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Abstract: Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid
metabolism. However, recent evidence points towards their involvement in the regulation of adipose
tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the
main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended
to analyze available evidence derived from experimental and human investigations highlighting the
contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in
common cardiometabolic alterations associated with adiposopathy. We finally propose a model of
ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to
the induction of adiposopathy and its related disorders.
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1. Introduction

Adipose tissue (AT) is an important metabolic organ and accounts for up to 25% of
healthy individuals’ weight. Its main physiological role is to store energy as triglycerides-
depots [1,2].

Unhealthy adipose tissue expansion is mainly due to fat accumulation in the abdomi-
nal and visceral compartments and usually associates with inflammation and metabolic ab-
normalities (e.g., insulin resistance, IR) [3]. Adiposopathy is the term used to describe these
adverse anatomical and pathophysiologic changes in adipose tissue [4]. Adiposopathy is
thought to be the main determinant of cardiometabolic disturbances such as type 2 diabetes
mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and thereby, atherosclerotic
cardiovascular disease (ASCVD) [1,5,6].

The interplay of angiopoietin-like (ANGPTL)3, ANGPTL4, and ANGPTL8 is proved
to regulate fatty acids trafficking during feeding and fasting through selective inhibition
of lipoprotein lipase (LPL) in different metabolic compartments [7–9]. However, the
angiopoietin-like system (ANGPTLs) metabolic function probably goes beyond this effect,
and the angiopoietin-like system (ANGPTLs) is being recognized as a crucial regulator of
adipose tissue functions [10–12].

In this review, we summarized the main features of adipose tissue subtypes, dis-
cussing the interplay between the ANGPTLs and adipocytes, and how this may influence
cardiometabolic abnormalities.

2. Adipose Tissue Subtypes and Their Main Functions

Adipose tissue encompasses for three tissues that differ in the development, anatomi-
cal location, and metabolism: the white adipose tissue (WAT), the brown adipose tissue
(BAT), and the beige adipose tissue.
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2.1. WAT

WAT is most abundant in humans, and it may be distinguished into subcutaneous
adipose tissue (SAT) and visceral adipose tissue (VAT) [13,14]. Despite the fact that WAT
has been considered, for a long time, as a mere fat-storing organ, recent secretome studies
have found that it is able to secrete endocrine and paracrine factors, allowing to define it
as an active endocrine organ [15]. It is composed of mature and developing adipocytes,
as well as fibroblasts, endothelial cells, and immune cells, namely, macrophages, neu-
trophils, eosinophils, mast cells, and T and B cells [16]. Given the abundance of resident
inflammatory cells, recent evidence has also highlighted its role as a pro-inflammatory
tissue [17,18].

The most important WAT-secreted mediators are adipokines, adiponectin, and leptin
in particular. However, WAT also produces a whole set of cytokines, such as TNFα, MCP-
1, IL-6, IL-10 [15,19]. All of these mediators express their actions both systemically, by
affecting appetite, energy intake, lipid and glucose metabolism, and locally, by controlling
macrophage infiltration and WAT inflammation. Moreover, adipokines secreted by omental
and mesenteric VAT directly affect the liver, thus explaining their central role in regulating
lipid and glucose metabolism [13,15,17,18].

Adiponectin is implicated in the metabolism of glucose and fatty acids. It has also
a prominent role in improving insulin sensitivity, exerting anti-atherogenic actions, con-
trolling metabolic homeostasis and modulating immune system function [20–23]. Unlike
other adipocyte-derived hormones, adiponectin gene expression and blood concentrations
are inversely associated with body mass index. Notably, this hormone also has a great
effect on macrophages as it drives macrophage polarization through M2 (alternatively
activated macrophage), inhibits M1 polarization (classically activated macrophages), thus
reducing pro-inflammatory cytokine production and inducing immune-tolerance and an
“immune-protective phenotype” [22,23].

Leptin is a pro-inflammatory mediator and unlike adiponectin, circulating levels of
this hormone are proportional to individuals’ fat mass. Leptin centrally regulates body
weight by linking nutritional status and neuroendocrine function [19,24]. Leptin also affects
inflammation and immune responses [19,25]. Studies in leptin-deficient ob/ob mice showed
that it is able to enhance T-cell survival and promotes TH1 polarization, which, in turn,
stimulates a pro-inflammatory environment [24,26].

2.2. BAT

Unlike WAT, BAT is less abundant in humans. It can be found in the epicardium and
near major blood vessels and accounts for 1–2% of adipose tissue’s total weight [13,27].

Most published knowledge on BAT derives from murine models and might not be
fully applicable to humans. Nevertheless, studies in mouse models have highlighted
that the main function of BAT is the non-shivering thermogenesis [28,29]. In fact, it is
capable of rapidly producing large quantities of heat through the activation of uncou-
pling protein 1 (UCP1) located in the mitochondria inner membrane. BAT is particularly
rich in β-adrenergic receptors (β-AR) and its function is activated by cold exposure via
β3-AR activation by circulating catecholamines [13,30]. β3-AR stimulation enhances β-
oxidation of triglycerides and induces upregulation of peroxisome proliferator-activated
receptor γ coactivator-1α (PGC-1α), which, in turn, stimulates the expression of UCP1 and
mitochondrial genes, thus leading to energy dissipation and thermogenesis [1,28,30,31].

In addition, BAT secretes several factors with paracrine function, named batokines,
such as FGF21, VEGF, irisin, Slit2, as well as cytokines, such as IL-6, which are all crucial
mediators of the crosstalk with WAT and skeletal muscle [1,32–34]. Batokines may greatly
affect whole-body metabolic functions. In mouse models, BAT transplant led to increased
catabolic rates, consistent weight reduction, and improvement in glucose tolerance, which
could be attributed to paracrine and endocrine effects of the transplanted BAT on other
tissues [1,33]. It must be noted that also the membrane content of cellular ceramides
regulates BAT activity [35]. Mouse models deficient for serine palmitoyl-transferase long



Int. J. Mol. Sci. 2021, 22, 742 3 of 16

chain base subunit 2 (SPTLC2), a key enzyme in ceramides synthesis, showed increased
metabolic activity in BAT and reduced WAT mass [35]. These effects are possibly mediated
by the interaction of membrane ceramides with insulin downstream signaling pathway.
Ceramides are membrane lipids capable of impairing insulin signaling through activation
of protein kinase B (PKB), also known as AKT, which induces insulin receptor substrate
1-2 (IRS1-2) phosphorylation. Serine phosphorylated IRS proteins go through proteasome
degradation, thereby increasing insulin resistance [35]. Similar to what was observed in
animal models, in humans BAT seems to have a great impact on energy balance, despite
its relatively small representation. Indeed, it plays a central role in lipid oxidation as its
activation enhances the uptake of circulating free fatty acids (FFA) and WAT deposits’
utilization [28,36].

Schlessinger et al. found a similar gene expression and phenotype in the browning
of murine and human WAT [37]. In this study, through a whole-transcriptome analysis,
the authors found a subset of 49 genes that were commonly regulated or expressed in
WAT browning in three different species (mouse, rhesus monkey, and human) [37]. Both
non-human primates and mice are suitable models to study thermogenesis and insulin
resistance in adipose tissue [37]. Another study investigated whether human subcutaneous
white adipose tissue can adopt a BAT-like phenotype using a clinical model of prolonged
and severe adrenergic stress [38]. Multilocular UCP1-positive adipocytes were found in
subcutaneous WAT samples from burned subjects. UCP1 mRNA, mitochondrial density,
and leak respiratory capacity in WAT increased after burn trauma. These data confirmed
that in humans, WAT can shift from an energy-storing to an energy-dissipating tissue, in a
process called browning [38].

Although most studies on batokines and their endocrine functions are based on mouse
models, a specific BAT secretome was also found in cultured human adipocytes [39].
Deshmukh et al., by applying high-sensitivity mass-spectrometry-based proteomic in
human adipocytes, found that a total of 101 proteins was exclusively quantified in brown
adipocytes, and among these, ependymin-related protein 1 (EPDR1) has, apparently, a
relevant role in the thermogenic determination during adipogenesis [39]. Interestingly, this
study also found that, among the most significative batokines found in mice, only VEGF
could be identified as secreted by human brown adipocytes. However, as limitations to
this study, it must be recognized that weakly expressed proteins might not have been
detected [39]. Nevertheless, the existence of a BAT-specific secretome in humans might be
influential in energy metabolism regulation [39].

2.3. Beige Adipose Tissue

Beige adipose tissue is the latest discovered form of adipose tissue. It was first
described in mice and it is considered to derive from trans-differentiation of WAT in the
process named browning. [37,38,40]. Beige adipocytes are thought to be associated with the
maintenance of energy balance, and this function may be similar to that of typical brown
adipocytes [40].

Browning of adipose tissue is induced by intense adrenergic stimulation of WAT
such as exposure to cold temperatures, intense exercise, bariatric surgery, and cancer
cachexia [31,38]. All these signals can activate the PR domain containing 16 (PDRM16),
a transcription factor [30,41], which in turn activates different regulating factors such
as peroxisome proliferator-activated receptor γ coactivators (PGC-1α and PGC-1β) and
peroxisome proliferator-activated receptor γ (PPARγ). The final effect is the induction of
BAT-like adipogenesis in WAT precursors [30]. In humans, the formation of brown-like
adipocytes within WAT, named beige adipocytes, has recently attracted much attention
as a possible therapeutic target due to its inducible effect of dissipating extra-energy as
heat [40].
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3. Adipose Tissue Dysfunctions

The quality of adipose tissue depends on nutritional status and food intake. Excessive
food intake may lead to WAT dysfunction, which is the typical abnormality found in
metabolic syndrome [4,19]. As previously mentioned, the core function of WAT is to store
lipids, primarily triglycerides. This needs rapid tissue remodeling in different metabolic
conditions, thus involving the coordinated response of the different cellular components of
WAT. Cell expansion was studied in different obese mouse models, showing that after 28
days of high-fat diet, a 4–6 fold increase in adipocyte volume is observed [42]. Reduced
oxygen diffusion limits adipocyte volume expansion [1,42]. In conditions of mild hypoxia,
a stress signal is generated in order to induce angiogenesis and extracellular matrix (ECM)
remodeling to allow further adipose tissue expansion [42–44].

Conversely, in obese people, adipose depots expand beyond the tissue’s capacity of
adequate angiogenesis, possibly resulting in persistent hypoxia, fibrosis, and adipocyte
death [1,43,44]. However, studies on human adipose tissue oxygenation in dysfunctional
conditions are still controversial: while some authors found SAT to be hypoxic in obese
patients [43,44], others found it to be hyperoxic [45,46].

WAT becomes dysfunctional when fat-storing capacity is saturated, so that supraphys-
iologic conditions are necessary [43,45]. Individuals with WAT dysfunction characteris-
tically have an imbalance in their adipokine profile and, typically, show reduced insulin
sensitivity [42,47,48].

Brown adipose tissue may also become dysfunctional. BAT function declines with
obesity and aging, giving it a “whitened” appearance, but the mechanisms contributing
to this decline have been less defined. Firstly described by Shimizu et al., its existence
has been exclusively reported in murine models [49]. However, it is noteworthy that the
impairment of glucose uptake has been observed in BAT of T2DM patients [50]. Evidence
is weak, but this tissue may be analog to murine whitened BAT [50]. In this condition,
lipids accumulate in multiple lipid droplets (that is typical of BAT) becoming progressively
a unilocular lipid deposit, endoplasmic reticulum goes through engulfment and UCP1
expression reduces [51]. Surprisingly, the whitened BAT starts to express leptin, which is a
typical WAT marker [51,52]. The BAT whitening is possible due to the disruption of the
“thermogenic signaling” and it is in particular attributed to increasing IR, disruption of
β3-adrenergic signaling, and leptin resistance [51].

The phenomena of WAT beiging and BAT whitening are the clear demonstration that
adipose tissue is an extremely flexible organ, capable to adapt to extreme supraphysiologi-
cal conditions.

4. ANGPTLs

The angiopoietin-like (ANGPTL) protein system comprises different circulating fac-
tors showing similarity to angiopoietins. Eight different proteins are found in humans
(ANGPTL 1–8) [7–9].

ANGPTL3, ANGPTL4, and ANGPTL8 are essential regulators of triglyceride and
energy metabolism. In this paragraph, we will focus on their regulatory function on adipose
tissue metabolism and dysfunction [10–12].

4.1. Role of the ANGPTL3-4-8 System in Regulating Triglycerides (TGs) Trafficking

The interplay of ANGPTL3, ANGPTL4, and ANGPTL8 is known as the crucial regula-
tor of triglycerides (TGs) trafficking during feeding and fasting [7,53,54]. These ANGPTLs
mainly act as inhibitors of lipoprotein lipase (LPL) and endothelial lipase (EL). These are
the major extracellular enzymes that hydrolyze TGs carried by chylomicrons and very low-
density lipoproteins (VLDLs), thus enabling FFA cellular replenishment and blood-TGs
clearance [10–12].

ANGPTL3 is produced almost exclusively by the liver and acts as an hepatokine in-
volved in the regulation of lipid and glucose metabolism [55–58]. It has been proposed that
ANGPTL3 plays a role in the trafficking of energy substrates to either storage- or oxidative-
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tissues in response to food intake. It has a plasma TG-increasing effect, which is achieved
by suppressing plasma TG clearance via inhibition of LPL activity [59]. The protein con-
tains two functional domains: coiled-coil domain (N-terminus) and fibrinogen-like domain
(C-terminus). Once secreted it is cleaved at the site located between residues 221–224 by
proprotein convertases (PCSKs), mainly PCSK6 [59]. The cleaved N-terminal domain is
sufficient and necessary for LPL inhibition [59]. The regulatory action of ANGPTL3 on
TG breakdown is principally done during feeding, throughout its inhibitory effect on LPL
in oxidative tissues such as BAT, heart, and skeletal muscles [7,60,61]. As a consequence,
ANGPTL3 deficiency leads to an important reduction in circulating lipids, namely choles-
terol, TGs, and HDL-C as described in Sun KK, a mouse KO-ANGPTL3 model, as well as
in subjects affected by familial hypobetalipoproteinemia type 2 (FHBL2) [OMIM #60519],
the human model of ANGPTL3 deficiency [54,57,59,62–64].

ANGPTL8 is mainly produced by the liver, but also by gut epithelium and adipose
tissue [65,66]. While liver-derived ANGPTL8 is largely secreted in plasma, produced by
adipocytes, remains intracellularly, particularly localized in nucleoplasm [67–69]. It is a
small protein of 198 residues, capable of interaction with ANGPTL3, but exposing a coiled-
coil domain only [7,70]. It is induced by feeding and facilitates the LPL inhibition activity
by forming oligomers with ANGPTL3 [7,70]. It was recently proved that insulin acts as a
powerful inducer of ANGPTL8 via PI3K/AKT signaling [68,71,72], and insulin-dependent
ANGPTL8 induction occurs similarly in the liver and adipose tissue [68]. ANGPTL8 is also
able to influence intracellular insulin signaling inducing AKT phosphorylation through a
molecular pathway that is still unknown [73]. In summary, current evidence suggests that
feeding induces insulin secretion, which in turn enhances ANGPTL8 expression in liver
and adipose tissue. Then, ANGPTL8 accumulation upregulates insulin signaling, possibly
in a feedforward fashion [73].

ANGPTL4 is produced by different cells throughout the body, mainly the liver, and
adipose tissue [65,74]. It has a similar structure to ANGPTL3, it is induced by fasting and
similarly acts as a LPL inhibitor, especially in WAT [75]. In comparison with ANGPTL3,
ANGPTL4 is more active in oligomeric form, and cleavage from PCSKs does not hamper its
LPL-inhibiting capacity [76]. Similar to ANGPTL3, also ANGPTL4 catalyzes LPL inhibition.
Studies based on heparinized blood found that only homodimeric/multimeric LPL form is
active [77]. Sukonina et al. [11], observed that treating LPL with ANGPTL4 inactivates LPL
catalytic activity and increases the low-salt peak by heparin-sepharose chromatography,
concluding that ANGPTL4 functions by converting active LPL homodimers into inactive
monomers. However, more recently, Beigneux et al. [78] found LPL to be also active as a
monomer, therefore ANGPTLs mediated LPL inhibition may have a different dynamic;
while Mysling et al. [79] observed that ANGPTL4 inhibits LPL function by unfolding the
hydrolase domain. ANGPTL4 was also found to promote intracellular cleavage of LPL
mediated by PCSKs in adipose tissue of murine models [80]. ANGPTL3 and ANGPTL8
might have similar inhibition patterns.

ANGPTL4 is mainly induced by glucocorticoids, cold, and hypoxia-inducible factor
1α (HIF-1α). In particular, cold exposure induces ANGPTL4 differently in WAT (increased)
and BAT (decreased), thus directing TGs towards BAT [81–84]. Proteomic studies found
ANGPTL4 to be also expressed in the nucleoplasm in different cell lines [85,86]. However,
its possible role in the nucleoplasm is still unknown, and its cellular localization should be
further confirmed.

Chen et al. [70], found that ANGPTL8 is able to form complexes with both ANGPTL3
(in a 3:1 molar ratio) and ANGPTL4 (in 1:1 molar ratio) [70]. ANGPTL3/8 complexes are
100-times more potent in LPL inhibition than ANGPTL4/8 complexes, thus establishing a
possible competitive mechanism in regulating LPL-activity in different tissues [70]
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4.2. Role of the ANGPTL3-4-8 System in Regulating Adipose Tissue Function

ANGPTLs functions go probably beyond their effect in regulating lipid metabolism
as they might be involved in the balance of whole-body energy through the regulation
of adipose tissue physiology and substrates trafficking [54]. However, published evi-
dence on ANGPTLs function beyond intracellular and extracellular lipolysis regulation
is still fragmented. Most studies are based on murine models and results may not apply
to humans.

Banfi et al. [61] found that knockout mouse models for both ANGPTL3 and ANGPTL8
had intense adipose tissue beiging in comparison with their wild type littermates. In partic-
ular, WAT of double KO mice expressed higher levels of UCP1, a typical BAT marker [61].
KO mice were also hypermetabolic, raising their basal temperature of 1 ◦C during feed-
ing [61]. A similar effect could be evoked during fasting by the administration of a
β3-agonist, or suppressed with a β3-antagonist during feeding [61]. It is still unknown how
ANGPTL3 and ANGPTL8 may regulate the expression of UCP1. However, modification
in levels of circulating lipids is possibly involved in enhancing β3-adrenergic receptor
functioning, which is the main player in steering WAT beiging [30,31,61,87].

ANGPTL8 may be crucial in adipocyte differentiation and lipolysis regulation [67].
3T3-L1 cells knocked down for ANGPTL8 show a consistent rise in mRNA expression for
(PCG-1α) and UCP1 indicating differentiation towards BAT [67]. Moreover, ANGPTL4
levels and PPARs transcription factors were also raised indicating a shift towards lipolytic
phenotype [67]. ANGPTL8 also has a core function in regulating chronic inflammation, in
particular acting on TNF and IL-1, which are crucial mediators of adipose tissue metain-
flammation and lipolysis [88]. Zhang et al. [88] found that not only ANGPTL8 is induced
by TNF and IL-1 signal, but it also facilitates the interaction of IKKγ (activated by NF-κB)
with p62, thus labeling IKKγ for degradation and therefore, acting as an inflammation
quencher [88]. ANGPTL8 treatment also reduces pro-inflammatory mediators, adipocyte
survival, and replenishment [71]. Obese mouse models hyper-expressing ANGPTL8 show
mitigation of adipose tissue inflammation and increased M2 polarization, probably due
to the increased levels of secreted adiponectin [71]. Conversely, ANGPTL4 depletion in
adipocytes results in better metabolic functions, since ANGPTL4 appears to stimulate
the expression of SPTLC2, a core enzyme in ceramide production. Ceramides activate
lipolysis through protein kinase C, zeta (PKCζ) (a Ca2+-dependent protein kinase) and
induce proinflammatory mediators [35,89].

Since ANGPTLs seem to have a tight link with adipose tissue physiologic functions, it
is possible that a disruption in ANGPTLs homeostasis may lead to adipose tissue dysfunc-
tion [54,90].

During feeding, serum glucose and insulin secretion enhance ANGPTL8 expression,
in both adipocytes and hepatocytes [91]. A specific transcription factor for ANGPTL8 is the
carbohydrate-responsive element-binding protein (ChREBP), which is induced by insulin
stimulation [91]. While hepatocyte-derived ANGPTL8 is mainly secreted, in WAT and
BAT it remains in nucleoplasm [69]. According to this model, ANGPTL8 is secreted in
complexes with ANGPTL3, thus inhibiting LPL in oxidative tissues and directing dietary
TGs to adipose tissue for storage [7,70]. Enhanced ANGPTL8 is associated with reduced
activation of AMPK and PPARα inhibition (that regulates ANGPTL4 expression) [92,93].
Comprehensively, ANGPTL8 expression in feeding ameliorates insulin sensitivity and
blocks lipolysis, thus preparing adipocytes to receive nutrients [67] (Figure 1).
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Figure 1. The angiopoietin-like system (ANGPTLs) model in healthy adipose tissue. Legend:
functioning of ANGPTL system in healthy adipose tissue. Dotted lines report data with a low level
of evidence. Panels (A,B) describe the hepatocyte function in feeding and fasting. In response to
insulin increase (A), hepatocytes secrete ANGPTL8, and ANGPTL3. ANGPTL3-8 tetramers inhibit
lipoprotein lipase (LPL) in oxidative tissues [7,68]. Reduced blood glucose in fasting (B) leads to
increased circulating glucocorticoids and glucagon that induce ANGPTL4 expression [82,94]. In the
liver, ANGPTL4 expression possibly enhances lipogenesis and gluconeogenesis, VLDL production,
and secretion, as proved in mouse models [89]. Panels (C,D) describe white adipocyte function
in feeding and fasting. During feeding (C), insulin enhances nuclear expression of ANGPTL8
determining a block in lipolysis and enhanced insulin sensibilization, adiponectin secretion, and
M2 polarization of resident macrophages [67,68,71]. In fasting (D) ANGPTL4 is expressed both in
nucleoplasm and secreted [74,75,84,86,94]. In this physiologic condition, lipolysis is functional to
liberate free fatty acids (FFA) deposit and promotes energy utilization [7,81,89].

During fasting, ANGPTL4 expression is upregulated in both hepatocyte and adipocytes
through activation of PPARs transcription factor (PPARα and PPARγ in particular) in re-
sponse to glucagon and glucocorticoids [93–96]. In the liver, ANGPTL4 is proved to be
secreted in fasting and during exercise, probably carrying out endocrine functions [94].
Increased ANGPTL4 expression is associated with increased gluconeogenesis and lipogen-
esis, which lead to VLDL secretion and fatty-liver in mouse models [89]. In adipose tissue,
ANGPTL4 is secreted as a paracrine factor, since it remains bound to ECM surrounding
adipocytes [75,80]. Therefore, PCSKs secretion in response to fasting might be crucial in lib-
erating the N-terminus domain of ANGPTL4, thus enforcing adipose tissue LPL inhibition
and directing TGs flux to BAT and muscular tissue for catabolism [89,97] (Figure 1).

In conditions of chronic overnutrition, both serum insulin and glucocorticoid levels
increase, leading to a change in ANGPTL system homeostasis: chronic overexpression of
ANGPTL8 in hepatocytes may determine augmented insulin resistance, lipogenesis, in-
creased VLDL secretion, and liver steatosis [68,91]. In WAT, the co-expression of ANGPTL4
and ANGPTL8 may determine enhanced adipose tissue inflammation and uncontrolled
expansion leading to adipocytes dysfunction [35,88,91]. In this context, BAT may be also
affected, since a chronic overexpression of ANGPTL8 reduces PPARs and UCP1 expression
favoring lipogenesis and BAT whitening [51] (Figure 2).
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Figure 2. ANGPTLs model of adipose tissue dysfunction. Legend: possible induction mechanism
of adipose tissue dysfunction involving ANGPTL3-4-8. Dotted lines report data with a low level of
evidence. Panel (A) describes dysregulation of hepatocytes function in conditions of chronic overnu-
trition: overexpressed insulin levels together with elevated plasma glucocorticoids in obese patients
induce both ANGPTL8 and ANGPTL4 expression in hepatocytes [68,73–75,84,86,89,94]. ANGPTL4
possibly induces ceramides production; therefore, worsening hepatic insulin resistance and liver
steatosis [35,81,89]. Panel (B) describes white adipose tissue (WAT) dysfunction in conditions of
chronic overnutrition, potentially mediated by ANGPTLs system disruption: excess insulin induces
overexpression of nuclear ANGPTL8 in WAT [67,68]. ANGPTL8 in turn enhances insulin signaling
via AKT phosphorylation, chronic AKT phosphorylation induces worsening insulin resistance [73].
Permanent block in lipolysis leads to adipocyte mass expansion over oxygen diffusion capacity,
this creates adipocyte stress and hypoxia-inducible factor 1-alpha (HIF1α) induction, which in turn
induces ANGPTL4 expression [83,84], together with enhanced circulating glucocorticoids, typical
of overnutrition. ANGPTL4 partly blocks WAT LPL, partly induces lipolysis and ceramide produc-
tion [89]. Ceramide production is associated with worsening insulin resistance (IR) and inflammation,
leading to WAT secretion of proinflammatory mediators, M1 macrophage infiltration, and adipocyte
death typical of AT dysfunction [35,98].

5. Clinical Conditions Linking ANGPTLs and Adipose Tissue Dysfunction

To further highlight the role of ANGPTLs as mediators of unhealthy adipose tissue
expansion, it may be relevant to examine changes in the ANGPTL3-4-8 system in patholog-
ical conditions in which adipocytes play a pivotal role, namely T2DM/insulin-resistant
state, NAFLD/NASH, and lipodystrophies (Table 1).

Table 1. Serum ANGPTLs change in metabolism-related diseases.

T2DM Obesity NASH/NAFLD Lipodystrophy

ANGPTL3 ↑ in T2DM vs. obese
non-T2DM. b Unchanged b

Non-increased in NAFLD,
higher levels in advanced

levels of NASH. b

↑ in conditions of metabolic
inflammation. b

↓ in lipodystrophic patients in
treatment with metreleptin. b

High levels of
ANGPTL3 in untreated

patients. b

Consistent ANGPTL3
reduction in

leptin-replacement
therapy. b
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Table 1. Cont.

T2DM Obesity NASH/NAFLD Lipodystrophy

ANGPTL4 ↑ in T2DM vs. obese
non-T2DM. b

↑ Obesity vs. normal
BMI. b

Reflects adipose tissue
dysfunction. b

Unchanged b Unchanged b

ANGPTL8

↑↑ in glycometabolism
impairment. b

Induced by insulin. a

Related with serum
LDL-c, TGs and HDL-c

inversely. b

Unchanged in case of
glycometabolism
compensation. b

Associated with grade of lipid
accumulation in hepatocytes. a

Associated with grade
of lipid accumulation

in hepatocytes in leptin
deficient mouse. a

Unresearched in
Human. b

Table Legend: Levels of circulating ANGPTLs in common cardiometabolic diseases. a—studies in animal models. b—studies in human.
Arrows indicate increase (↑) or decrease (↓) of ANGPTLs serum concentration. T2DM (type 2 diabetes mellitus); NAFLD (Non-Alcoholic
fatty liver Disease); NASH (Non-Alcoholic Steatohepatitis); BMI (body mass index); TGs (triglycerides); HDL-c (high density lipoprotein
cholesterol); LDL-c (low density lipoprotein cholesterol).

5.1. Type 2 Diabetes Mellitus and Insulin Resistant State

Type 2 Diabetes Mellitus (T2DM) and state of insulin resistance, seem to be tightly
associated with dysregulation of angiopoietin-like 3-4-8 system.

ANGPTL3 and ANGPTL4 levels are increased in T2DM when compared with obese
non-diabetic patients and healthy controls [99,100]. A strong correlation was seen among
circulating ANGPTL3 and ANGPTL8 indicating a possible co-secretion of the two pro-
teins [99,100]. Recently, a phase II trial has tested vupanorsen [101], an ANGPTL3 antisense
oligonucleotide, in T2DM patients [101]. Preliminary results of the study found no signifi-
cant change in the HOMA index, a widely used index for insulin resistance [102]. Instead,
a significant reduction in circulating TGs and non-HDL cholesterol was found [102].

Cinkajzlová et al. [103] evaluated the levels of ANGPTL3 and ANGPTL4 in T2DM
compared with those observed in extreme nutritional states (anorexia nervosa, short bowel
syndrome, and extreme obesity) [103]. Despite the small number of investigated subjects,
ANGPTL3 and ANGPTL4 were found to be strictly associated with energy intake and
previous metabolic status. Bariatric surgery reduces ANGPTL3 levels only for a short
period in obese patients, and ANGPTL3 levels were back at pre-surgery levels within 12
months [103]. On the contrary, in patients with anorexia nervosa re-alimentation reduces
ANGPTL3 levels. In the same study, ANGPTL4 levels moved in the opposite direction in
T2DM patients, by increasing in fasting state [103]. A strong negative correlation between
levels of circulating ANGPTL4 and both BMI and HOMA-index were observed in obese
children [102,104]. However, ANGPTLs serum quantification has no international validated
standard, and high-grade variability is reported among different publications. Further
investigations are needed to assess the reproducibility of these data.

Levels of circulating ANGPTL8 are apparently crucial actors in impairing glucose
metabolism but results are conflicting [61,73,105,106]. In most human studies, serum
ANGPTL8 is measured through commercial ELISA kits that showed high inter-, and intra-
assay variability. Reported evidence might not be reliable. Morinaga et al. using a self-
developed and controlled ANGPTL8 assay found higher circulating levels of ANGPTL8, in
T2DM patients, associated with increased levels of LDL-C, TGs, and reduced HDL-C [101].
Interestingly, differences in ANGPTL8 expression are observable in obese vs. non-obese
patients: in obese patients, VAT shows increased levels of ANGPTL8 in the nucleoplasm,
while serum levels remain similar to non-obese controls [69].

Although in literature alterations in circulating levels of the ANGPTLs in T2DM are
still uncertain, they seem to exert an important role. Since insulin resistance positively
relates to circulating TGs, inhibition of one component of the ANGPTLs system might
determine an increase in insulin sensitivity [107]. However, further studies are needed to
clarify the role of ANGPTLs in T2DM and its treatment potentials.
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5.2. Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis

The liver is the main regulator of glucidic and lipidic metabolism and hepatocytes
produce whole body circulating ANGPTL3, ANGPTL8, and ANGPTL4 [7,65].

Levels of circulating ANGPTL3 are significantly increased in NAFLD/NASH and this
is associated with an impairment of insulin sensitivity [108]. The same results are found
in advanced liver steatosis or steatohepatitis, where an increase in circulating levels of
ANGPTL3 suggests a relation between liver inflammation and ANGPTL3 secretion [100].

In vitro observations have highlighted that ANGPTL3 has probably a role in regulat-
ing hepatocyte lipid metabolism [64]. HepG2 cells knocked out for ANGPTL3, showed
important changes in lipid metabolism as outlined by lipidomic studies [62,64]. ANGPTL3
KO in liver-derived cell lines, caused intracellular ApoB accumulation [64] and a change
in intracellular lipidic content, towards longer and more unsaturated fatty acid chain
as poly-unsaturated fatty acid (PUFA), which may be protective towards NAFLD and
NASH [62,64].

These in vitro results have been partially confirmed in humans. Indeed, Differently
from FHBL1 (Familial hypobetalipoproteinemia OMIM #615558), FHBL2 patients show
a lower prevalence of ultrasound-determined liver steatosis than the general population,
and no evidence of increased markers of hepatocyte death or bilio-stasis [109,110].

Preliminary results on hypertriglyceridemic patients treated with vupanorsen [101],
an antisense ANGPTL3 inhibitor, did not show any significant differences in hepatic fat
fraction, although levels of serum triglycerides dropped significantly [101]. The associations
between ANGPTL3, lipoprotein metabolism and liver health status have been analyzed in
the DiOGenes (diet, obesity, and genes) study [111]. Levels of ANGPTL3 were measured
before and after an 8-week period of a low-calorie diet in obese patients suffering from
NAFLD [111]. The major findings were a strong negative correlation between plasma
ANGPTL3 concentration and AST levels, and a positive association with cytokeratin 18 (CK-
18). Plasma CK-18 acts as a biomarker for the apoptotic death of hepatocytes, NASH, and
hepatic inflammation [111]. Therefore, a rise in circulating ANGPTL3 in NAFLD/NASH
patients might be determined by increased liver inflammation and hepatocyte death [111].

Circulating ANGPTL8 has been positively related to levels of lipid accumulation in
hepatocytes [68,92]. Leptin deficient ob/ob mice treated with high fat diet show increased
levels of circulating ANGPTL8 which is directly related to the grade of liver steatosis [112].

ANGPTL4 may also be involved in NAFLD. Indeed, increased levels of circulating
ANGPTL4 induce both lipogenesis and activation of PKCζ and ceramides production,
leading to a pro-inflammatory microenvironment and facilitating progression in NAFLD
and NASH [89].

Although ANGPTLs seem to exert an important role in the coordinate regulating of
liver and adipose tissue functions, the intracellular mechanisms underlying the regula-
tion of hepatic lipid metabolism mediated by ANGPTLs is still unknown and should be
further investigated.

5.3. Lipodystrophy

Lipodystrophy is a rare disorder characterized by hypoleptinemia and partial or
complete absence of adipose tissue; it is associated with insulin resistance and hypertriglyc-
eridemia [113,114]. Circulating levels and hepatic expression of ANGPTL3 are increased
in leptin-resistant db/db mice and leptin-deficient ob/ob mice [114]. Administration of
leptin to ob/ob mice decreases hepatic ANGPTL3 mRNA expression and plasma ANGPTL3
levels [114].

Recently, Muniyappa et al. [115] found that patients affected by lipodystrophy treated
with metreleptin showed a marked reduction in circulating ANGPTL3 levels together
with a consistent improvement in liver steatosis, whereas ANGPTL4 levels remained
unchanged [115].

These results highlight a possible role of ANGPTL3 in the regulation of adipose tissue
replenishment and liver-adipose tissue lipid exchange mediated by leptin.
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6. Conclusions

Adipose tissue represents the regulatory center of energy expenditure and intake.
Intense crosstalk with the liver and muscles is crucial to fulfilling body lipid necessities for
energy supplies and membrane construction purposes.

The angiopoietin-like protein system is emerging as a regulator of whole-body energy
metabolism, capable of regulating key adipose tissue functions, and possibly leading to
adipose tissue dysfunction. Excessive food intake impairs the whole system, which has
evolved to store the maximal amount of energy, leading to adipose tissue dysfunction,
ANGPTLs hypersecretion, and the development of cardiometabolic diseases.

ANGPTL-3, -4, and -8 are interesting pharmacological targets for cardiometabolic
conditions. It is clear that a rise in serum levels of one or more of them may be considered
a marker for metabolic deregulation and cardiometabolic disease development. Further
research will hopefully highlight newer and interesting aspects of intracellular ANGPTLs
functions and lipid metabolism modification in patients treated with the new ANGPTLs
lowering drugs.
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