid tissues,
but not isolated B cells, was associated with improved prognosis [29].

Although several studies have found that tumor-infiltrating lymphocytes have a sig-
nificant prognostic impact in PDAC, it is not standard practice in the United States to
comment on lymphocyte abundance. This may be due to the relative recency of these
studies, differences in methodology (e.g., lymphocyte type and location), and the limited
value of prognostic information in a uniformly aggressive malignancy. In contrast, the lym-
phocyte reporting in melanoma recommended by CAP is simple (three-tiered qualitative
scoring), can be performed on routine histologic sections, and has a large prognostic impact
(37% 8-year survival for absent lymphocytes, and 77% survival for brisk infiltrate) [107].

Like other components of the TME, immune cell populations show tumor heterogene-
ity. In an integrated multi-omic study of PDAC tumors and paired peripheral blood, Steele
et al. found that the immune landscapes in each individual patient were heterogeneous,
including variable quantities of immune cells [186]. Individual patient tumors showed
an inverse relationship between myeloid and CD8+ T cells, consistent with evidence that
myeloid cells are immunosuppressive in PDAC. Single-cell RNA sequencing revealed
complex, highly variable patient-specific landscapes of immune checkpoint ligand and
receptor expression amongst different immune cell types and showed that the complement
of immune checkpoint genes in CD8+ T cells was unique [186]. The immune checkpoint
receptor TIGIT expression was defining of an exhausted CD8+ T cell phenotype in PDAC
and, as a key mode of immune suppression of the CD155/TIGIT axis, it is proposed as a tar-
get to enhance immunotherapy [186,187]. TIGIT expression, like other immune checkpoint
receptors, was highly heterogeneous across patients. As discussed within other sections of
this review, this variability enforces the need for personalized assessment of immune cell
populations in PDAC.
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5.7. Vasculature

Aberrant vascular networks are a hallmark of the cancer TME. Notably, PDAC is
hypovascular in comparison to normal pancreatic tissue as well as other gastrointestinal
and hepatobiliary tumors [188,189]. The density of tumor vessels in PDAC is lower than in
normal pancreas, with a larger caliber and reduced branching. PDAC vessels also harbor
unusual basal projections termed basal microvilli, whose significance remains poorly
understood [189].

Vascular networks have a complex influence on PDAC growth. Of course, LVI is an
established indicator of poor prognosis in PDAC and a mandated component of the CAP
synoptic reporting template [30,31]. Although some studies found no correlation between
PDAC vascular morphology and patient outcome [188,189], others have suggested an asso-
ciation: one study examining the TCGA dataset found that high CD31 expression correlated
with improved overall survival in PDAC [190], and a spatial analysis of microvascular
density in and around PDAC tumors found certain morphologic correlated to progno-
sis [32]. Some analyses of human PDAC samples found that poorly differentiated tumors
had greater vascular density and less stroma compared to differentiated tumors [188,191],
though other studies found no relationship [189,192]. One possible explanation for the
discrepant findings may be the subjectivity involved in selecting and measuring the vascula-
ture. Automated computational analysis methods may clarify whether vascular parameters
correlate with other pathologic factors and patient outcomes in PDAC. These conflicting
reports may reflect the contrasting effects of the hypovascular TME on tumor growth, on
one hand contributing to tumor hypoxia and poor penetration of drugs [141], but also
starving the growth of cancer cells by limiting their uptake of nutrients.

Efforts to target the PDAC vasculature have yet to be successful in the clinic but
remain under investigation. Anti-angiogenic therapy with the VEGF-targeting antibody
bevacizumab has not shown clinical benefit, with or without concomitant chemother-
apy [193,194]. Recent clinical trials found that multi-tyrosine kinase inhibitors have been
efficacious in treating a variety of other neoplasms [195], including pancreatic neuroen-
docrine tumors [196], which, in contrast to PDAC, are notably hypervascular [197]. One
such drug, surufatinib, impairs angiogenesis by targeting VEGFR while simultaneously
blocking FGFR1 (a mechanism of resistance to anti-VEGF therapy) and CSF-1R, thereby
decreasing the recruitment of tumor-associated macrophages [198]. Surufatinib is currently
being evaluated in a clinical trial for PDAC (NCT05832892).

The markedly desmoplastic stroma of PDAC appears to prevent the formation of a
robust vascular network. Efforts to reverse desmoplasia in PDAC thus uncovered a complex
influence of tumor vasculature. Genetic deletion of Sonic Hedgehog Signaling Molecule
(Shh) or pharmacologic inhibition of SHH in various PDAC mouse models abrogated the
desmoplastic stroma and reduced the numbers of αSMA+ myofibroblasts and myeloid
cells in the TME, but those treatments concurrently led to an increase in tumor vascularity
and actually accelerated tumor growth [191,199]. These SHH-deficient mouse tumors were
sensitive to anti-angiogenic therapy targeting VEGF signaling. Such studies highlight
an inverse relationship between the desmoplastic stroma and vascular networks and
show that a more robust tumor vasculature promotes tumor growth while also potentially
enhancing the delivery of therapeutics [141]. The interrelatedness of TME attributes and
their conflicting pro-tumor and anti-tumor roles illustrate the challenge of targeting TME
components and explain why clinical trials examining hedgehog inhibition in PDAC have
thus far been unsuccessful [200,201].

Although the prognostic significance of vascular structure in PDAC is unclear, one
consistent finding is the variation in the degree of angiogenesis, both in mouse models
as well as in patients. KIC mice (oncogenic Kras, p16 loss), KRC mice (oncogenic Kras,
Rb1 loss), and KTC mice (oncogenic Kras, Tgfbr2 loss) exhibit angiogenesis [192,202,203],
whereas KPC mice (oncogenic Kras, p53 mutant) and KPfl+C mice (oncogenic Kras, p53
loss) develop hypovascular tumors [141]. In patient samples, Gore et al. reported that
12% (10/85) of PDAC tumors within the TCGA database had increased expression of
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angiogenesis markers, and analysis of tumor microarrays revealed strong immunoreactivity
for endothelial markers CD31 and CD34 in 15/54 tumors [192]. The group also found
that endothelial cells supported PDAC growth in the KRC mouse model of PDAC, which
was suppressed by the JAK inhibitor ruxolitinib. Thus, variations in PDAC vascular
complexity present both a challenge and a possible opportunity; the aforementioned
data from preclinical models suggest that certain tumors (perhaps stroma-poor, poorly
differentiated, and vascular-rich tumors) may be susceptible to anti-angiogenic therapy.

6. Conclusions

There has been notable advancement in comprehending the biology of pancreatic
cancer in recent years, and although these gains have not yet led to a transformative
impact on clinical treatment for most patients, multidisciplinary approaches show promise.
With advancements in the understanding of the diverse genomic landscape and TME,
pathologists can expect increasing involvement in this changing field.

As we have emphasized in this review, heterogeneity in PDAC tumors supports the
need for a personalized approach to PDAC evaluation and management. Developments
in understanding the non-cancerous components of the tumor and their role in driving
the aggressive biology and heterogeneity of the disease should be reflected in assessments
of an individual patient’s tumor. For the pathologist, this includes providing potentially
actionable information within our reports for PDAC patients. This could include charac-
teristics of the TME, such as detailed quantification of features such as the tumor–stroma
ratio, the amount of perineural invasion or vascularity of the tumors, and the immune cell
populations; TME subtyping via the investigation of specific fibroblast and immune cell
populations by marker expression; and newer technologies such as AI and multiplexed
IHC to aid in TME evaluation/subtyping. Numerous morphologic and molecular features
can be reported that may have prognostic relevance, although many of these prospective
biomarkers await prospective validation. Additionally, with newer ancillary studies being
requested on biopsy material, pathologists will likely assume a larger role in assessing
tissue adequacy and triaging the patient material appropriately. Furthermore, molecular
pathologists continue to look upon these advances to include actionable genetic alterations
within molecular reports. Overall, pathologists should expect an increased role in pro-
viding personalized information on PDAC specimens, with a hope of giving actionable
information toward a more manageable disease.
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