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Purpose: Schisandrin B (Sch B) is clinically applied for the treatment of hepatitis and ischemic 

disease. However, its clinical efficacy is limited due to the poor solubility and low bioavailability. 

This study aimed to develop matrix metalloproteinase (MMP)-sensitive peptide-modified, 

polyethylene glycol (PEG)-modified (PEGylated) solid lipid nanoparticles (SLNs) for loading 

Sch B (MMP-Sch B SLNs), and to evaluate the therapeutic effect in the myocardial infarc-

tion model.

Methods: PEG lipid and MMP-targeting peptide conjugate were synthesized. MMP-Sch B SLNs 

were prepared by solvent displacement technique. The physicochemical properties and pharma-

cokinetics of SLNs were investigated. In vivo effects on infarct size was evaluated in rats.

Results: The successful synthesis of lipid-peptide conjugate was confirmed. MMP-Sch B SLNs 

had a particle size of 130 nm, a zeta potential of 18.3 mV, and a sustained-release behavior. 

Higher heart drug concentration and longer blood circulation times were achieved by Sch B 

loaded SLNs than the drug solution according to the pharmacokinetic and biodistribution results. 

The best therapeutic efficacy was exhibited by MMP-Sch B SLNs by reducing the infarction 

size to the greatest extent.

Conclusion: The modified SLNs may be a good choice for delivery of Sch B for the treatment 

of myocardial infarction.

Keywords: cardiovascular diseases, CVDs, schisandrin B, matrix metalloproteinase, lipid 

nanoparticles

Introduction
Cardiovascular diseases (CVDs) continue to be one of the leading causes of death 

worldwide, with myocardial infarction (MI) contributing a large share of the deaths.1,2 

In clinical practice, revascularization strategies followed by palliative care is the stan-

dard care for acute MI.3,4 However, these treatments only bring a short-term curative 

effect without eliminating disease. Therefore, there is an urgent need for improved 

MI treatments. 

Schisandrin B (Sch B), isolated from the fruit of Schisandra chinensis, is clinically 

applied for the treatment of hepatitis and ischemic diseases, such as myocardial 

ischemia and cerebral ischemia.5–8 The potential mechanism underlying the cardio-

protective effects of Sch B has been considered as the high antioxidant potential both 

in vitro and in vivo.9–11 Recent studies have further indicated that Sch B could improve 

cardiac function and attenuate myocardial remodeling in the MI mice model through 
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down-regulating some inflammatory cytokines, activating 

eNOS pathway, inhibiting cell apoptosis, and enhancing 

cell proliferation.6 However, Sch B shows poor solubility 

and systemic delivery, and low bioavailability, which limit 

its clinical efficacy.12,13 

Systemically administered nanoscale drug carriers could 

improve the solubility of hydrophobic drugs, prolong circu-

lation half-life, and passively improve the accumulation of 

therapeutic agents in the target area.2,14 Several researches 

have proven that the bioactivity of Sch B was improved 

using nanotechnology such as phospholipid complex loaded 

nanoparticles, and folate-targeted and polyethylene glycol 

(PEG)-modified (PEGylated) TiO
2
 nanocarriers.12,13,15 Recent 

advances in nanoscale drug carriers for MI therapy include 

liposomes (containing PEGylated liposomes), core-shell 

hybrid liposomal vesicles, lipid nanoparticles, etc.16–19 In this 

study, we designed Sch B loaded PEG-modified solid lipid 

nanoparticles (SLNs) for MI treatment.

SLNs are the latest development in the arena of lipid 

nanoparticles after nanoemulsion and liposomes ever since 

their introduction in the early 1990s.20 SLNs are made from 

solid lipids with a mean diameter of 50 to 1,000 nm, which 

exhibit biocompatibility, physical stability, controlled release 

properties, and ease of manufacture.21 SLN systems repre-

sent a promising platform both for conjugating PEG, thus 

achieving long circulation in vivo, and for incorporation of 

active targeting ligand.22 For active targeting to the heart, 

multifunctional nanoparticles (matrix metalloproteinase 

[MMP]-sensitive peptide-modified, PEGylated SLNs) were 

successfully formulated.

MMPs are proteolytic enzymes which have been identi-

fied in the myocardium, and play an important role in myo-

cardial remodeling and restructuring after MI.23,24 Among the 

MMPs, MMP-2 and MMP-9 are key factors in left ventricle 

remodeling.25 Since activated MMP-2 and MMP-9 were 

observed extracellularly in the infarction area, they have been 

reported as targets for drug delivery.23 Nguyen et al designed 

a micellar vehicle containing an MMP-targeting peptide 

(MMP-TP).23 Results suggest that MMP-TP micelles are 

candidates to target the infarcted myocardium in an MMP 

dependent manner. In the present study, we synthesized 

novel MMP-sensitive peptide-modified, PEGylated SLNs 

for loading Sch B (MMP-Sch B SLNs), thus delivering 

drugs to the heart.

The study was aimed at the development of novel MMP-

Sch B SLNs, evaluation of SLNs’ effects on the parameters 

of pharmacokinetics, investigation of their biodistribution, 

and assessment of their effect in an MI model.

Materials and methods
Materials
Salvianolic acid B (purity $94%, HPLC), DMEM, MTT, 

DOTAP, and poloxamer 188 were purchased from Sigma-

Aldrich Co. (St Louis, MO, USA). MMP-TP (CPLGLAGG, 

molecular weight 300) was obtained from Shanghai Science 

Peptide Biotechnology Co., Ltd. (Shanghai, People’s 

Republic of China). COMPRITOL® 888 ATO (888 ATO) 

was provided by Gattefosse’ (Paramus, NJ, USA). Soybean 

lecithin (SL) in injection grade was purchased from Shanghai 

Taiwei Pharmaceutical Co., Ltd. (Shanghai, People’s 

Republic of China). Glyceryl monostearate (GMS) was 

purchased from Aladdin Industrial Corporation (Shanghai, 

People’s Republic of China). mPEG
2000

-NHS (molecular 

weight 2,000 Da) was purchased from Seebio Biochem 

Co., Ltd. (Shanghai, People’s Republic of China). All other 

reagents and chemicals were of analytical grade.

synthesis of Peg and MMP-TP conjugate 
PEG and MMP-TP conjugate (PEG-peptide, Figure 1) 

was synthesized as follows:26,27 mPEG
2000

-NHS (1 g) was 

dissolved in 10 mL of dimethyl formamide (DMF) and 

then 20 µL triethylamine was added. Peptide (0.3 g) was 

suspended in 2 mL of DMF (2 mL) and was added into the 

mPEG
2000

-NHS solution with an ice/water bath. The reaction 

was then continued for 24 h at room temperature under nitro-

gen protection. Unreacted peptide and chemical regents were 

removed by dialysis (molecular weight cut-off of 1,000 Da). 

The product was lyophilized before characterization by 
1H nuclear magnetic resonance (1H NMR).

Preparation of MMP-sch B slNs
MMP-Sch B SLNs (Figure 1) were prepared by the solvent 

displacement technique with modifications.28 Sch B (50 mg), 

GMS (100 mg), 888 ATO (50 mg), and SL (100 mg) were 

Figure 1 synthesis of Peg lipid and MMP-targeting peptide conjugate (A); 
preparation of MMP-sch B slNs (B).
Abbreviations: PEG, polyethylene glycol; MMP, matrix metalloproteinase; Sch B, 
schisandrin B; SLNs, solid lipid nanoparticles.
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accurately weighed and sonicated in 10 mL acetone to form 

the organic phase. The aqueous phase was prepared by dis-

solving PEG-peptide (200 mg), DOTAP (0.2%, w/v), and 

poloxamer 188 (0.1%, w/v) in Milli-Q water. The organic 

phase was injected into the aqueous phase under 600 rpm 

mechanical agitation at room temperature. The mixture 

was stirred at 600 rpm for 6 h until the organic solvent was 

removed. Free Sch B in the MMP-Sch B SLNs suspen-

sion was separated by ultrafiltration. Sch B loaded SLNs 

without MMP-TP (Sch B SLNs) were prepared by the same 

technique as MMP-Sch B SLNs using PEG instead of PEG-

peptide. Blank SLNs not containing the drug were prepared 

by the same technique as Sch B SLNs without the presence 

of Sch B.

Particle size and zeta potential 
measurement
The MMP-Sch B SLNs, Sch B SLNs, and blank SLNs were 

diluted with Milli-Q water, separately.29 Their particle size 

and zeta potential were determined by dynamic light scatter-

ing in a Zetasizer (Nano ZS; Malvern Instruments, Malvern, 

UK). All measurements were taken at 25°C and an average 

of ten measurements were determined for each sample.

Drug entrapment efficiency (EE) and drug 
loading (Dl) capacity
The drug EE and DL capacity of MMP-Sch B SLNs and Sch 

B SLNs were determined by the ultrafiltration method.30 The 

filtrate was collected and diluted with ethanol and the amount 

of drug was obtained by measuring the solution with high 

performance liquid chromatography (HPLC). EE and DL 

of Sch B loaded in SLNs were calculated by the following 

equations:

 

EE (%)
W

W
100drug

total

= ×
 

 

DL (%)
W

W
100drug

ipid

= ×
l  

In vitro drug release study
The release of the drug was studied in PBS (pH 7.4) which 

was constantly shaking at 37°C.31,32 The drug release of 

Sch B solution (ethanol as solvent) was applied as control. 

At predetermined time points, the medium was taken out 

and replaced with fresh medium. The amount of Sch B was 

determined by HPLC.

cells
Human cardiac myocytes (HCMs) were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA, 

USA). Cells were cultured in 10% FBS (Fisher Chemicals, 

Fairlawn, NJ, USA) containing DMEM (Sigma-Aldrich Co.) 

in a 95% air/5% CO
2
 fully humidified atmosphere.

In vitro cytotoxicity in hcMs
HCMs were applied for the assessment of the in vitro cyto-

toxicity of Sch B loaded SLNs.33 Briefly, cells were seeded 

in 96-well plates at 104 cells/well and pre-incubated for 

24 h. Different concentrations (1, 5, 10, 20, 50, 100 µM) 

of MMP-Sch B SLNs, Sch B SLNs, SLNs and 0.9% saline 

solution were added to the cells and incubated for 48 h. 

Then the cells were treated with 5 mg/mL of MTT solution 

and maintained for 4 h. The medium containing MTT was 

removed, 200 µL of DMSO was added to the wells. Plate was 

observed at 570 nm using a microplate reader. The relative 

cell viability was calculated by the following equation:

 
Cell viability (%)

Absorbance of  sample

Absorbance of  contr
=

ool
100×

 

animals and induction of MI model
Sprague-Dawley rats (SD rats, 220 to 250 g) were purchased 

from Nanjing Junke biological engineering Co., Ltd (Nanjing, 

People’s Republic of China) and housed under controlled 

conditions (temperature of 20°C±2°C and a 12 h light/12 h 

dark cycle). Experiments were performed according to the 

National Institutes of Health guide for the care and use of 

laboratory animals (NIH publication no 8023, revised 1978). 

An MI model was produced in male SD rats by partial liga-

tion of the coronary artery.34 All the animal experiments were 

approved by the Medical Ethics Committee of Linyi People’s 

Hospital (reference no 201702121013).

In vivo pharmacokinetics evaluation
Sch B loaded SLNs and Sch B solution were injected through 

the tail vein of the MI rat models at a dose of 10 mg drug 

per kg body weight.35 Blood samples (200 µL) were taken 

via tail vein at 0.25, 0.5, 1, 1.5, 2, 4, 8, 12, 24, 48, and 72 h 

after injection and 15 µL of 1,000 U/mL heparin was added 

to each sample. The blood samples were immediately cen-

trifuged at 5,000 rpm for 5 min at 4°C. The amount of Sch B 

was quantified by HPLC.

In vivo tissue biodistribution study
Sch B loaded SLNs and Sch B solution were administrated to 

the MI rat models as discussed in “In vivo pharmacokinetics 
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evaluation” section. Rats were sacrificed after 2 h or 48 h and 

the heart, liver, spleen, lung, kidney, stomach, and colon were 

collected and washed of residual blood.36 Tissue samples 

were vortexed for 3 min and centrifuged at 20,000 rpm for 

10 min. The supernatants were collected and the amount of 

Sch B was quantified by HPLC.

In vivo effects on infarct size
Sch B loaded SLNs and Sch B solution were administrated to 

the MI rat models as discussed in “In vivo pharmacokinetics 

evaluation” section. Rats were sacrificed at 48 h and the 

infarcted area was determined by TTC staining.37 Briefly, 

the hearts were excised and sliced into 2 mm thick sections. 

The slices were incubated in a solution of 1% TTC in PBS 

(pH 7.4) at 37°C for 15 min. The normal myocardium areas 

were stained brick red, and the infarct areas were unstained. 

The area of MI was calculated sing ImageJ (v 1.41; National 

Institutes of Health, Bethesda, MD, USA). The infarct size 

could be calculated by the following equation:

 
Infarct size (%)

The size of  the infarct area

The whole siz
=

ee of  the left ventricle
100×

 

statistical analysis 
The results are reported as mean ± standard derivation. 

The difference between the groups was tested by two way 

ANOVA. The criterion for statistical significance was 

P,0.05.

Results
characterization of lipid-peptide 
conjugate
The successful synthesis of lipid-peptide conjugate was 

confirmed by 1H NMR (Figure 2). The appearance of proton 

peaks corresponded to the structure of the lipid-peptide at 

0.89 ppm (a, –NCO–C–CH
3
); 0.98 ppm (b, –CCH–N–); 

1.31 ppm (c, –CO–CH
2
C–O–); 2.87 ppm (d, –C–C–OH); 

3.21 ppm (e, –CO–CCH
2
–O–); 5.23 ppm (f, –CO–NH–); and 

7.19 ppm (–COOH). The peaks of amide linkage, PEG and 

peptide proved the success of the synthesis.

characterization of MMP-sch B slNs
The size of MMP-Sch B SLNs, Sch B SLNs, and SLNs 

were round 130 nm (Figure 3), with polydispersity indexes 

of 0.164, 0.122, and 0.109, respectively. The zeta potential 

of MMP-Sch B SLNs, Sch B SLNs, and SLNs were 18.3, 

25.5, and 19.4 mV. EE of MMP-Sch B SLNs and Sch B 

SLNs were approximately 90%, with DL of 4.6% and 3.9%, 

separately. 

In vitro drug release profile
In vitro release profile of Sch B loaded SLNs along with 

the Sch B solution were depicted in Figure 4. Sch B was 

released from the drug solution very fast, the release complete 

in the first 2 h. On the contrary, Sch B was released from 

MMP-Sch B SLNs and Sch B SLNs with a sustained-release 

behavior, with complete release after 48 h. The release pro-

files of MMP-Sch B SLNs and Sch B SLNs have significant 

differences.

In vitro cytotoxicity
In vitro cytotoxicity of Sch B loaded SLNs and blank SLNs 

at various concentrations is shown in Figure 5. The HCM cell 

viabilities decreased slightly with the increased concentra-

tion of SLNs, while the average cell viabilities of different 

formulations at the studied concentrations were above 80% 

compared with control cells. All of the samples studied 

exhibited no obvious cytotoxicity, similar to the saline control 

group (P.0.05).

In vivo pharmacokinetics 
The mean plasma drug concentration–time profile shown 

in Figure 6 and the main pharmacokinetic parameters are 

summarized in Table 1, respectively. The profile showed 

that the drug concentration of Sch B solution in plasma 

decreased rapidly and was cleared from the circulation 

within 4 h. On the contrary, Sch B loaded SLNs exhibited 

a prolonged plasma circulation time, up to more than 48 h. 

Table 1 showed Sch B-loaded SLNs exhibited higher AUC 

Figure 2 1h NMr spectra of the Peg lipid and MMP-targeting peptide conjugate.
Abbreviations: 1H NMR, 1H nuclear magnetic resonance; MMP, matrix metallo-
proteinase; PEG, polyethylene glycol.
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in comparison with Sch B solution (P,0.05). Sch B loaded 

SLNs exhibited longer t
1/2

 in comparison to Sch B solution 

(P,0.05). The volume of distribution (V) and plasma clear-

ance (CL) of Sch B loaded SLNs were significantly lower 

than its injectable solution.

In vivo tissue biodistribution
In vivo tissue biodistribution behavior of Sch B loaded SLNs 

and Sch B solution were evaluated in the MI rat models after 

2 and 48 h of administration (Figure 7). After both 2 h and 

48 h of administration, the drug concentration of MMP-Sch B 

SLNs in the brain was the highest among all tissues, and also 

higher than Sch B SLNs and Sch B solution. At 2 h, Sch B 

SLNs did not show obvious heart accumulation than the solu-

tion. While at 48 h, significantly higher accumulation than 

Sch B solution was observed in the heart (P,0.05).

In vivo infarct size
In vivo effects of Sch B loaded SLNs and Sch B solution on 

infarct size were illustrated in Figure 8. MMP-Sch B SLNs 

exhibited the most significant reduction in infarct size as 

compared with the other groups. The infarct size of MMP-Sch 

B SLNs, Sch B SLNs, Sch B solution, and saline groups were 

19.2%, 27.3%, 36.5%, and 43.2%, respectively.

Discussion
In the present study, novel MMP-Sch B SLNs were applied 

for treatment of acute myocardial ischemia. At the beginning 

of this study, PEG and MMP-TP conjugate was synthesized. 

Several peptide sequences, such as GPLGIAGQ, GPLGV, 

Figure 4 In vitro release profile of Sch B loaded SLNs and Sch B solution.
Abbreviations: MMP, matrix metalloproteinase; Sch B, schisandrin B; SLNs, solid 
lipid nanoparticles.

Figure 3 The size (A), zeta potential (B), drug entrapment efficiency (C), and drug loading capacity (D) of MMP-Sch B SLNs, Sch B SLNs, and SLNs.
Abbreviations: MMP, matrix metalloproteinase; Sch B, schisandrin B; SLNs, solid lipid nanoparticles.
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GPLGVRG, and PVGLIG have been reported for the 

development of MMP-2/9-sensitive conjugate.26 These short 

peptides with a certain sequence can be cleaved by MMP-2/9 

regardless of their secondary or tertiary structures. In this 

study, CPLGLAGG was used as MMP-TP.

In order to improve the pharmacological activity of 

Sch B in acute myocardial ischemia, MMP-Sch B SLNs 

were successfully prepared by the solvent displacement 

technique with GMS and 888 ATO as solid lipid. DOTAP 

and poloxamer 188 were used as emulsifier and stabilizer. 

PEG-peptide was applied as modification material to increase 

the circulation time and drug accumulation in the heart.21 The 

size of blank and Sch B SLNs was approximately 130 nm, 

with narrow polydispersity indexes lower than 0.2. This could 

be evidence that the loading of the drug has no obvious effect 

on the size of the SLNs. Particle size has a great impact on the 

in vitro and in vivo efficiency of the nanoparticles, including 

prolonging the blood circulation time and mediating the tar-

geted effect.38 It has also been reported that zeta potential is 

a key factor to evaluate the stability of a colloidal dispersion. 

There are several approaches for measuring the drug EE and 

loading content of a nanoparticle system, including Sephadex 

column filtration, centrifugation, dialysis, ultrafiltration, and 

so on. Among these methods, centrifugation is frequently 

used due to its convenience. Hence, in this research this 

method was used with some modifications.

In vitro release of drugs from the lipid nanoparticles could 

include lipid matrix swelling, drug diffusion, and erosion 

or degradation process.39 Drugs located near the surface of 

SLNs may be delivered first, after which the inner drugs 

are diffused through the lipid matrix. The release profiles 

of Sch B loaded SLNs showed sustained-release behaviour. 

This behavior could maintain the drug concentration in the 

blood circulation and bring about a continuous therapeutic 

effect during the administration period.

Evaluation of the cytotoxicity of the cationic drug delivery 

systems is essential as cationic lipids may bring about a cyto-

toxic effect.40 Double-tailed cationic lipids, such as DOTMA 

and DDAB are reported to exhibit lower cytotoxicity than 

Figure 6 The mean plasma drug concentration-time profiles of Sch B loaded SLNs and Sch B solution.
Abbreviations: MMP, matrix metalloproteinase; Sch B, schisandrin B; SLNs, solid lipid nanoparticles.

Figure 5 In vitro cytotoxicity of sch B loaded slNs and blank slNs at various 
concentrations.
Abbreviations: MMP, matrix metalloproteinase; Sch B, schisandrin B; SLNs, solid 
lipid nanoparticles.
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Table 1 The comparative pharmacokinetic parameters via intravenous administration of sch B-loaded slNs and sch B solution 
in rats (n=8)

Systems AUC0–t (mg/L⋅h) AUC 0–∞ (mg/L⋅h) T1/2 (h) V (L/kg) CL (L/kg/h)

sch B solution 12.43±1.31 13.71±1.54 0.93±0.09 18.46±2.61 3.94±0.72
sch B slNs 273.36±13.23* 282.41±12.53* 4.26±0.96* 9.27±0.92* 0.96±0.07*
MMP-sch B slNs 284.32±15.61* 291.69±18.12* 4.64±0.68* 9.58±0.75* 0.91±0.08*

Note: *P,0.05.
Abbreviations: MMP, matrix metalloproteinase; Sch B, schisandrin B; SLNs, solid lipid nanoparticles; V, volume of distribution; CL, plasma clearance.

its single-tailed counterparts, such as CTAB.41 In this study, 

DOTAP was utilized and HCM cell viabilities for different 

formulations at various concentrations were evaluated. Over 

80% cell viability of SLNs compared with control could 

prove this system has no obvious cytotoxicity, and it could 

be used as safe drug delivery system in CVDs.

In vivo pharmacokinetics evaluation showed that Sch B 

loaded SLNs exhibited higher AUC in comparison with 

Sch B solution. This could be explained by the PEGylated 

SLNs having a long circulation effect with the PEG chains 

on their surface.42 This confirms that the PEGylation of 

nanoparticles could improve the plasma half-life of the car-

riers and achieve sustained-release of the loaded drugs.16 

PEG was reported to have the ability to improve the surface 

hydrophilicity of lipid particles and prevent the absorption of 

lipoproteins and opsonins effectively.22 Therefore, the PEG 

ligands present over the carriers could avoid the recognition 

of the reticuloendothelial system and prolong the circulation 

time, thus bringing about a persistent therapeutic effect.

In vivo biodistribution study results exhibited similar 

long-circulating characteristics of SLNs. MMP-Sch B SLNs 

exhibited higher drug biodistribution in the heart than that 

of Sch B SLNs and Sch B solution. MMP-TP modified 

carriers are candidates to target the infarcted myocardium 

in an MMP-dependent manner.23 The aim of the MMP-TP 

modification is to deliver more drugs to the infarct zone. 

MMP-Sch B SLNs exhibited higher heart Sch B concentra-

tion in comparison with Sch B SLNs in MI rats, which could 

be due to the targeted ability of MMP-sensitive peptide used 

for the modification.

Infarct size is an important factor for evaluating cardiac 

damage in the generation of ischemic heart diseases.43 In this 

study, cardiac protective effects of Sch B loaded SLNs were 

evaluated using an acute MI model. MMP-Sch B SLNs 

Figure 7 (Continued)
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exhibited the most significant reduction in infarct size as 

compared with Sch B SLNs and other groups, showing 

the smallest infarct size. The infarct size was remarkably 

decreased after treatment with MMP-Sch B SLNs in acute 

MI-induced rats, suggesting the cardioprotective effect of 

the MMP-TP modified SLNs.

Conclusion
In summary, MMP-Sch B SLNs were successfully devel-

oped. Long-circulating and active targeting MMP-Sch 

B SLNs were used for heart-targeted drug delivery. The 

results of in vitro and in vivo studies revealed that the car-

riers could not only enhance drug penetration into heart 

tissues, but also improve heart protection efficacy from 

acute MI impairment by reducing the infarction size. The 

modified SLNs may be an effective therapeutic system for 

the treatment of MI.
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