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The recent development of powerful tools for high-throughput mapping of synaptic
networks promises major advances in understanding brain function. One open question
is how circuits integrate and store information. Competing models based on random vs.
structured connectivity make distinct predictions regarding the dendritic addressing of
synaptic inputs. In this article we review recent experimental tests of one of these models,
the input clustering hypothesis. Across circuits, brain regions and species, there is growing
evidence of a link between synaptic co-activation and dendritic location, although this
finding is not universal. The functional implications of input clustering and future challenges
are discussed.
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THE ERA OF STRUCTURAL AND FUNCTIONAL
CONNECTOMICS
Since the discovery by Santiago Ramón y Cajal that the brain is
a network, a central goal has been to map its wiring diagram.
This remains a grand challenge. The human brain, for example,
contains an estimated 100 trillion chemical synapses intercon-
necting ∼80 billion neurons entangled within a volume of ∼12
quadrillion cubic microns. Traditional methods that provide the
nanometer scale resolution needed to reliably identify individ-
ual synapses have lacked the throughput capacity to reconstruct
even a small portion of the connection matrix. Until this gap is
bridged, a number of crucial issues relating to both normal and
diseased brain states will remain unresolved (Crick and Jones,
1993).

Major steps towards the realization of Cajal’s vision are within
sight. Technological advances over the past decade have brought
the promise of mapping virtually every synaptic connection
within local circuits close to reality (Briggman and Denk, 2006;
Smith, 2007; Helmstaedter et al., 2008; Lichtman and Sanes,
2008; Lehrer, 2009; Kleinfeld et al., 2011; Briggman and Bock,
2012; Marc et al., 2012; Morgan and Lichtman, 2013). This is has
been termed microscale connectomics (Sporns et al., 2005). The
microscale distinction is important as related efforts are underway
to create brain-wide maps of the axonal projections emanating
from sub-nuclei, the mesocale connectome or projectome
(Kasthuri and Lichtman, 2007; Bohland et al., 2009) and to
chart larger inter-areal bundles visualized using MRI-based

diffusion tensor tractography (Sporns, 2013), the macroscale
connectome. The latter is the basis of the Human Connectome
Project, launched in 2010, which promises insights into
individual variability with potential to identify gross anatomical
disturbances underlying a range of neurological disease (Behrens
and Sporns, 2012). In comparison with microscale methods
and microelectrode recording, however, the spatial and temporal
resolution of macroscale connectomics is 6–7 orders of magnitude
less than what is required to reliably identify individual synapses.

Herein the term connectome is used to denote the microscale,
on the scale of nanometers and microseconds. Techniques for
structural connectomics have matured over the last decade.
Transmission electron microscopes (TEM) equipped with auto-
mated stage controllers and high-throughput detectors can image
within weeks libraries of ultrathin sections that encompass entire
local circuits (fixed tissue blocks < ∼1 mm3). The contrast and
resolution, ∼2 nm lateral, are excellent, the historic gold standard
for identifying synapses based on the presence of presynaptic vesi-
cles, an intercellular cleft, and an electron-opaque postsynaptic
density, or PSD (DeRobertis and Bennett, 1955; Palay and Palade,
1955; reviewed in Harris and Weinberg, 2012). Images can be
registered in 3D using morphing algorithms (e.g., Anderson et al.,
2009) to produce a volume for analysis. Serial block-face scanning
electron microscopy (SBFSEM; Denk and Horstmann, 2004) uses
back-scattered electrons to image the surface of a block, then
shaves and discards the top ∼30 nm to reveal a new surface. The
images are in natural alignment and gaps are minimal. Focused
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ion beam scanning electron microscopy (FIBSEM), a technique
borrowed from the semiconductor industry, uses ions instead
of electrons to image and ablate the block surface (Knott et al.,
2008, 2011; Merchán-Pérez et al., 2009), producing outstanding
contrast and resolution. In addition to mapping synapses, all of
these techniques permit reconstruction of complete neuronal
morphologies and tracking of axons throughout the local volume;
in some cases much further (Mikula et al., 2012).

Connectomics methods based on light microscopy (LM) are
well suited for the mesoscopic level (Osten and Margrie, 2013),
but can also reveal microscale connectivity through the visualiza-
tion of intrinsic or genetically encoded synaptic markers. Array
Tomography (AT; Micheva and Smith, 2007; Micheva et al., 2010)
uses serial application of antibodies directed against endogenous
proteins known to localize to vesicles or the PSD. Validated by
correlative EM studies, synapse identification can be >80% reli-
able, which is extremely useful in the context of high-throughput
capacity (Rah et al., 2013). CLARITY renders the entire brain
optically transparent by fixing proteins to a hydrogel scaffold
and then removing lipids. Images from deep in the tissue can be
obtained without the need for physical sectioning, and proteins
can be detected in situ using fluorescent probes (Chung and
Deisseroth, 2013; Chung et al., 2013). Trans-synaptic tracing with
neurotropic viruses is tightly restricted to synaptically connected
neuronal ensembles (Callaway, 2008). GFP Reconstitution Across
Synaptic Partners (GRASP; Feinberg et al., 2008) targets genet-
ically encoded fragments of green fluorescent protein to pre-
and post-synaptic membranes, effectively marking only sites of
synaptic contact. In Brainbow mice, individual neurons express
just one of ∼100 different colors which substantially facilitates
circuit analysis (Livet et al., 2007). These diverse approaches for
introducing cell- and synapse- specific fluorescent labels may also
benefit from super-resolution imaging methods (Hell, 2003, 2007;
Rust et al., 2006) that circumvent the diffraction limit of light-
based optics and provide enhanced resolution down to ∼20 nm
laterally.

Techniques for functional connectomics—the real-time activ-
ity history of every neuron/synapse in the volume—are lagging in
terms of coverage density but include promising advances in opti-
cal recording using calcium or voltage-sensitive dyes, increasingly
higher density electrode arrays with possibilities for nanoscale
miniaturization, powerful optogenetic methods to directly probe
circuit function (Boyden et al., 2005; Deisseroth, 2011), and
novel strategies in earlier stages of technological development
(reviewed in Alivisatos et al., 2012, 2013a,b). Further development
of all these methods will likely get a major boost from the
BRAIN Initiative (Brain Research through Advancing Innovative
Neurotechnologies) funded by the U.S. National Institutes of
Health. Collectively, existing and in-progress tools for structural
and functional connectome analysis appear poised to produce a
mountain of data in the near future.

This begs the question ... what is the question?
Dense reconstruction—every synapse, every cell, every wire—

is for now limited to small volumes <1 mm3, thus, a current
challenge is to select circuits that are both physically compact and
functionally sophisticated so that structure-function relationships
can be tested. One recent success is identification of a candidate

visual motion detection circuit in the Drosophila optic medulla
(Takemura et al., 2013). In combination with new methods for
recording from the unusually small neurons implicated (Maisak
et al., 2013), a deeper understanding of how the fly detects
visual motion appears imminent. Such an achievement would
build on the legacy of connectomes mapped to date including
the entire nervous system of the worm C. elegans (White et al.,
1986; Jarrell et al., 2012) and canonical circuit motifs in the
mouse neuromuscular junction (Lu et al., 2009b; Tapia et al.,
2012), rat hippocampus (Mishchenko et al., 2010), rabbit
retina (Anderson et al., 2011; Marc et al., 2013), mouse retina
(Briggman et al., 2011; Helmstaedter et al., 2013), and mouse
primary visual cortex (Bock et al., 2011). None of this could have
been possible without parallel advances in annotation platforms
and development of semi-automated segmentation pipelines
with human error-checking (Fiala, 2005; Mishchenko, 2008; Lu
et al., 2009a; Anderson et al., 2010; Chklovskii et al., 2010; Jain
et al., 2010; Jeong et al., 2010a,b; Jurrus et al., 2010; Tasdizen
et al., 2010; Turaga et al., 2010; Helmstaedter et al., 2011; Roberts
et al., 2011; Beyer et al., 2013; Hu et al., 2013; Xu et al., 2013) and
one nearly fully automated pipeline for synapse identification
(Kreshuk et al., 2011). Still, a fast digital solution to the challenge
of dense circuit reconstruction has proven elusive. Efforts towards
this goal continue in parallel with online projects to distribute
the annotation tasks to larger numbers of people by leveraging
the attraction of video gaming, as in the citizen science websites
Eyewire, WiredDifferently and SLASH (Scalable system for Large
data Analysis and Segmentation utilizing a Hybrid approach).

To date, microscale connectomics has taken promising steps
towards generating new understanding of circuit-specific com-
putations. As technologies advance, a new challenge will be to
elucidate general principles that operate across circuits, in par-
ticular, the capacity of biological networks to integrate and store
information.

LOCAL CONNECTIVITY IN NEURAL CIRCUITS: RANDOM OR
STRUCTURED?
Circuits are packed with diverse cell types whose axons and den-
drites intertwine in tight quarters. Understanding the degree to
which pre- and post-synaptic partners exhibit specificity for one
another—at the level of cell type, dendritic domain and dendritic
address—has been a longstanding goal (Ramón y Cajal, 1954;
Szentágothai, 1978; White, 2007). Analysis of projections from
the lateral geniculate nucleus to visual cortex in rats led Peters and
Feldman to postulate that the number of synapses made between
two neurons is proportional to the geometric overlap between
axon and dendrite (Peters and Feldman, 1976). This was termed
Peters’ rule (Braitenberg and Schuz, 1991) and was extrapolated
to a general principle of brain organization. In comparing pre-
dictions from geometric overlap of cortical pyramidal and stellate
cells with actual synapse counts based on electron microscopy,
Braitenberg articulated the concept of random connectivity:

“This play with probabilities is legitimate only if synapses between
cortical neurons are made entirely by chance, depending only
on the accident of some axon of one neuron coming into the
immediate vicinity of some dendrite of another”. V. Braitenberg
et al., Cortex: Statistics and Geometry of Neuronal Connectivity,
1998.
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FIGURE 1 | Random and structured patterns of local connectivity. (A)
Simplified schematic of the inputs to a medium spiny neuron in the
striatum. There is a clear structure to the targeting of different types of
inputs. Such multi-type structure is reviewed extensively elsewhere and
will not be discussed further. (B) Generalized CNS neuron (e.g., cortical
pyramidal cell) in which inputs of one type only are shown. Within that
type, different input cohorts are defined solely on the basis of their

activation histories: each cohort (A or B, among many) has correlated
activity whereas different cohorts are uncorrelated. In this example,
synapses from three input cohorts are distributed randomly throughout the
dendritic field. This is a Braitenberg network. (C) Example of
between-branch selectivity. Three cohorts have equal access to the
leftmost dendrite but only one actually synapses with it. (D) Example of
within-branch structure. Synapses from each cohort are spatially clustered.

Peters’ rule has a practical implication. If precise connectivity
can be inferred from geometric overlap of cells reconstructed
in separate tissue blocks using standard approaches, then dense
microscale reconstruction might be unnecessary (da Costa and
Martin, 2013). In this view, efforts should instead focus on devel-
oping a complete catalog of cell types, statistics that capture fine
details of morphometric variations, and computational strategies
to properly register thousands of cells in 3D and ultimately
calculate the synaptic network. Several projects have leveraged this
strategy (Binzegger et al., 2004; Amirikian, 2005; Lang et al., 2011;
Oberlaender et al., 2012; Ramaswamy et al., 2012). The degree to
which such inferred networks correspond to anatomical ground
truth, or how faithfully simulations based on their structure will
robustly reproduce circuit function, remain important questions
(Ascoli, 2012).

The alternative view is structured connectivity as described in
Figure 1. It is framed from the perspective of a postsynaptic cell
choosing among potential input partners. A crucial clarification
is made in Figure 1A which shows as an example a medium spiny
neuron in the striatum. Both the number and dendritic location
of synaptic inputs are structured (Smith and Bolam, 1990): glu-
tamatergic input coming from cortex profusely target dendritic
spine heads, dopaminergic input coming from substantia nigra
sparsely target dendritic shafts and spine shafts, and GABAergic
input from other medium spiny neurons target the perisomatic
region. Intuitively, the cell would not operate properly if these

inputs were randomly scattered on the dendritic field. Yet from
the perspective of partner selection, given that the information
content and neurochemical identity of the three types of inputs
are fundamentally different, the axons did not have equal access to
the dendrite during synaptogenesis; molecular markers intrinsic
to each input type would have biased them to different postsy-
naptic compartments. Thus, this particular form of microscale
structure, rife throughout the brain (recent example: Petreanu
et al., 2009), does not directly address the issue of Peters’ rule and
the Braitenberg accident.

What about the patterning within a single type of input
(Figures 1B,C,D)? These synapses are by definition carrying the
same qualitative information, for example, the location of a visual
stimulus on the retina, release the same neurotransmitter(s) and
target the same postsynaptic domain, in this case, dendrites.
Within each type of input, however, are cohorts that differ in
their fine temporal structure: one most active when the visual
stimulus is located at 0◦, another at 1◦, another at 2◦ etc. . . If the
cohorts obeyed Peters’ rule they would converge or diverge from
individual dendrites based solely on geometry, not the degree of
co-activation (Figure 1B). Moreover, targeting within a dendritic
branch would also be spatially random. Indeed, this arrange-
ment may describe input structure at early developmental stages,
immediately following the first wave of synaptic proliferation.

If random structure does occur it could be a tabula rasa for
experience-dependent refinement (Kalisman et al., 2005). At least
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FIGURE 2 | Framework for the quantitative analysis of between-branch
selectivity and within-branch clustering. (A) Distribution of 40 synapses
across a population of 10 dendrites with random (open bars/symbols) or
selective targeting (gray bars/symbols). Synapses were assigned to dendrites
by independently sampling from evenly distributed noise (random) or a
Gaussian distribution with SD = 4 (selective). Examples of outcomes are
shown below for populations with dendrite-to-dendrite variance = 2 or 10.
Symbols represent synapses for each of 10 dendrites, d1–d10. (B) Distribution

of 4 synapses across a single dendrite with random (open bars/symbols) or
selective targeting (gray bars/symbols) of dendritic address. Synapses were
assigned to an address by independently sampling from evenly distributed
noise (random) or a Gaussian distribution with SD = 10 (selective).
Intersynapse distance (ISD) was measured along the dendritic path, yielding
three ISDs per dendrite (total of 3000 ISDs). Example of outcomes are shown
below for dendrites with mean ISD = 30 or 5. Symbols represent dendritic
address.

two kinds of structure are possible. In between-branch selectivity
(Figure 1C) independent cohorts innervate or ignore dendritic
branches at a higher rate than predicted from geometry. How
exactly one defines the local volume is important. An empirically
supported definition is to consider the bulk spatial density of
axons within one spine’s reach of the dendrite (Stepanyants and
Chklovskii, 2005). Based on numerous observations that the
branch structure of living dendrites is static while their filapodial
extensions (precursors to spines) can be motile, this volume is
considered the active realm of anatomical remodeling in normal
post-developmental circuits (Chklovskii et al., 2004). The results
of a simulation based on this rule are shown in Figure 2A. An
input cohort of 40 synapses was given equal access to 10 dendrites
and asked to choose partners based on a random sample of
evenly distributed noise. The simulation was run 1000 times,
and the dendrite-to-dendrite variance in number of synapses
made was calculated for each run. The resulting distribution
of values is narrow with a peak at 2–3 (units of variance =
(# synapses per branches)2), reflecting the expected outcome
that most dendrites received about four synapses each (clear
symbols in Figure 2A). In contrast, if partner choice was biased
by sampling from a Gaussian distribution that favored certain
dendrites over others, the distribution was shifted towards a
mean of ∼11, reflecting the outcome that certain dendrites were
overpopulated by the cohort and others actively ignored (gray
symbols in Figure 2A).

Anatomical tests of between-branch selectivity have been an
implicit goal of earlier studies (reviewed in White, 2007), and
an explicit goal of current ones (see Section Empirical Tests of

Input Clustering). In addition, electrophysiological studies have
provided relevant data. If cohorts actively chose from equivalent
dendrites based on activation history, the connection probabilities
between pairs of neurons should be non-random. In studies using
paired recordings and laser photostimulation, the connection
probability of neighboring visual cortical neurons in layer 2/3
varied with their propensity to receive common excitatory input
from layer 4 but was independent of common inhibitory inputs
(Yoshimura et al., 2005). In studies using multiple simultaneous
whole-cell recordings, connection maps of neuronal triplets in
visual cortex were highly non-random with certain motifs over-
represented compared to chance (Song et al., 2005). Both studies
support the idea that functional cohorts sort over time to the
same neuron. It is a small extrapolation to postulate sorting to the
same dendrite, where postsynaptic potentials (PSPs) sum locally
resulting in output to the soma. An important finding is that the
relative weight of each dendrite’s output is not always fixed but
can be adjusted by patterned stimulation or enriched experience,
a phenomenon termed branch strength potentiation (Losonczy
et al., 2008; Makara et al., 2009; Müller et al., 2012). This is
but one example of how branch selectivity might contribute to
the encoding of learning and memory (Legenstein and Maass,
2011).

The other potential structure is within-branch clustering
(Figure 1D). For the cognate simulation shown in Figure 2B, four
synapses from the same cohort were given access to a 100 micron
long dendrite. With random sampling from an even distribution
(open symbol), the distribution of inter-synapse distances (ISDs)
was broad and relatively flat, with nearly as many dendrites
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harboring synapses separated by ∼20 or more microns as there
were dendrites harboring spatially clustered synapses. In contrast,
if dendritic address was biased by sampling from a Gaussian dis-
tribution that favored certain locations over others, the ISD dis-
tribution was heavily compressed with a mode of <3 microns and
no dendrites at all harboring dispersed synapses (gray symbols).
For the remainder of this review we focus on these hypothetical
dendritic input clusters, their functional implications, and recent
anatomical tests of their existence.

INPUT CLUSTERING HYPOTHESIS
There are two general models for how neurons integrate synaptic
input. In a global integration model, PSPs resulting from indi-
vidual synapses sum linearly at the soma. Supporting this, studies
combining whole-cell patch clamp and activation of two dendritic
locations using synaptic stimulation or glutamate iontophoresis
observed linear summation (e.g., Cash and Yuste, 1999; Araya
et al., 2006). If this summation rule holds for physiologically rele-
vant inputs (more than 2), highly structured dendritic addressing
as described above should not be essential for neuronal compu-
tation. The processing power of neural circuits would come from
the intrinsic capacity of linear neurons to perform complex opera-
tions such as principle component analysis (e.g., Oja, 1982), com-
partmentalized electrical and biochemical signaling (at spines),
input-specific learning rules, and a massively distributed network
(Yuste, 2011).

The alternative is a two-stage integration model in which
each dendrite acts as an independent computational subunit
capable of supralinear summation. If this is the main operating
mode, both branch selection and within-branch clusters should
be essential for tapping the full power and storage capacity of
circuits. This idea was explored by computational modeling using
biophysically and anatomically realistic reconstructions of CNS
pyramidal cells (Mel, 1992, 1993; Poirazi and Mel, 2001; Poirazi
et al., 2003a,b). For within-branch interactions, co-activation of
synapses located within ∼40 microns of one another produced
a much stronger dendritic response than calculated from the
sum of individual activations, whereas those located >60 microns
apart summed linearly. This location-dependent supralinearity
was a consequence of active conductances, voltage-gated sodium
and calcium channels, and NMDA receptors, located within the
dendritic membrane. Supralinear summation occurred only in
specific input regimes i.e., the parameter space of strength, tim-
ing, number and position of synaptic inputs. Indeed, the model
predicted linear or weakly sublinear interactions when only two
small inputs were activated, in agreement with the results cited
above (Araya et al., 2006).

Electrophysiological studies focusing on input regimes pre-
dicted to produce supralinearity have found corroborating evi-
dence. In the dendrites of layer 5 pyramidal cells (Polsky et al.,
2004), activation of inputs spaced 20–40 microns apart produced
an approximately two-fold supralinearity, though only for inter-
mediate activation strengths; the effect disappeared for very weak
or very strong inputs. Also consistent with model predictions,
blockade of NMDA receptors with APV linearized the response.
In recordings from hippocampal CA1 pyramidal cells (Gasparini
and Magee, 2006) or striatal medium spiny (Carter et al., 2007)

dendrites actively switched between different integration modes
(linear vs. supralinear) depending on the input regime. Where
dendritic nonlinearities are evident, they are mediated by NMDA
spikes/plateau potentials that represent a first level of integration
localized to single dendritic branches (Major et al., 2008; Larkum
et al., 2009; Polsky et al., 2009; Gómez González et al., 2011;
Behabadi et al., 2012; Harnett et al., 2012). Collectively, these data
support a two-stage integration model, and highlight a potential
role for input clusters as sites of integration and information
storage (reviewed in Govindarajan et al., 2006; DeBello, 2008;
Larkum and Nevian, 2008; Branco and Häusser, 2010; Magee,
2011; Winnubust and Lohmann, 2012).

EMPIRICAL TEST OF INPUT CLUSTERING
In 2001 Poirazi and Mel posed an acid test. They envisioned
a postsynaptic neuron integrating four inputs whose synapses
were initially randomly scattered on the dendritic field i.e., a
Braitenberg network. The experiment consisted of repeated acti-
vation of input cohorts A and D, and separately of cohorts
B and C. The prediction of their model is that, over time,
synapses from paired cohorts will come to reside in input clusters
that segregate from the other pair, both within and between
branches.

Since 2008 at least nine independent groups have conducted
related tests of this general model. These studies used different
sensory, motor and memory circuits, different tools for visual-
ization and distinct platforms for quantitative analysis. Most fol-
lowed a variant of the experimental logic described in Figure 3. In
lieu of chronic stimulation the experiments monitored activation
history to identify cohorts. For a sensory circuit encoding a partic-
ular stimulus feature—e.g., spatial location of auditory, visual or
tactile stimulus; orientation of visual bar; frequency of sound—
the collection of parallel afferents represents a homogenous input
type. Within it, afferents encoding similar values of the feature
have a history of high co-activity and those encoding dissimilar
values, a history of weak co-activity. Analogous correlations might
occur in bursts of spontaneous activity. Thus, the challenge is
to record the feature selectivity (or spontaneous activity) of
each cohort while simultaneously mapping its dendritic input
locations.

EVIDENCE IN SUPPORT
The first study to use this paradigm was performed in the
midbrain of prism-adapted barn owls (McBride et al., 2008).
The owls’ auditory space map is computed by integration of
binaural inputs that continue change well into juvenile devel-
opment, which contrasts with visuotopic or somatotopic maps
whose inputs are normally fixed early in development. When
owls are reared wearing prism glasses that shift the frontal visual
field by 19◦, a new circuit sprouts within the external nucleus
of the inferior colliculus (ICX) and drives adaptive localization
behavior. Yet the normal circuit does not wither anatomically
but is preserved alongside the learned circuit (Knudsen, 2002),
providing an internal control for clustering analysis. Following in
vivo electrophysiological measurement of auditory-visual spatial
receptive fields, co-active axons were labeled with fluorescent
tracer, fixed, and imaged with a confocal microscope operating
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FIGURE 3 | Paradigm for testing the microanatomical predictions of
input clustering. Generic sensory map representing a 2D feature
space e.g., the elevation and azimuth of auditory or visual stimulus. For
normally patterned experience, afferents encoding discrete locations
within this feature space are co-active over the lifetime of the animal
and largely desynchronized with those encoding other locations. Each

location corresponds to a cohort, and the entire collection of cohorts
goes on to synapse within a dense field of target dendrites. The
dendritic address of each synapse is directly visualized and referenced
to the activity history, by simultaneous recording sensory-driven
responses or by retrospective assignment on the basis of in vivo
labeling as highlighted for cohort C.

at the diffraction limit. Axodendritic contacts (putative synapses)
were identified by requiring volume overlap demonstrated for
objects (two-color beads) in physical contact, which excluded the
majority of observed touches (Rodriguez-Contreras et al., 2005).
Dendritic locations were mapped across hundreds of dendrites
and thousands of contacts. Within each dendrite, the inter-
contact distance (ICD) to nearest neighbor was measured. ICD
distributions from the functionally suppressed zones in prism-
adapted or normal juvenile owls were intermediate between those
depicted in Figure 2B: most ICDs were <10 microns, however, a
significant fraction were >20 microns. In comparison, not a single
ICD >20 microns was observed in the functionally strong learned
circuit: all of its inputs resided in clusters.

One difference between these results and the in vitro findings
in mammalian slice experiments is the cluster size was smaller,
∼10–20 microns as opposed to ∼20–40. Because not all axoden-
dritic contacts identified by LM are synapses, the presence of false
positives intercalated between true synapses would bias towards
an underestimate of cluster size. Still, bootstrap analysis showed
that statistical differences between normal and learned clusters
were robust even for high false positive rates that exceeded the
error estimates based on co-localization of Homer1, a postsynap-
tic marker. In total, these results are consistent with the input
clustering hypothesis and demonstrate that behaviorally relevant
experience can selectively eliminate “lone” synapses from their
co-active cohort. Both physical elimination of lone synapses and
formation of new co-active synapses within the dendritic neigh-
borhood appeared to be required to account for the observed
input distributions.

Other tests of input clustering have identified synapses using
cellular-level functional imaging. Kleindienst et al. used in vivo

two-photon microscopy to visualize spontaneous (synaptic) den-
dritic calcium transients in cultured hippocampal pyramidal cells
from newborn rat pups (Kleindienst et al., 2011). Transients
arising from neighboring locations on a dendrite were more
often co-active than those arising from distant locations. This
propensity for co-activation was quite strong for inter-synapse
distances (ISDs) of 16 microns or less, and exhibited a Poisson-
like distribution similar to that observed in the functionally weak
zones in the owl auditory space map (McBride et al., 2008).
Finally, when TTX was applied to the cultures to block activity, the
distribution flattened considerably and appeared similar to that
shown in Figure 2B (open circles), which suggests that activity is
required to maintain non-random (clustered) structure.

Takahashi et al. imaged spontaneous spine calcium transients
in cultured CA3 pyramidal cells from 7 day old rat pups and
found that the probability of observing spines coactivated within
100 ms was high for neighboring spines but dropped to chance
at inter-spine distances greater than 10 microns (Takahashi et al.,
2012). Imaging of layer 2/3 pyramidal cells in the barrel cortex
of young adult mice confirmed these observations, documented
a cluster (hot zone) size of ∼8 microns, and demonstrated that
clustered spine heads were larger on average than dispersed ones,
a proxy indicator of synaptic strength. In a related experiment
using adult mice, GluR1 was observed to preferentially insert into
neighboring spines following spatial exploration. These results
support the idea that correlated activity, over time, leads to the
formation and stabilization of clustered inputs.

Makino and Malinow monitored the movement of fluores-
cently tagged AMPA receptors into spines on the basal dendrites
of layer 2/3 pyramidal cells in acute brain slices prepared from
juvenile rats (27–36 days old). The potentiation of neighboring
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spines as indicated by GluR1 insertion was observed to be signifi-
cantly correlated in 28/95 dendrites after 2 days of normal sensory
experience, but only 5/68 dendrites in whisker-trimmed animals
(Makino and Malinow, 2011). In contrast, global upscaling as
indicated by GluR2 insertion exhibited little or no dendritic
compartmentalization in both intact and trimmed animals. These
results are consistent with input clustering and also support the
notion that global activity reduction/blockade revert the network
to an “equal access” situation exhibiting a more random structure
(Figure 1B).

Fu et al. used two-photon microscopy to monitor layer 5 pyra-
midal cells in mouse motor cortex (Fu et al., 2012). As juvenile
mice (1 month old) practiced a novel forelimb task over 4 days of
training, one third of new spines appeared in clusters (adjacent
neighbors), and these were more resistant to elimination than
non-clustered new spines, even long after the end of training.
When mice were cross-trained as adults on a different task, new
clusters emerged and largely segregated from those associated
with the first task. These are important findings, consistent with
the hypothesis and novel in that they extend both outside sensory
systems and to learning in the adult brain. One difference is that
the observed cluster size, ∼2 microns, is smaller than observed in
previous studies.

The studies above focused on excitatory synapses. Chen et al.
developed techniques to visualize inhibitory synapses (Chen et al.,
2012). Using in vivo two-photon imaging of layer 2/3 pyramidal
cells in mouse visual cortex and a genetically encoded gephyrin-
conjugated fluorophore, inhibitory synapses made on dendritic
spines were observed to be considerably more dynamic than
those made onto dendritic shafts, both during normal experience
and after 2 days of monocular deprivation. Remarkably, a large
fraction of dynamic inhibitory synapses were located within 10
microns of other dynamic spine events—ones likely involving
excitatory synapses. This observation supports a cluster size of
∼10 microns, and suggests that experience-dependent formation
and elimination of inhibitory and excitatory synapses may be
co-regulated.

Two recent studies employed higher-throughput approaches.
In one, Rah et al. used AT to analyze the spatial distribu-
tion of thalamocortical synapses onto layer 5 pyramidal cells in
mouse somatosensory cortex (Rah et al., 2013). Both between-
branch selectivity and within-branch clustering (5–15 microns)
were more prevalent than predicted from a random distribution.
Because the population of thalamocortical afferents was presum-
ably heterogenous with regards to coactivation history, labeling
of functional cohorts within this population will be required
to test the most significant predictions of the input clustering
hypothesis.

The latest report provides some of the best quantitative anal-
ysis to date of cell type selectivity, branch selectivity and input
clustering. Druckmann et al. used mGRASP, an optimization of
GRASP for mammalian synapses (Kim et al., 2011), to visualize
input patterns between presynaptic CA3 and postsynaptic CA1
pyramidal neurons (Druckmann et al., 2014). At the level of indi-
vidual neurons, the number of synapses per neuron was highly
variable and not explained by differences in total surface area of
the dendritic field. Across dendritic branches of a given neuron,

the number of synapses per branch was highly variable and
deviated from a purely random distribution in 22 of 28 neurons
analyzed. This was not due to branch-to-branch variations in
overall synapse density, which were found on the basis of spine
counts to be similar, as expected from previous work. The authors
then applied a linear form of Peters rule to investigate whether
local variation in axonal density could predict branch-to-branch
variation in synapse density and found little evidence in support,
except for a small number of branches with very low synapse and
axonal density. In total, these data provide a direct demonstration
of structured branch selectively consistent with the illustrations in
Figures 1C, 2A.

The authors went on to analyze within-branch clustering and
found significant deviations from a random distribution in 17
of 27 neurons. All exhibited an overabundance of short ISDs
consistent with the illustrations in Figures 1D, 2B. One important
caveat is that the axonal inputs that gave rise to these clusters
could not be reliably traced to their source(s) and therefore likely
involved a mix of input sources whose temporal correlations are
unknown.

Finally, the authors repeated the experiments by labeling only
“temporally matched neurons”, defined as arising during the
same developmental window. For these sparsely labeled datasets,
input clustering was significantly enhanced over that expected
by chance. In total, these results are consistent with the input
clustering hypothesis and also illustrate the importance of a
rigorous quantitative framework, and large n numbers, to dis-
tinguish between structured and random connectivity. Because
the relationship between the actual co-activity histories and/or
feature selectivities among temporally matched neurons in the
hippocampal circuit is not well-understood, and not likely as
straightforward as topographic organization in sensory systems
(Figure 3), these results do not establish proof of the input
clustering hypothesis.

EVIDENCE NOT IN SUPPORT
Not all studies have found evidence of clustering. Three studies
by Konnerth et al. used in vivo two-photon imaging of dendritic
calcium transients evoked by sensory stimulation. No clustering
was apparent on layer 2/3 cells in mouse visual cortex (Jia et al.,
2010) or layer 2 neurons of mouse vibrissal cortex (Varga et al.,
2011), and related experiments employing an imaging method
with single spine resolution found no evidence of clustering in
layer 2/3 cells in mouse auditory cortex (Chen et al., 2011).
In all three studies there were clear examples in which calcium
signals evoked by similar orientations of visual stimuli, individual
whiskers, or frequencies of sound (respectively) were located
on different dendrites, and others in which signals evoked by
different feature values occurred on the same dendrite, often in
close proximity. That activity originating at one location along
the sensory epithelium would provide synaptic input to more
than one dendrite of a higher order neuron is consistent with
both input clustering and global integration models. However, the
observation of freely intermingled synapses encoding all aspects
of feature space is only consistent with a global integration model
in which neurons acquire receptive fields by integrating spatially
distributed synaptic inputs.
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FIGURE 4 | Competing models for the interpretation of input clusters.
Random connectivity as the initial state of the network is consistent with
both models. In circuits where input clusters are observed with prevalence
higher than chance (Figure 2), the functional implications depend on the
activity histories and mode of dendritic integration. If clusters are of co-active
inputs and found to drive supralinear summation, they are predicted to
enhanced storage capacity and pattern detection in accordance with the

two-stage integration model. In this model, cluster formation/stabilization
would rely on Hebbian mechanisms as reviewed in Winnubust and Lohmann
(2012). In contrast, clusters are of co-active inputs but found to drive linear
summation, or of asynchronous inputs operating outside the dendrites’s
temporal integration window, then no essential functional role is predicted in
accordance with the global integration model. Formation/stabilization of
clusters in this model would rely on non-Hebbian mechanisms.

A similar result was observed in area 17 (V1) of cat visual
cortex by da Costa and Martin. The authors used correlated
light and electron microscopy to analyze the distribution of
thalamic synapses onto layer 4 spiny stellate cells (da Costa and
Martin, 2011). Thalamic axons were labeled by focal injections of
biotinylated dextran amine tracer at a matched location within
the visuotopic space map, an experimental design very similar
to that employed for the owl studies. 191 contacts made onto
four spiny stellate cells were identified by LM “whenever a gap
between a labeled dLGN axon and a labeled dendrite could not
be discerned”. Retrospective EM on 50 of these contacts revealed
that only 14 were actual synapses, a high false positive rate roughly
consisted with other studies. Fully half of the unambiguous false
positives (15/30) were found not to be in contact at the EM level.
This is an important finding because it suggests that application
of the overlap volume criteria described in Rodriguez-Contreras
et al. (2005) and used to study input clustering in the owl
(McBride et al., 2008) has utility in reducing—not eliminating—
false positives from the dataset.

Da Costa and Martin went on to demonstrate that neither
the LM-identified contacts or EM-identified synapses clustered
on dendrites. Bootstrap analysis confirmed this observation. They
conclude that the receptive fields of these layer 4 spiny stellate are
determined by the synchronous firing of a relatively small num-
ber (188/cell) of thalamic inputs that are distributed randomly
throughput the dendritic field.

CONCLUSIONS
The first wave of anatomical tests of the experiment proposed
in 2001 by Poirazi and Mel have materialized with most, not
all, groups finding evidence in support. This issue is hardly
resolved. The rules for dendritic integration in many of the
cell types used these experiments are not well understood, thus,
the more general question of global vs. two-stage integration
models remains unclear. Various interpretations of the functional
significance of input clusters within this context are summarized

in Figure 4. It is of course possible that clustering is used in
certain cell types and not others. One could speculate that the
adaptive value (evolutionarily) of clustering might be greater for
neurons tasked with integrating complex and fluid information
streams (e.g., the owl auditory space map or the mammalian
hippocampal-neocortical system) than for neurons providing
more of a throughput role (e.g., early sensory pathways). Even if
true, this speculation does not fully account for the divergence of
empirical results.

Where clustering has been observed, one consistent finding
is a dendritic window of ∼10 microns, somewhat smaller than
the window observed for supralinear interactions in vitro using
multispot uncaging or photactivation. This leaves open a crack
in the interpretation of clusters as sites of supralinear integration.
The ∼10 micron window does match well with the spatial range
of intracellular biochemical signaling pathways that lower the
threshold for LTP (long-term potentiation) among neighboring
synapses (Harvey and Svoboda, 2007; Harvey et al., 2008). Thus,
a non-exclusive interpretation for the functional role of input
clusters is to promote coordinated regulation of synaptic plasticity
among co-active inputs (Figure 4).

In light of these results new challenges arise. First, more data
is needed. In some cases the quantitative analysis of between-
branch selectivity and within-branch clustering has been limited
by relative paucity of primary data owing to the intense labor
involved in data collection. The simulations shown in Figure 2
provide a framework for analysis, but also caution that dis-
cerning random vs. non-random connectivity will likely require
complete reconstructions of 10–100s of neurons, 100–1000s of
dendrites, and perhaps millions of synapses. This is a tall order
for microscale connectomics, though one within reason. For
example, a separate prediction of the two-stage integration model
was successfully addressed via serial section EM (Katz et al., 2009).
One advantage of the emerging high-throughput connectomics
methods over standard confocal or two-photon imaging is the
high reliability in identifying all synapses within the circuit.
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This trade-off between throughput capacity and reliability is a
factor to weigh in experimental design. Very high-throughput
EM imaging is possible (Hayworth, 2012) though not needed for
this particular question, and is for now limited by the annota-
tion bottleneck. An out-of-box strategy to sequence the connec-
tome could fast track brain-wide mapping of all neuron-neuron
connections (Zador et al., 2012), applicable to many impor-
tant questions though perhaps not those of dendritic address-
ing.

Another challenge is to link structure and function, far
more difficult task for the brain than other organs (Lichtman
and Denk, 2011). For example, even a static synaptic net-
work encodes multiple functional circuits due to state changes
mediated by neuromodulators operating on a paracrine scale
(Bargmann and Marder, 2013). Yet the need to integrate struc-
tural and functional connectomics data is also a ripe oppor-
tunity. Prospective recordings of neuronal activity and durable
tagging of functionally defined circuit elements, including pro-
jection axons, will greatly enhance understanding of the com-
putations performed by connection motifs found in the wiring
diagram. New tools for precisely manipulating the activity of
circuit elements in vivo should provide rigorous tests of these
functional motifs. Indeed, the acid test of input clustering as
originally proposed has been infeasible for lack of such tools.
Thus there is clear need for multiple technologies brought to
bear on the same set of problems, for creative digital syn-
thesis of those layers of data, and ultimately, for large-scale
simulation.

Another challenge will be to invest resources in a diverse
collection of neural circuits across brain regions and species.
Genetically accessible models such as the worm, fly and mouse
can be approached with the broadest range of tools. In addition,
systems neuroscience has amassed very good understanding of
computations in a number of other systems that are nonetheless
fully approachable with many of the new methods. If the goal is
to link structure and function it makes sense to put effort into
brain circuits whose computations are both sophisticated and
known. For example, hypotheses for connectome-based learn-
ing mechanisms have been proposed for the songbird (Seung,
2009) and barn owl (DeBello and Knudsen, 2001), two widely
used behaviorally relevant models for information processing and
plasticity. Success with these circuits could cross-pollinate with
parallel efforts in mammalian cortex.

The payoff is the potential to uncover common mechanisms
of learning in healthy brain circuits. Such knowledge will likely be
essential to understand and treat dysfunctions arising from dis-
ease or trauma. Indeed, many neurodevelopmental or degenera-
tive syndromes including autism and schizophrenia are suspected
to result from pathologies occurring at the level of microscale
wiring. Yet our knowledge of this level of brain structure is
primitive.

Finally, large-scale efforts are underway to promote advances
in neuromorphic computing, including the DARPA SyNAPSE
program, the Human Brain Project, the Blue Brain Project and
Spaun (Eliasmith and Trujillo, 2014). Integrated structural and
functional connectome data would appear to hold transformative
potential for these endeavors.

ACKNOWLEDGMENTS
This work was supported by a grant from the National Institute on
Deafness and Other Communication Disorders, National Insti-
tutes of Health R01 DC05640 to William M. DeBello.

REFERENCES
Alivisatos, A. P., Andrews, A. M., Boyden, E. S., Chun, M., Church, G. M.,

Deisseroth, K., et al. (2013b). Nanotools for neuroscience and brain activity
mapping. ACS Nano 7, 1850–1866. doi: 10.1021/nn4012847

Alivisatos, A. P., Chun, M., Church, G. M., Deisseroth, K., Donoghue, J. P.,
Greenspan, R. J., et al. (2013a). Neuroscience. The brain activity map. Science
339, 1284–1285. doi: 10.1126/science.1236939

Alivisatos, A. P., Chun, M., Church, G. M., Greenspan, R. J., Roukes, M. L., and
Yuste, R. (2012). The brain activity map project and the challenge of functional
connectomics. Neuron 74, 970–974. doi: 10.1016/j.neuron.2012.06.006

Amirikian, B. (2005). A phenomenological theory of spatially structured local
synaptic connectivity. PLoS Comput. Biol. 1:e11. doi: 10.1371/journal.pcbi.
0010011

Anderson, J. R., Jones, B. W., Watt, C. B., Shaw, M. V., Yang, J. H., Demill, D., et al.
(2011). Exploring the retinal connectome. Mol. Vis. 17, 355–379.

Anderson, J. R., Jones, B. W., Yang, J. H., Shaw, M. V., Watt, C. B., Koshevoy, P.,
et al. (2009). A computational framework for ultrastructural mapping of neural
circuitry. PLoS Biol. 7:e1000074. doi: 10.1371/journal.pbio.1000074

Anderson, J. R., Mohammed, S., Grimm, B. C., Jones, B. W., Koshevoy, P., Tasdizen,
T., et al. (2010). The viking viewer for connectomics: scalable multi-user
annotation and summarization of large volume data sets. J. Microsc. 241, 13–
28. doi: 10.1111/j.1365-2818.2010.03402.x

Araya, R., Eisenthal, K. B., and Yuste, R. (2006). Dendritic spines linearize the
summation of excitatory potentials. Proc. Natl. Acad. Sci. U S A 103, 18799–
18804. doi: 10.1073/pnas.0609225103

Ascoli, G. A. (2012). Potential connectomics complements the endeavour of ‘no
synapse left behind’ in the cortex. J. Physiol. 590, 651–652. doi: 10.1113/jphysiol.
2011.225664

Bargmann, C. I., and Marder, E. (2013). From the connectome to brain function.
Nat. Methods 10, 483–490. doi: 10.1038/nmeth.2451

Behabadi, B. F., Polsky, A., Jadi, M., Schiller, J., and Mel, B. W. (2012). Location-
dependent excitatory synaptic interactions in pyramidal neuron dendrites. PLoS
Comput. Biol. 8:e1002599. doi: 10.1371/journal.pcbi.1002599

Behrens, T. E., and Sporns, O. (2012). Human connectomics. Curr. Opin. Neurobiol.
22, 144–153. doi: 10.1016/j.conb.2011.08.005

Beyer, J., Al-Awami, A., Kasthuri, N., Lichtman, J. W., Pfister, H., and Hadwiger, M.
(2013). ConnectomeExplorer: query-guided visual analysis of large volumetric
neuroscience data. IEEE Trans. Vis. Comput. Graph. 19, 2868–2877. doi: 10.
1109/TVCG.2013.142

Binzegger, T., Douglas, R. J., and Martin, K. A. (2004). A quantitative map of
the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453. doi: 10.
1523/jneurosci.1400-04.2004

Bock, D. D., Lee, W. C., Kerlin, A. M., Andermann, M. L., Hood, G., Wetzel, A. W.,
et al. (2011). Network anatomy and in vivo physiology of visual cortical neurons.
Nature 471, 177–182. doi: 10.1038/nature09802

Bohland, J. W., Wu, C., Barbas, H., Bokil, H., Bota, M., Breiter, H. C., et al.
(2009). A proposal for a coordinated effort for the determination of brainwide
neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS
Comput. Biol. 5:e1000334. doi: 10.1371/journal.pcbi.1000334

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005).
Millisecond-timescale, genetically targeted optical control of neural activity.
Nat. Neurosci. 8, 1263–1268. doi: 10.1038/nn1525

Braitenberg, V., and Schuz, A. (1991). “Peters’ rule and white’s exceptions,” in
Anatomy of the Cortex (New York, NY: Springer-Verlag Publishing), 109–112.

Branco, T., and Häusser, M. (2010). The single dendritic branch as a fundamental
functional unit in the nervous system. Curr. Opin. Neurobiol. 20, 494–502.
doi: 10.1016/j.conb.2010.07.009

Briggman, K. L., and Bock, D. D. (2012). Volume electron microscopy for neuronal
circuit reconstruction. Curr. Opin. Neurobiol. 22, 154–161. doi: 10.1016/j.conb.
2011.10.022

Briggman, K. L., and Denk, W. (2006). Towards neural circuit reconstruction with
volume electron microscopy techniques. Curr. Opin. Neurobiol. 16, 562–570.
doi: 10.1016/j.conb.2006.08.010

Frontiers in Neural Circuits www.frontiersin.org September 2014 | Volume 8 | Article 112 | 9

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


DeBello et al. Input clustering and the connectome

Briggman, K. L., Helmstaedter, M., and Denk, W. (2011). Wiring specificity in
the direction-selectivity circuit of the retina. Nature 471, 183–188. doi: 10.
1038/nature09818

Callaway, E. M. (2008). Transneuronal circuit tracing with neurotropic
viruses. Curr. Opin. Neurobiol. 18, 617–623. doi: 10.1016/j.conb.2009.
03.007

Carter, A. G., Soler-Llavina, G. J., and Sabatini, B. L. (2007). Timing and location of
synaptic inputs determine modes of subthreshold integration in striatal medium
spiny neurons. J. Neurosci. 27, 8967–8977. doi: 10.1523/jneurosci.2798-07.
2007

Cash, S., and Yuste, R. (1999). Linear summation of excitatory inputs by CA1
pyramidal neurons. Neuron 22, 383–394. doi: 10.1016/s0896-6273(00)81098-3

Chen, X., Leischner, U., Rochefort, N. L., Nelken, I., and Konnerth, A. (2011).
Functional mapping of single spines in cortical neurons in vivo. Nature 475,
501–505. doi: 10.1038/nature10193

Chen, J. L., Villa, K. L., Cha, J. W., So, P. T., Kubota, Y., and Nedivi, E. (2012).
Clustered dynamics of inhibitory synapses and dendritic spines in the adult
neocortex. Neuron 74, 361–373. doi: 10.1016/j.neuron.2012.02.030

Chklovskii, D. B., Mel, B. W., and Svoboda, K. (2004). Cortical rewiring and
information storage. Nature 431, 782–788. doi: 10.1038/nature03012

Chklovskii, D. B., Vitaladevuni, S., and Scheffer, L. K. (2010). Semi-automated
reconstruction of neural circuits using electron microscopy. Curr. Opin. Neu-
robiol. 20, 667–675. doi: 10.1016/j.conb.2010.08.002

Chung, K., and Deisseroth, K. (2013). CLARITY for mapping the nervous system.
Nat. Methods 10, 508–513. doi: 10.1038/nmeth.2481

Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S., Andalman, A. S., Davidson,
T. J., et al. (2013). Structural and molecular interrogation of intact biological
systems. Nature 497, 332–337. doi: 10.1038/nature12107

Crick, F., and Jones, E. (1993). Backwardness of human neuroanatomy. Nature 361,
109–110. doi: 10.1038/361109a0

da Costa, N. M., and Martin, K. (2011). How thalamus connects to spiny
stellate cells in the cat’s visual cortex. J. Neurosci. 31, 2925–2937. doi: 10.
1523/JNEUROSCI.5961-10.2011

da Costa, N. M., and Martin, K. A. (2013). Sparse reconstruction of brain circuits:
or, how to survive without a microscopic connectome. Neuroimage 80, 27–36.
doi: 10.1016/j.neuroimage.2013.04.054

DeBello, W. M. (2008). Micro-rewiring as a substrate for learning. Trends Neurosci.
31, 577–584. doi: 10.1016/j.tins.2008.08.006

DeBello, W. M., and Knudsen, E. I. (2001). “Adaptive plasticity of the auditory space
map,” in Toward a Theory of Neuroplasticity, eds C. A. Shaw and J. C. McEachern
(Philadelphia, PA: Psychology Press), 13–30.

Deisseroth, K. (2011). Optogenetics. Nat. Methods 8, 26–29. doi: 10.1038/nmeth.
f.324

Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron
microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol.
2:e329. doi: 10.1371/journal.pbio.0020329

DeRobertis, E. D. P., and Bennett, H. S. (1955). Some features of the submicroscopic
morphology of synapses in frog and earthworm. J. Cell Biol. 1, 47–58. doi: 10.
1083/jcb.1.1.47

Druckmann, S., Feng, L., Lee, B., Yook, C., Zhao, T., Magee, J. C., et al. (2014).
Structured synaptic connectivity between hippocampal regions. Neuron 81,
629–640. doi: 10.1016/j.neuron.2013.11.026

Eliasmith, C., and Trujillo, O. (2014). The use and abuse of large-scale brain models.
Curr. Opin. Neurobiol. 25, 1–6. doi: 10.1016/j.conb.2013.09.009

Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K.,
et al. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) defines cell
contacts and synapses in living nervous systems. Neuron 57, 353–363. doi: 10.
1016/j.neuron.2007.11.030

Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. J. Microsc.
218, 52–61. doi: 10.1111/j.1365-2818.2005.01466.x

Fu, M., Yu, X., Lu, J., and Zuo, Y. (2012). Repetitive motor learning induces
coordinated formation of clustered dendritic spines in vivo. Nature 483, 92–95.
doi: 10.1038/nature10844.

Gasparini, S., and Magee, J. C. (2006). State-dependent dendritic computation
in hippocampal CA1 pyramidal neurons. J. Neurosci. 26, 2088–2100. doi: 10.
1523/jneurosci.4428-05.2006

Gómez González, J. F., Mel, B. W., and Poirazi, P. (2011). Distinguishing linear vs.
Non-Linear integration in CA1 radial oblique dendrites: it’s about time. Front.
Comput. Neurosci. 5:44. doi: 10.3389/fncom.2011.00044

Govindarajan, A., Kelleher, R. J., and Tonegawa, S. (2006). A clustered plasticity
model of long-term memory engrams. Nat. Rev. Neurosci. 7, 575–583. doi: 10.
1038/nrn1937

Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L., and Magee, J. C. (2012).
Synaptic amplification by dendritic spines enhances input cooperativity. Nature
491, 599–602. doi: 10.1038/nature11554

Harris, K. M., and Weinberg, R. J. (2012). Ultrastructure of synapses in the
mammalian brain. Cold Spring Harb. Perspect. Biol. 4:a005587. doi: 10.
1101/cshperspect.a005587

Harvey, C. D., and Svoboda, K. (2007). Locally dynamic synaptic learning
rules in pyramidal neuron dendrites. Nature 450, 1195–1200. doi: 10.1038/
nature06416

Harvey, C. D., Yasuda, R., Zhong, H., and Svoboda, K. (2008). The spread of Ras
activity triggered by activation of a single dendritic spine. Science 321, 136–140.
doi: 10.1126/science.1159675

Hayworth, K. J. (2012). Electron imaging technology for whole brain neural
circuit mapping. Int. J. Mach. Conscious. 04, 87–108. doi: 10.1142/s1793843
012400057

Hell, S. W. (2003). Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355.
doi: 10.1038/nbt895

Hell, S. W. (2007). Far-field optical nanoscopy. Science 316, 1153–1158. doi: 10.
1126/science.1137395

Helmstaedter, M., Briggman, K. L., and Denk, W. (2008). 3D structural imaging
of the brain with photons and electrons. Curr. Opin. Neurobiol. 18, 633–641.
doi: 10.1016/j.conb.2009.03.005

Helmstaedter, M., Briggman, K. L., and Denk, W. (2011). High-accuracy neurite
reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14, 1081–
1088. doi: 10.1038/nn.2868

Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S.,
and Denk, W. (2013). Connectomic reconstruction of the inner plexi-
form layer in the mouse retina. Nature 500, 168–174. doi: 10.1038/nature
12346

Hu, T., Nunez-Iglesias, J., Vitaladevuni, S., Scheffer, L., Xu, S., Bolorizadeh, M.,
et al. (2013). Electron microscopy reconstruction of brain structure using sparse
representations over learned dictionaries. IEEE Trans. Med. Imaging 32, 2179–
2188. doi: 10.1109/tmi.2013.2276018

Jain, V., Seung, H. S., and Turaga, S. C. (2010). Machines that learn to segment
images: a crucial technology for connectomics. Curr. Opin. Neurobiol. 20, 653–
666. doi: 10.1016/j.conb.2010.07.004

Jarrell, T. A., Wang, Y., Bloniarz, A. E., Brittin, C. A., Xu, M., Thomson, J. N., et al.
(2012). The connectome of a decision-making neural network. Science 337, 437–
444. doi: 10.1126/science.1221762

Jeong, W. K., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez-Reina, A., et al.
(2010a). Ssecrett and NeuroTrace: interactive visualization and analysis tools for
large-scale neuroscience data sets. IEEE Comput. Graph. Appl. 30, 58–70. doi: 10.
1109/MCG.2010.56

Jeong, W. K., Schneider, J., Turney, S. G., Faulkner-Jones, B. E., Meyer, D.,
Westermann, R., et al. (2010b). Interactive histology of large-scale biomed-
ical image stacks. IEEE Trans. Vis. Comput. Graph. 16, 1386–1395. doi: 10.
1109/TVCG.2010.168

Jia, H., Rochefort, N. L., Chen, X., and Konnerth, A. (2010). Dendritic organization
of sensory input to cortical neurons in vivo. Nature 464, 1307–1312. doi: 10.
1038/nature08947

Jurrus, E., Paiva, A. R., Watanabe, S., Anderson, J. R., Jones, B. W., Whitaker,
R. T., et al. (2010). Detection of neuron membranes in electron microscopy
images using a serial neural network architecture. Med. Image Anal. 14, 770–
783. doi: 10.1016/j.media.2010.06.002

Kalisman, N., Silberberg, G., and Markram, H. (2005). The neocortical microcircuit
as a tabula rasa. Proc. Natl. Acad. Sci. U S A 102, 880–885. doi: 10.1073/pnas.
0407088102

Kasthuri, N., and Lichtman, J. W. (2007). The rise of the ‘projectome’. Nat. Methods
4, 307–308. doi: 10.1038/nmeth0407-307

Katz, Y., Menon, V., Nicholson, D. A., Geinisman, Y., Kath, W. L., and Spruston, N.
(2009). Synapse distribution suggests a two-stage model of dendritic integration
in CA1 pyramidal neurons. Neuron 63, 171–177. doi: 10.1016/j.neuron.2009.
06.023

Kim, J., Zhao, T., Petrali, R. S., Yu, Y., Peng, H., Myers, E., et al. (2011). mGRASP
enables mapping mammalian synaptic connectivity with light microscopy. Nat.
Methods 9, 96–102. doi: 10.1038/nmeth.1784

Frontiers in Neural Circuits www.frontiersin.org September 2014 | Volume 8 | Article 112 | 10

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


DeBello et al. Input clustering and the connectome

Kleindienst, T., Winnubst, J., Roth-Alpermann, C., Bonhoeffer, T., and Lohmann,
C. (2011). Activity-dependent clustering of functional synaptic inputs on devel-
oping hippocampal dendrites. Neuron 72, 1012–1024. doi: 10.1016/j.neuron.
2011.10.015

Kleinfeld, D., Bharioke, A., Blinder, P., Bock, D. D., Briggman, K. L., Chklovskii,
D. B., et al. (2011). Large-scale automated histology in the pursuit of connec-
tomes. J. Neurosci. 31, 16125–16138. doi: 10.1523/JNEUROSCI.4077-11.2011

Knott, G., Marchman, H., Wall, D., and Lich, B. (2008). Serial section scanning
electron microscopy of adult brain tissue using focused ion beam milling. J.
Neurosci. 28, 2959–2964. doi: 10.1523/JNEUROSCI.3189-07.2008

Knott, G., Rosset, S., and Cantoni, M. (2011). Focussed ion beam milling and
scanning electron microscopy of brain tissue. J. Vis. Exp. e2588. doi: 10.3791/
2588

Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of
the barn owl. Nature 417, 322–328. doi: 10.1038/417322a

Kreshuk, A., Straehle, C. N., Sommer, C., Koethe, U., Cantoni, M., Knott, G.,
et al. (2011). Automated detection and segmentation of synaptic contacts in
nearly isotropic serial electron microscopy images. PLoS One 6:e24899. doi: 10.
1371/journal.pone.0024899

Lang, S., Dercksen, V. J., Sakmann, B., and Oberlaender, M. (2011). Simulation of
signal flow in 3D reconstructions of an anatomically realistic neural network
in rat vibrissal cortex. Neural Netw. 24, 998–1011. doi: 10.1016/j.neunet.2011.
06.013

Larkum, M. E., and Nevian, T. (2008). Synaptic clustering by dendritic signalling
mechanisms. Curr. Opin. Neurobiol. 18, 321–331. doi: 10.1016/j.conb.2008.
08.013

Larkum, M. E., Nevian, T., Sandler, M., Polsky, A., and Schiller, J. (2009). Synaptic
integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying
principle. Science 325, 756–760. doi: 10.1126/science.1171958

Legenstein, R., and Maass, W. (2011). Branch-specific plasticity enables self-
organization of nonlinear computation in single neurons. J. Neurosci. 31, 10787–
10802. doi: 10.1523/JNEUROSCI.5684-10.2011

Lehrer, J. (2009). Neuroscience: making connections. Nature 457, 524–527. doi: 10.
1038/457524a

Lichtman, J. W., and Denk, W. (2011). The big and the small: challenges of imaging
the brain’s circuits. Science 334, 618–623. doi: 10.1126/science.1209168

Lichtman, J. W., and Sanes, J. R. (2008). Ome sweet ome: what can the genome tell
us about the connectome? Curr. Opin. Neurobiol. 18, 346–353. doi: 10.1016/j.
conb.2008.08.010

Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., et al. (2007).
Transgenic strategies for combinatorial expression of fluorescent proteins in the
nervous system. Nature 450, 56–62. doi: 10.1038/nature06293

Losonczy, A., Makara, J. K., and Magee, J. C. (2008). Compartmentalized dendritic
plasticity and input feature storage in neurons. Nature 452, 436–441. doi: 10.
1038/nature06725

Lu, J., Fiala, J. C., and Lichtman, J. W. (2009a). Semi-automated reconstruction of
neural processes from large numbers of fluorescence images. PLoS One 4:e5655.
doi: 10.1371/journal.pone.0005655

Lu, J., Tapia, J. C., White, O. L., and Lichtman, J. W. (2009b). The interscutularis
muscle connectome. PLoS Biol. 7:e32. doi: 10.1371/journal.pbio.1000032

Magee, J. C. (2011). Observations on clustered synaptic plasticity and highly
structured input patterns. Neuron 72, 887–888. doi: 10.1016/j.neuron.2011.
12.009

Maisak, M. S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., et al. (2013).
A directional tuning map of drosophila elementary motion detectors. Nature
500, 212–216. doi: 10.1038/nature12320

Major, G., Polsky, A., Denk, W., Schiller, J., and Tank, D. W. (2008). Spatiotem-
porally graded NMDA spike/plateau potentials in basal dendrites of neocorti-
cal pyramidal neurons. J. Neurophysiol. 99, 2584–2601. doi: 10.1152/jn.00011.
2008

Makara, J. K., Losonczy, A., Wen, Q., and Magee, J. C. (2009). Experience-
dependent compartmentalized dendritic plasticity in rat hippocampal CA1
pyramidal neurons. Nat. Neurosci. 12, 1485–1487. doi: 10.1038/nn.2428

Makino, H., and Malinow, R. (2011). Compartmentalized versus global synaptic
plasticity on dendrites controlled by experience. Neuron 72, 1001–1011. doi: 10.
1016/j.neuron.2011.09.036

Marc, R. E., Jones, B. W., Lauritzen, J. S., Watt, C. B., and Anderson, J. R. (2012).
Building retinal connectomes. Curr. Opin. Neurobiol. 22, 568–574. doi: 10.
1016/j.conb.2012.03.011

Marc, R. E., Jones, B. W., Watt, C. B., Anderson, J. R., Sigulinsky, C., and Lauritzen,
S. (2013). Retinal connectomics: towards complete, accurate networks. Prog.
Retin. Eye Res. 37, 141–162. doi: 10.1016/j.preteyeres.2013.08.002

McBride, T. J., Rodriguez-Contreras, A., Trinh, A., Bailey, R., and Debello, W. M.
(2008). Learning drives differential clustering of axodendritic contacts in the
barn owl auditory system. J. Neurosci. 28, 6960–6973. doi: 10.1523/JNEUROSCI.
1352-08.2008

Mel, B. W. (1992). “The clusteron: toward a simple abstraction for a complex
neuron,” in Advances in Neural Information Processing Systems, eds J. Moody,
S. Hanson and R. Lippmann (San Mateo, CA: Morgan Kaufmann), 35–42.

Mel, B. W. (1993). Synaptic integration in an excitable dendritic tree. J. Neurophys-
iol. 70, 1086–1101.

Merchán-Pérez, A., Rodriguez, J. R., Alonso-Nanclares, L., Schertel, A., and
Defelipe, J. (2009). Counting synapses using FIB/SEM microscopy: a true
revolution for ultrastructural volume reconstruction. Front. Neuroanat. 3:18.
doi: 10.3389/neuro.05.018.2009

Micheva, K. D., Busse, B., Weiler, N. C., O’Rourke, N. A., and Smith, S. J.
(2010). Single synapse analysis of a diverse synapse population: proteomic imag-
ing methods and markers. Neuron 68, 639–653. doi: 10.1016/j.neuron.2010.
09.024.

Micheva, K. D., and Smith, S. J. (2007). Array tomography: a new tool for imaging
the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–
36. doi: 10.1016/j.neuron.2007.08.007

Mikula, S., Binding, J., and Denk, W. (2012). Staining and embedding the whole
mouse brain for electron microscopy. Nat. Methods 9, 1198–1201. doi: 10.
1038/nmeth.2213

Mishchenko, Y. (2008). Automation of 3D reconstruction of neural tissue from
large volume of conventional serial section transmission electron micro-
graphs. J. Neurosci. Methods 176, 276–289. doi: 10.1016/j.jneumeth.2008.
09.006

Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K. M., and Chklovskii,
D. B. (2010). Ultrastructural analysis of hippocampal neuropil from the
connectomics perspective. Neuron 67, 1009–1020. doi: 10.1016/j.neuron.2010.
08.014

Morgan, J. L., and Lichtman, J. W. (2013). Why not connectomics? Nat. Methods
10, 494–500. doi: 10.1038/nmeth.2480

Müller, C., Beck, H., Coulter, D., and Remy, S. (2012). Inhibitory control of linear
and supralinear dendritic excitation in CA1 pyramidal neurons. Neuron 75, 851–
864. doi: 10.1016/j.neuron.2012.06.025

Oberlaender, M., de Kock, C. P., Bruno, R. M., Ramirez, A., Meyer, H. S.,
Dercksen, V. J., et al. (2012). Cell type-specific three-dimensional structure of
thalamocortical circuits in a column of rat vibrissal cortex. Cereb. Cortex 22,
2375–2391. doi: 10.1093/cercor/bhr317

Oja, E. (1982). A simplified neuron model as a principal component analyzer. J.
Math. Biol. 15, 267–273. doi: 10.1007/bf00275687

Osten, P., and Margrie, T. W. (2013). Mapping brain circuitry with a light micro-
scope. Nat. Methods 10, 515–523. doi: 10.1038/nmeth.2477

Palay, S. L., and Palade, G. E. (1955). The fine structure of neurons. J. Biophys.
Biochem. Cytol. 1, 69–88. doi: 10.1083/jcb.1.1.69

Peters, A., and Feldman, M. L. (1976). The projection of the lateral geniculate
nucleus to area 17 of the rat cerebral cortex. I. General description. J. Neurocytol.
5, 63–84. doi: 10.1007/BF01176183

Petreanu, L., Mao, T., Sternson, S. M., and Svoboda, K. (2009). The subcellular
organization of neocortical excitatory connections. Nature 457, 1142–1145.
doi: 10.1038/nature07709

Poirazi, P., Brannon, T., and Mel, B. W. (2003a). Pyramidal neuron as two-layer
neural network. Neuron 37, 989–999. doi: 10.1016/s0896-6273(03)00149-1

Poirazi, P., Brannon, T., and Mel, B. W. (2003b). Arithmetic of subthreshold
synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987.
doi: 10.1016/s0896-6273(03)00148-x

Poirazi, P., and Mel, B. W. (2001). Impact of active dendrites and structural
plasticity on the memory capacity of neural tissue. Neuron 29, 779–796. doi: 10.
1016/s0896-6273(01)00252-5

Polsky, A., Mel, B. W., and Schiller, J. (2004). Computational subunits in
thin dendrites of pyramidal cells. Nat. Neurosci. 7, 621–627. doi: 10.1038/
nn1253

Polsky, A., Mel, B., and Schiller, J. (2009). Encoding and decoding bursts by NMDA
spikes in basal dendrites of layer 5 pyramidal neurons. J. Neurosci. 29, 11891–
11903. doi: 10.1523/jneurosci.5250-08.2009

Frontiers in Neural Circuits www.frontiersin.org September 2014 | Volume 8 | Article 112 | 11

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


DeBello et al. Input clustering and the connectome

Rah, J.-C., Bas, E., Colonell, J., Mishchenko, Y., Karsh, B., Fetter, R. D., et al.
(2013). Thalamocortical input onto layer 5 pyramidal neurons measured using
quantitative large-scale array tomography. Front. Neural Circuits 7:177. doi: 10.
3389/fncir.2013.00177

Ramaswamy, S., Hill, S. L., King, J. G., Schürmann, F., Wang, Y., and Markram,
H. (2012). Intrinsic morphological diversity of thick-tufted layer 5 pyramidal
neurons ensures robust and invariant properties of in silico synaptic connec-
tions. J. Physiol. 590, 737–752. doi: 10.1113/jphysiol.2011.219576

Ramón y Cajal, S. (1954). Neuron Theory or Reticular Theory?: Objective Evidence
of the Anatomical Unity of Nerve Cells. Madrid: Consejo Superior de Investiga-
ciones Científicas, Instituto Ramón y Cajal.

Roberts, M., Jeong, W. K., Vázquez-Reina, A., Unger, M., Bischof, H., Lichtman,
J., et al. (2011). Neural process reconstruction from sparse user scribbles. Med.
Image Comput. Comput. Assist. Interv. 14, 621–628. doi: 10.1007/978-3-642-
23623-5_78

Rodriguez-Contreras, A., Liu, X. B., and DeBello, W. M. (2005). Axondendritic
contacts onto calcium/calmodulin-dependent protein kinase type II-expressing
neurons in the barn owl auditory space map. J. Neurosci. 25, 5611–5622. doi: 10.
1523/jneurosci.3972-04.2005

Rust, M. J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging by
stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–
795. doi: 10.1038/nmeth929

Seung, H. S. (2009). Reading the book of memory: sparse sampling versus dense
mapping of connectomes. Neuron 62, 17–29. doi: 10.1016/j.neuron.2009.03.020

Smith, S. J. (2007). Circuit reconstruction tools today. Curr. Opin. Neurobiol. 17,
601–608. doi: 10.1016/j.conb.2007.11.004

Smith, A. D., and Bolam, J. P. (1990). The neural network of the basal ganglia as
revealed by the study of synaptic connections of identified neurones. Trends
Neurosci. 13, 259–265. doi: 10.1016/0166-2236(90)90106-k

Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly
nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol.
3:e68. doi: 10.1371/journal.pbio.0030068

Sporns, O. (2013). The human connectome: origins and challenges. Neuroimage 80,
53–61. doi: 10.1016/j.neuroimage.2013.03.023

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: a structural
description of the human brain. PLoS Comput. Biol. 1:e42. doi: 10.1371/journal.
pcbi.0010042

Stepanyants, A., and Chklovskii, D. B. (2005). Neurogeometry and potential
synaptic connectivity. Trends Neurosci. 28, 387–394. doi: 10.1016/j.tins.2005.
05.006

Szentágothai, J. (1978). The Ferrier Lecture, 1977. The neuron network of the
cerebral cortex: a functional interpretation. Proc. R. Soc. Lond. B Biol. Sci. 201,
219–248. doi: 10.1098/rspb.1978.0043

Takahashi, N., Kitamura, K., Matsuo, N., Mayford, M., Kano, M., Matsuki, N.,
et al. (2012). Locally synchronized synaptic inputs. Science 335, 353–356. doi: 10.
1126/science.1210362

Takemura, S. Y., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P. K., et al.
(2013). A visual motion detection circuit suggested by drosophila connectomics.
Nature 500, 175–181. doi: 10.1038/nature12450

Tapia, J. C., Wylie, J. D., Kasthuri, N., Hayworth, K. J., Schalek, R., Berger, D. R.,
et al. (2012). Pervasive synaptic branch removal in the mammalian neuro-

muscular system at birth. Neuron 74, 816–829. doi: 10.1016/j.neuron.2012.
04.017

Tasdizen, T., Koshevoy, P., Grimm, B. C., Anderson, J. R., Jones, B. W., Watt, C. B.,
et al. (2010). Automatic mosaicking and volume assembly for high-throughput
serial-section transmission electron microscopy. J. Neurosci. Methods 193,
132–144. doi: 10.1016/j.jneumeth.2010.08.001

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K.,
et al. (2010). Convolutional networks can learn to generate affinity graphs
for image segmentation. Neural Comput. 22, 511–538. doi: 10.1162/neco.2009.
10-08-881

Varga, Z., Jia, H., Sakmann, B., and Konnerth, A. (2011). Dendritic coding of
multiple sensory inputs in single cortical neurons in vivo. Proc. Natl. Acad. Sci.
U S A 108, 15420–15425. doi: 10.1073/pnas.1112355108

White, E. L. (2007). Reflections on the specificity of synaptic connections. Brain
Res. Rev. 55, 422–429. doi: 10.1016/j.brainresrev.2006.12.004

White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986). The struc-
ture of the nervous system of the nematode caenorhabditis elegans. Phi-
los. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340. doi: 10.1098/rstb.1986.
0056

Winnubust, J., and Lohmann, C. (2012). Synaptic clustering during development
and learning: the why, when and how. Front. Mol. Neurosci. 5:70. doi: 10.
3389/fnmol.2012.00070

Xu, M., Jarrell, T. A., Wang, Y., Cook, S. J., Hall, D. H., and Emmons, S. W. (2013).
Computer assisted assembly of connectomes from electron micrographs: appli-
cation to Caenorhabditis elegans. PLoS One 8:e54050. doi: 10.1371/journal.
pone.0054050

Yoshimura, Y., Dantzker, J. L., and Callaway, E. M. (2005). Excitatory cortical
neurons form fine-scale functional networks. Nature 433, 868–873. doi: 10.
1038/nature03252

Yuste, R. (2011). Dendritic spines and distributed circuits. Neuron 71, 772–781.
doi: 10.1016/j.neuron.2011.07.024

Zador, A. M., Dubnau, J., Oyibo, H. K., Zhan, H., Cao, G., and Peikon, I. D. (2012).
Sequencing the connectome. PLoS Biol. 10:e1001411. doi: 10.1371/journal.pbio.
1001411

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 06 December 2013; accepted: 28 August 2014; published online: 12 September
2014.
Citation: DeBello WM, McBride TJ, Nichols GS, Pannoni KE, Sanculi D and Totten
DJ (2014) Input clustering and the microscale structure of local circuits. Front. Neural
Circuits 8:112. doi: 10.3389/fncir.2014.00112
This article was submitted to the journal Frontiers in Neural Circuits.
Copyright © 2014 DeBello, McBride, Nichols, Pannoni, Sanculi and Totten. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits www.frontiersin.org September 2014 | Volume 8 | Article 112 | 12

http://dx.doi.org/10.3389/fncir.2014.00112
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive

	Input clustering and the microscale structure of local circuits
	The era of structural and functional connectomics
	Local connectivity in neural circuits: random or structured?
	Input clustering hypothesis
	Empirical test of input clustering
	Evidence in support
	Evidence not in support

	Conclusions
	Acknowledgments
	References


