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Abstract: NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were
synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized
NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add
2.5 wt% gold. The Al2O3-CeO2-TiO2 support was made by a sol–gel method with two different
compositions, and then two metals were simultaneously loaded (5 wt% nickel and 2.5 wt% tungsten)
by two different methods, incipient wet impregnation and ultrasound impregnation method. In
this paper, we study the effect of Au addition using the recharge method on NiW nanomaterials
supported on mixed oxides on the physicochemical properties of synthesized nanomaterials. The
prepared nanomaterials were characterized by scanning electron microscopy, BET specific surface
area, X-ray diffraction, diffuse reflectance spectroscopy in the UV–visible range and temperature-
programmed desorption of hydrogen. The experimental results showed that after loading of gold,
the dispersion was higher (46% and 50%) with the trimetallic nanomaterials synthesized by incipient
wet impregnation plus recharge method than with impregnation plus ultrasound recharge method,
indicating a greater number of active trimetallic (NiWAu) sites in these materials. Small-sized
Au from NiWAu/ACTU1 trimetallic nanostructures was enlarged for NiWAu/ACT1. The strong
metal NPs–support interaction shown for the formation of NiAl2O4, Ni-W-O and Ni-Au-O species
simultaneously present in the surface of trimetallic nanomaterial probably plays an important role in
the degree of dispersion of the gold active phase.

Keywords: gold addition; recharge method; NiW/Al2-O3-CeO2-TiO2 nanomaterials

1. Introduction

Supported bimetallic nanoparticles (NPs) alloys or even recently trimetallic NPs have
been a strategy commonly used in nanomaterials reports [1–8]. It is well known that the
nanostructured nanomaterials must be designed with high stability against leaching and
agglomeration or sintering.

The addition of second metal in the bimetallic system significantly enhances the
stability and the activity of the designed catalysts due to a synergistic interaction [9].
Moreover, indeed, the addition of a third metallic component improves the stability of a
second metal in a parent bimetallic system [6,10–12]. Jin et al. [10] found the enhanced
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stability of trimetallic alloy material (Ni-Fe-Cu) during dry reforming of methane (DRM)
and weakened leaching of Fe. The Fe was affected by the reaction conditions of this
application in the bimetallic system.

The preparation methods can synthesize supported NPs in a single step or in two
steps. In the case of a single step, both the precursor salt of the support and the active phase
are added in the reaction mixture; otherwise, in sequential or two-step, first the support
is synthesized, usually an oxide, and then the active phase, usually a metal, is prepared
by some other specific method, expecting all the metal to be added and adsorbed on the
support, without metal loss and with a high metal dispersion. The methods mentioned
above for the nanostructure NPs depend on many factors such as the pH value, the
calcination temperature, metal loading, nature of support and metal or metals, which have
significant consequences on the catalytic properties of the NPs. These methods determine
important properties such as homogeneous metal dispersion, high specific surface area,
adequate acidity/basicity ratio, metal–support interaction, metal–metal interaction, metal–
metal–metal interaction and generation of structural defects such as oxygen vacancies and
reducibility [13–17].

Indeed, Mendoza-Nieto et al. [18] studied NiMoW trimetallic catalysts supported on
SBA-15 and conventional γ-Al2O3 support in hydrodesulfurization (HDS), and they found
an effect of used support on the catalytic behavior of HDS. They explained this effect by the
strong metal–support (Al2O3) interaction due to the presence of a significant amount (75%)
of Mo6+ and W+6 species in tetrahedral coordination and the weak interaction with the
deposited metal species on SBA-15 due to the formation of agglomerated NiMoO4 and/or
WO3 species in the catalyst and larger proportion of octahedrally coordinated metal species.
Jahel et al. [19] demonstrated that the indium addition at higher loadings in trimetallic
Pt/Al2O3SnIn–Cl naphtha-reforming catalyst decreases the acidity of the support and
increases isomerization selectivity. Bocanegra et al. [20] synthesized InPtSn trimetallic NPs
with different Sn contents supported on MgAl2O4. They concluded that trimetallic catalysts
displayed a strong interaction between the different metals, which could be responsible
for the good performance of these systems in catalytic dehydrogenation. The total acidity
of the Pt–Ir-Ge trimetallic catalyst was slightly increased after Ge addition, as reported
by Samoila et al. [21]. Liang et al. [22] synthesized highly dispersed non-noble trimetallic
Cu-Ni-Co NPs supported on the pores of the metal–organic framework MIL-101, and they
attributed the enhancement in the catalytic performance of the hydrolysis of ammonia
borane to the large catalyst surface as well as the synergetic effect between trimetallic NPs.

Gold in small particles (<5nm) supported on oxides could be active even at ambient
temperature. The nanometric gold synthesized has shown a relationship between the
kind of support that has been used and the catalytic activity of the nanometal [23–25]. In
addition to the classic deposition–precipitation method (DP) proposed by Haruta et al. [26],
different methods have been developed to prepare highly active Au catalysts [27–36].
Normally, these preparation methods can produce small gold particles (<10 nm) that are
strongly linked to the support; most of them require total control of synthesis parameters
due to the strong influence of the preparation conditions on the final characteristics of the
material and therefore on its catalytic properties.

A three-step synthetic method was selected for the present study. First, Al2O3-CeO2-
TiO2 support was prepared by a sol–gel method with two different compositions, and then
two metals were simultaneously loaded (5% nickel and 2.5% tungsten) by two different
methods, incipient wet impregnation and ultrasound impregnation method. For the final
step, for the formation of supported Au/NiW trimetallic NPs, we used the recharge method,
also known as the redox method. The recharge method favors the deposit of the second
metal on the first prereduced metal in order to create metal–metal interactions. A group
of researchers from the University of Poitiers led by Professor Barbier [37] named it the
redox method or recharge method, in which surface reactions modify the catalyst between
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chemisorbed hydrogen over the first metal and the cation of the second metal according to
the following scheme:

nHads + Mn+ → Mads + n H+

where Hads is the adsorbed hydrogen over the metal surface, Mn+ is the cation of the
second metal in solution and Mads is the second adsorbed metal.

The preparation strategy used in this study was developed in order to generate small
trimetallic NPs and to favor strong metal–support interaction and strong metal–metal–
metal interaction. The aim of this work was to disperse gold NPs below 5 nm into the
mixed oxide Al2O3-CeO2-TiO2 prepared by sol–gel method modified with Ni and W to
study the effect that Au nanoparticles have on the physicochemical properties of these
trimetallic NPs materials due to intimate contact between three metal constituents in the
catalyst nanostructure.

2. Materials and Methods
2.1. Materials Preparation

The Al2O3-CeO2-TiO2 supports were prepared via the sol–gel method; these were
prepared varying weight percentages of aluminum, cerium and titanium oxide (90 wt%
Al2O3, 1 wt% CeO2 and 9 wt% TiO2 named ACT1 and 94 wt% Al2O3, 1 wt% CeO2
and 5 wt% TiO2 named ACT2). The metallic precursors used were aluminum tri-sec-
butoxide Al[OCH(CH3)C2H5]3 (97% Aldrich), titanium butoxide (IV) Ti[O(CH2)3CH3]4
(97% Aldrich), cerium nitrate (III) hexahydrate Ce(NO3)3 (99.999% Aldrich) and a mixture
of water and n-butanol (99.9%, Baker), in relation to alkoxide/butanol 1:8 in volume and
alkoxide/water 1:16 in volume. They were aged at 70 ◦C for 24 h and dried in a rotary
evaporator; finally, the samples were calcined at 550 ◦C for 12 h using a heating ramp of
2 ◦C/min.

The four bimetallic supported catalysts were obtained by the wet impregnation
method and the ultrasound method. The incorporation of the active metal phase on
Al2O3-CeO2-TiO2 support was conducted to obtain a nominal 5 wt% Ni and 2.5 wt% W
loading.

Deposition of Ni and W into the modified supports was carried out by the wet
impregnation method according to the following procedure: First, 5 wt% Ni and 2.5 wt%
W were loaded in 10 g of support, and 100 mL of the precursor salt of Ni(NO3)2.6H2O
(Sigma-Aldrich) and hydrated ammonium metatungstate (NH4)6H2W12O40XH2O (85%,
Aldrich Chemistry) was used to synthesize the active phases and metal promoters. They
were subjected to a calcination process at 2 ◦C/min in airflow/O2 at 400 ◦C; subsequently,
they were reduced in H2 flow at 400 ◦C for 4 h.

The ultrasound method was used to impregnate 5 wt% Ni and 2.5 wt% W in 5 g of
support in 50 mL of water under vibration in ultrasound (8890-Cole Parmer); the prepared
materials were dried in a rotary evaporator and then dried in an oven at 120 ◦C for 12 h.
Afterward, they were calcined using a heating ramp of 2 ◦C/min in airflow/O2 at 400 ◦C
for 4 h. Finally, they were reduced in H2 flow at 400 ◦C for 4 h using the same heating ramp
as for the calcination.

The recharge method was used to impregnate the supported bimetallic Ni-W NPs
with 2.5 wt% Au, applying hydrated tetrachloroauric acid as a precursor (HAuCl4.3H2O).
The amount of bimetallic NPs needed to prepare 2 g of trimetallic NPs was introduced into
the quartz reactor. First, the NiW/Al2O3-CeO2-TiO2 bimetallic catalyst was reduced with
hydrogen at a temperature of 400 ◦C, and then 5 mL of the solution HCl was added at 0.2 M.
Then, a gold solution HAuCl4.3H2O was introduced at 2.5 wt%. Finally, the nanocatalysts
were activated by reduction of hydrogen at a temperature of 400 ◦C for 4 h using the same
heating ramp of the above-mentioned heat treatments. Figure 1 shows the system used to
prepare the materials by the recharge method. The Table 1 shows the materials prepared,
their compositions, their metal loads, the preparation method and the code assigned.
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Figure 1. Synthesis system for the preparation of NiWAu/Al2O3-CeO2-TiO2 nanomaterials by
recharge method.

Table 1. Nanomaterials synthesized by the wet impregnation, ultrasound and recharge method.

Method
Weight Percentage

Material CodeNickel
(Ni)

Tungsten
(W)

Wet
impregnation 5% 2.5%

NiW/Al2O3-CeO2 –TiO2
90% 1% 9% NiW/ACT1

NiW/Al2O3-CeO2 –TiO2
94% 1% 5% NiW/ACT2

Ultrasound
impregnation 5% 2.5%

NiW/Al2O3-CeO2 –TiO2
90% 1% 9% NiW/ACTU1

NiW/Al2O3-CeO2 –TiO2
94% 1% 5% NiW/ACTU2

Recharge Gold
(Au) 2.5%

NiWAu/ACT1 NiWAu/ACTU1
NiWAu/ACT2 NiWAu/ACTU2

2.2. Materials Characterization
2.2.1. X-ray Diffraction

The equipment used was a Bruker AXS model D8 Advance diffractometer (Borken,
North Rhine-Westphalia, Germany). A Cu anode was used; the radiation corresponded to
the transition CuKα with a wavelength of 1.5418 Å from 20 to 80◦ in the scale of 2θ, with a
step size of 0.02◦ and a time per step of 1 s.

2.2.2. UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS)

The diffuse reflectance spectra of the synthesized nanomaterials were obtained with a
UV-Vis Varian Cary 300 spectrophotometer (Varian Inc., Palo Alto, CA, USA), provided
with an integration sphere, useful for the powder analysis. The 190–800 nm region was
analyzed using BaSO4 as a white reflectance standard to obtain the baseline.

2.2.3. BET Specific Surface Area (SSA)

The textural property characterization of the supports and bimetallic and trimetallic
nanomaterials was carried out by physical adsorption of N2 (Praxair 5.0 U.A.P.) at −198 ◦C
using a Micromeritics Model TriStar II (Micromeritics Instrument Corporation 4356 Com-
munications Drive, Norcross, GA, USA). BET specific surface area determinations were
performed using the Brunauer, Emmett and Teller (BET) method; pore volume (Vp) and
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pore size distribution (PSD) were assessed by the BJH method. Prior to nitrogen adsorption
analysis, the samples were degassed under nitrogen flow at 150 ◦C overnight.

2.2.4. Scanning Electron Microscopy (SEM)

Energy dispersive X-ray spectroscopy (EDX) coupled with scanning electron mi-
croscopy (SEM) was used to appreciate the morphology, and semiquantitative analysis was
performed with the BES detector of particles corresponding to the materials synthesized in
a JEOL brand model JSM-6010LA (Jeol Ltd, Akishima Tokyo, Japan).

2.2.5. Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) was performed with a JEOL JEM2100 STEM
(Jeol Ltd, Akishima Tokyo, Japan). The samples were ground, suspended in ethanol at
room temperature and dispersed with agitation in an ultrasonic bath for 15 min; then,
an aliquot of the solution was passed through a carbon copper grid. The particle size
distribution of the catalysts was obtained by measuring more than 200 nanoparticles in
each sample.

The particle average diameter (dm) was calculated using the formula:

dm = ∑i(xidi)/∑ixi (1)

where xi is the number of particles with diameter di.

2.2.6. Temperature-Programmed Desorption of Hydrogen (TPD-H2)

This characterization technique used an automated chemisorption analyzer, model
Belcat B (Bel-Japan) with thermal conductivity detector, using 0.2 g of catalyst. First, the
samples were pretreated with the following protocol: 20% O2/H2 for 30 min at 400 ◦C,
20% O2/H2 for 1 min at 35 ◦C, He for 60 min at 35 ◦C, 5% H2/Ar for 30 min at 400 ◦C, 5%
H2/Ar for 1 min at 35 ◦C with a flow rate of 50 sccm. Then, the samples were treated with
Ar at 50 sccm. The temperature was raised from room temperature to 400 ◦C at a heating
rate of 10 ◦C min−1. Dispersion was calculated according to mmol g−1 of H2 adsorbed on
each sample, metal content of nickel (5 wt%) and 1:1 Ni:H stoichiometry, metal content of
tungsten (2.5 wt%) and 1:1 W:H stoichiometry and metal content of gold (2.5 wt%) and 1:1
Au:H stoichiometry.

3. Results and Discussion
3.1. Materials Characterization
3.1.1. BET Specific Surface Area (SSA)

The nitrogen physisorption results of the supports and the supported bimetallic and
trimetallic NPs catalysts are listed in Table 2. The supported NiWAu trimetallic NPs are
mesoporous amorphous solids with high SSA in the range of 220 to 215 m2 g−1 for the
catalysts impregnated by wet impregnation plus recharge method; on the other hand, for
the trimetallic catalysts impregnated by ultrasound method plus recharge method, the SSA
was increased in the range of 280 to 290 m2 g−1. Another important observation deals with
the increasing SSA of the four supported NiWAu trimetallic NPs with respect to the four
supported NiW bimetallic NPs, indicating that the recharge method plays an important
role in the support and metal redispersion [36].

Figure 2 shows the adsorption–desorption isotherms of the prepared catalysts, show-
ing type IV isotherms according to the IUPAC, which are characteristic of a mesoporous
material ranging from 2 to 50 nm, with a hysteresis curve type H1 characteristic of the
geometry of tubular shaped capillaries opened at the ends and capillaries shaped like an
ink bottle. In Figure 3, it can be observed that the average pore diameters ranged from 8 to
14 nm.
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Table 2. BET specific surface area (SSA) of the supports and metallic nanomaterials.

Materials BET SSA (m2/g) Materials BET
SSA (m2/g)

ACT1 382 Ni/ACTU1 263

ACT2 367 Ni/ACTU2 277

Ni/ACT1 233 NiW/ACTU1 214

Ni/ACT2 225 NiW/ACTU2 233

NiW/ACT1 218 NiWAu/ACTU1 290

NiW/ACT2 179 NiWAu/ACTU2 280

NiWAu/ACT1 220

NiWAu/ACT2 215

Figure 2. BET adsorption–desorption isotherms for the four supported trimetallic NPs nanomaterials.

Figure 3. Pore distribution of the four supported trimetallic NPs nanomaterials synthesized by the
recharge method.
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3.1.2. X-ray Diffraction (XRD)

Figure 4 displays the XRD patterns of NiW/ACT1 and NiWAu/ACT1 fresh nanoma-
terial samples. The diffraction patterns of prepared support and bimetallic and trimetallic
NPs supported on ACT1 can be seen. After the thermal treatments of reduction, it was
observed that the NiW/ACT1 and NiWAu/ACT1 fresh samples preserved the crystalline
phases of gamma-alumina and the anatase phase of titania. The diffraction peak at 37.65◦

indicates the formation of very small NiO crystallites [38,39]. Figure 4 also shows the
diffraction patterns of Au in NiWAu/ACT1, where peaks at 38.30, 44.48, 64.82 and 77.77◦

correspond to the (111), (200), (220) and (311) crystalline planes of gold. Representing a
face-centered cubic (FCC) structure of the gold NPs on the support surface, gold is added
in a metallic form due to the reduction by hydrogen adsorbed in nickel and tungsten [8,29].
An oxide-reduction process occurs, causing metal–metal–metal interaction.

Figure 4. XRD patterns of NiWAu/ACT1 nanomaterials and support.

Figure 5 shows the X-ray diffraction patterns of the deposited gold catalysts in Ni-
WAu/ACT1, NiWAu/ACT2, NiWAu/ACTU1 and NiWAu/ACTU2 that are used to iden-
tify crystalline phases of the nanostructured materials. For all samples, the diffraction
peaks were observed for the Au nanoparticles at 38.30, 44.48, 64.82 and 77.77◦. The aver-
age particle size of the four supported trimetallic NPs was estimated using the Scherrer
equation, providing an average particle size of gold smaller than 5 nm (see Table 3). The
increase in the intensity of the peaks at 46.44 and 66.75◦ is due to the formation of NiAl2O4
nickel aluminate in the four trimetallic nanomaterials; this is confirmed by UV-Vis DRS,
which shows the NiAl2O4 formation, i.e., a spinel phase nanostructure [39].

Table 3. Au particle size from XRD and TEM data.

Materials Average Au Particle Size by DRX
(nm)

Average Au Particle Size by TEM
(nm)

NiWAu/ACT1 4.2 5.4

NiWAu/ACT2 4.0 6.3

NiWAu/ACTU1 3.8 4.8

NiWAu/ACTU2 5.4 5.5
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Figure 5. XRD patterns of NiWAu/ACT and NiWAu/ACTU nanomaterials.

3.1.3. UV-Vis with Diffuse Reflectance of Solids (UV-Vis DRS)

Figure 6 shows the results of UV-Vis reflectance spectroscopy for nanomaterials with
gold. The TiO2 bands are related to the charge transfer of O2–→Ti4+; the presence of
crystalline CeO2 absorbs strongly in the UV region close to 400 nm [40]. There is the
presence of absorption bands at wavelengths below 350 nm, and this indicates the existence
of fine crystallites, not detectable by XRD. The bands at 526 and 634 nm are assigned to Ni2+

ions in the tetrahedral symmetry in the lattice of Al2O3, and they are associated with the
formation of the spinel phase Ni2O4 also detected by XRD [41]. The UV-Vis DRS studies
suggest the formation of surface Ni/Al2O3 across the bands at 598 and 636 nm. The peaks
at 462 and 710 nm are characteristic of NiO crystallites formation. The band at 710 nm
is associated with octahedral Ni2+ symmetry and presents low intensity. These latter
interactions of Ni/Al2O3 and the formation of NiO crystals are also seen in XRD [39,42].

Absorption bands were shown at 300 to 350 nm corresponding to W6+ species and Ni-
W–support interactions. W6+ and WOx species in tetrahedral coordination, with octahedral
symmetry Ni ions, Ni [Ni2+6O−2], and WOx species in octahedral coordination with Ni
ions [Ni2+4O−2] with tetrahedral symmetry were also shown.

The position of the Au band in the metallic state is generally accepted as between 500
and 600 nm (plasmon band). The band position of the Au species is undefined; however, it
has been reported that the Au+ cations exhibit an absorption band at around 240 nm, while
small clusters such as (Au)n

δ+ exhibit a band at around 390 nm [43]. A band at 525 nm is
shown, which is typical of the Au plasmon, because of small metallic Au particles in the
trimetallic catalysts, which confirms the presence of Au0. The type of absorption band is
due to the partial loading of gold nanoparticles. A higher peak in XRD/UV-Vis implies a
larger particle size [44,45].
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Figure 6. UV-Vis with diffuse reflectance of solids (DRS) for nanomaterials synthesized by the
recharge method.

3.1.4. Scanning Electron Microscopy (SEM)

Figure 7 shows the SEM image and the energy-dispersive spectrometry (EDS) elemen-
tal mapping images of a selected region of NiWAu/ACT1. The analysis of Ni, W and Au
elemental mapping suggested that the trimetallic NPs are homogeneously distributed over
the entire support surface and showed heterogeneous morphology of the support ACT1
consisting of crystals of different sizes, shapes and orientations.

Figure 7. EDX elemental chemical mapping of NiWAu/ACT1 nanomaterial.
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The elemental composition of the NiWAu trimetallic NPs supported on Al2O3-CeO2-
TiO2 synthesized by two different routes is reported in Table 4. It highlights a fact concern-
ing the final total loading of Ni and Au in the trimetallic NPs. The impregnating solutions
were adjusted to reach a nominal Au loading of 2.5 wt% and Ni loading of 5 wt%. However,
lower values of Au loading of 2.5 wt% and Ni loading of 5 wt% were obtained with the
preparation route that was selected by ultrasound plus recharge method, which is opposite
to that observed in the case of supported trimetallic NPs prepared by wet impregnation
plus recharge method. Therefore, the Au loading of the NiWAu/ACT1 was very close
to the target gold content, indicating the enhanced resistance against the loss of the Au
precursor after the synthetic method of trimetallic NPs. This latter result shows the effect
of the preparation methods, and it could be related to a stronger interaction of the support
with the NiWAu trimetallic NPs. The presence of NiAl2O4 nickel aluminate and Ni-W-O is
evidence of a close intimate interaction between metals and support that indeed promotes
their redox properties.

Table 4. EDX quantitative analysis of trimetallic nanomaterials NiWAu NPs supported on Al2O3-
CeO2-TiO2.

NiWAu/ACT1 NiWAu/ACTU1

Chemical Elements ms% Chemical Elements ms%

O 45.8 O 44.3

Al 36.6 Al 43.5

Ti 7.0 Ti 5.3

Ni 5.0 Ni 1.1

Ce 1.0 Ce 2.2

W 2.3 W 2.2

Au 2.3 Au 1.4

Total 100 Total 100

Figure 8 displays the mutual overlap of three EDX elemental maps, Ni, Au and W.
From the EDX image, it was indicated that Au and Ni elements were intermixed, showing
gold NPs predominant with a good dispersion on the Ni surface near the support lattice. It
can be concluded that the nickel NPs are incorporated in the gold matrix due to the metallic
interaction between nickel and gold [46–48]. Metal–support interactions in the supported
catalysts have been detected when the incorporation of metals into the framework of a
support lattice occurs [49,50]. In this work, the metal–metal–support interaction (Ni-W-O)
and NiAl2O4 also could be seen in the UV-Vis DRS results for the four trimetallic supported
NPs nanomaterials. In fact, the recharge method influenced the redistribution of the
metals in the boundary of the support, which probably provoked a redispersion effect of
the metals on the catalyst surface and the intimate contact between metals and support.
The morphological micrograph observed in Figure 9 is for Au/NiW/Al2O3-CeO2-TiO2
synthesized by the recharge method. By correlating data from DRX and UV-Vis DRS,
Figure 10 shows the deposit of the nanometer gold around the NiO crystallites.
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Figure 8. Overlapping EDX elemental mapping of NiWAu/ACT1 nanomaterial with gold at 2.5 wt%.

Figure 9. SEM images with BES detector for the nanomaterial NiWAu/ACT1.
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Figure 10. Nanoparticles of Ni and Au distributed on the support for NiWAu/ACT1 nanomaterial.

3.1.5. Transmission Electron Microscopy (TEM)

Representative TEM images and particle size distributions of fresh supported trimetal-
lic NPs NiWAu/ACT1, NiWAu/ACTU1, NiWAu/ACT2 and NiWAu/ACTU2 can be
appreciated in Figure 11. For each sample, about 200 individual particles randomly se-
lected in a unique zone of the nanomaterial were analyzed. The metal nanoparticles of
gold, nickel and tungsten appeared darker in the images because they showed strong
electron diffraction. In the two samples, the shape of the particles mostly is spherical or
quasispherical, although a few particles represented cylindrical shape. The TEM image of
supported NiWAu trimetallic NPs showed several agglomerates and many separated or
isolated spherical trimetallic NPs distributed over the whole surface [44,48]. Analysis of
the particle size distributions shows a medium distribution with most of the particle sizes
ranging between 1 and 12 nm. The average particle size of the trimetallic NPs were 5.4, 6.3,
4.8 and 5.5 nm for NiWAu/ACT1, NiWAu/ACT2, NiWAu/ACTU1 and NiWAu/ACTU1,
respectively. Similar values of the particle size were obtained from the XRD line width (see
Table 3).

3.1.6. Temperature-Programmed Desorption of Hydrogen (TPD-H2)

The accessibility of nickel, tungsten and gold was determined from the thermogram
areas of the TPD-H2, assuming a stoichiometry of H/Ni=1, H/W=1 and H/Au=1 taking
into account the values of Table 5 for calculations.

Table 5. Metal surfaces (SG) and densities of metals.

Metal SG (m2//g) ρ (g/cm3)

Ni 654 8.90

W 753 19.35

Au 266 19.32

These thermograms of TPD-H2 show the peaks originating from the desorption of
hydrogen. The area under the curve of Figure 12 represents the desorbed moles of hydrogen
in the material, and therefore, each peak represents a desorption temperature. Additionally,
the TPD-H2 method was used to define the types of catalytic active sites for hydrogen
chemisorption and activation; furthermore, it was used to determine the influence that
gold addition might have on the nature of catalytic active sites.
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Figure 11. TEM image and particle size distributions (right side) of the nanomaterials (a,b) Ni-
WAu/ACT1, (c,d) NiWAu/ACT2, (e,f) NiWAu/ACTU1 and (g,h) NiWAu/ACTU2 prepared by the
recharge method.
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Figure 12. TPD-H2 profiles of reduced trimetallic nanomaterials at 400 ◦C.

Figure 12 shows the TPD-H2 profiles of supported NiW bimetallic NPs prepared
by two different sequential methods (ultrasound and wet impregnation) and Au/NiW
trimetallic NPs prepared after gold addition over the supported NiW bimetallic NPs.
All the nanomaterials studied had two characteristic peaks in their TCD signal profile.
Furthermore, the TPD-H2 profiles have two domains of H2 desorption peaks. The first
domain includes desorption peaks at lower temperatures, at around 150–250 ◦C. The
second domain is situated at higher temperatures, at around 450–490 ◦C. The first domain
is largely recognized to represent hydrogen desorbed from metallic nanoparticles. The
second one can be ascribed to hydrogen originally located on subsurface layers and/or to
spillover hydrogen [51,52]. The H2 spillover occurs during the prereduction step of TPD-H2
experiments, when the hydrogen atoms are dissociated over the nanometallic surface and
migrate to subsurface layers and/or to the support, generating hydrogen species strongly
bonded to the nanomaterial surface. The peaks related to exposed trimetallic NPs and
active metal sites are located at lower temperatures [21,51].

The metal accessibility and the particle size present in the supported NiW bimetallic
and AuNiW trimetallic NPs were determined using the values of the Table 5 (metal surface
and densities) and the results obtained by TPD-H2 profiles shown in Table 6. It was
observed that when gold was added to the NiW bimetallic nanomaterials synthesized by
the impregnation method, the dispersion of metallic surface species improved significantly,
therefore increasing the exposed trimetallic surface %D.

The results of nitrogen physisorption showed values of high specific areas that in-
creased after the addition of Au by the recharge method due to the redispersion of the
metals and the support in the catalyst, allowing the migration of Ni and W atoms. More-
over, there was an increase in metal dispersion or accessibility (%D) obtained by TPD-H2
where the available metallic surfaces increased when gold was added due to the effect of
the recharge method, resulting in metallic crystallite average size values of around 1.7 to
2.1 nm, which correspond to well-dispersed gold, nickel and tungsten nanoparticles in the
synthesized trimetallic nanomaterials.

One advantage of the wet impregnation method is that there is no loss of material
on the first and second metals (Ni and W) deposited over the support; this causes a
synergy to deposit the proposed theoretical Au content. On the contrary, for the ultrasound
method, there was a loss of more than one-half of nickel and one-half of gold impregnated.
Furthermore, the deposit of the nanometric gold is limited by the amount of the first two
metals in the support. The average trimetallic (gold, nickel and tungsten) particle size
measured though TPD-H2 was smaller when impregnation and recharge methods were
selected for preparation.



Materials 2021, 14, 5470 15 of 21

Table 6. Total dispersion (%) and metal crystallite sizes of the NiWAu/ACT nanomaterials by
TPD-H2.

Sample
BET
Area

(m2/g)

Average Au
Particle Size

(nm) a

HTC
((µmol

H2/gcat)

TPD-H2 (H/M
= 1 µmol
H2/gcat)

% D
(H/M)

MCS
(nm) b

NiW/ACT1 214 - 0.85 0.60 70 1.5

NiW/ACT2 179 - 0.85 0.63 74 1.4

NiW/ACTU1 218 - 2.47 0.65 26 3.3

NiW/ACTU2 179 - 2.47 0.55 22 3.9

NiWAu/ACT1 220 4.2 0.99 0.46 46 1.8

NiWAu/ACT2 215 4.0 0.99 0.50 50 1.7

NiWAu/ACTU1 290 3.8 0.99 0.33 33 2.6

NiWAu/ACTU2 280 5.4 0.99 0.41 41 2.1
a Calculated from XRD data, with Scherrer’s equation. b MCS (nm) calculated from TPD-H2 data. MCS = average
metal crystallite size. % D = percentage of metallic dispersion.

3.1.7. Structural and Catalytic Properties of Nanomaterials

The trimetallic supported nanocatalysts developed and synthesized in this study
possess particular structural properties allowing them to be used for several catalytic appli-
cations. The close intimate interaction between metals and support (strong metal–support
interaction) is a highly desirable structural property for nanocatalysts as it promotes their
redox properties [53,54]. The strong metal–support interaction has a relationship with the
number of oxygen vacancies in the support [54–56]. CeO2 has attracted much interest in
the oxidation process due to its high oxygen storage capacity and unique redox ability. Its
ability to store and release oxygen due to the effective redox Ce4+/Ce3+ sites that enable
the exchange of oxygen via oxygen vacancy significantly increases the performance of
catalytic systems and suppresses the deactivation of catalysts under rigorous reaction
conditions [57,58]. For the degradation of refractory organic compounds (ROCs), it has
been reported that the oxygen storage capacity (OSC) and the redox properties of ceria
should be increased by the introduction of other transition and nontransition metal ions;
therefore, many ceria-based catalysts have been developed, such as CeO2-ZrO2 [57–61],
CeO2-TiO2 [62–64], CeO2-WO3 [65], CeO2/Al2O3 [66,67] and CeO2-SiO2 [68–70]. Besides,
the species Ti3+ for the TiO2 support is related to oxygen vacancies as a result of lattice
distortion or surface defects [71].

This oxygen vacancy is beneficial for forming reactive centers or yielding active
oxygen, especially beneficial for oxidation degradation. They are acid sites called Lewis
sites where a nucleophilic substrate can be deposited [72]. Previous works have proved
that the number of acid sites promotes efficient catalytic properties (e.g., in catalytic wet air
oxidation of ROCs [37,54,73–76] and production of biofuels [77–79]).

The catalytic activity of degradation of ROCs via CWAO using heterogeneous nanocat-
alysts has been improved to increase the OSC directly associated with oxygen vacan-
cies. The oxidation mechanism proposed by our group shows that such vacancies are
directly involved in the oxygen activation reaction at the catalyst surface and, consequently,
the creation of highly reactive surface oxygen species such as superoxides and perox-
ides [54,80–83]. The oxidation of ROCs can start by activating the oxygen molecule or the
ROC, and oxygen may participate in the reaction as an adsorbed species on the catalyst
surface. The Lewis acid sites could activate the electronic doublet of oxygen [53,73,74].
In any case, the presence of a nanocatalyst creates an ionic environment that favors the
heterolytic reactions. In the case of aromatic compounds such as phenol, the ring-opening
reaction can be produced either by a free redox radical mechanism (hemolytic rupture) or
by an ionic (heterolytic) mechanism [73].
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The mineralization process can be explained by the transformation of the aromatic com-
pounds into aliphatic compounds by the ring-opening reactions. The aromatic molecule
ring is oxidized to catechol, hydroquinone and benzoquinones (intermediates). Succes-
sively, the ring breaks into carboxylic organic acids of low molecular weight (<C6) such
as carboxylic acids (maleic acid, acetic acid, formic acid, oxalic acid). In other words, the
catalytic oxidation degradation pathway of phenol includes the hydroxylation (hydro-
quinone, catechol, o-benzoquinone) and organic acids until preferably producing CO2 and
H2O [84–86]. When the mechanism includes the formation of oxidized C6-aromatic of
hydroquinone and catechol, the occurrence of both compounds indicates parallel reaction
pathways [87]. The presence of catechol and hydroquinone may be attributed to hydroxyl
radical attack at ortho and para positions of the aromatic ring due to the resonance effect
of phenol. Apart from the above reactions, a solid residue may be also formed as a result
of the combination of phenyl radical with hydroquinone and p-benzoquinone through a
series of chain reactions [88]. Acetic acid is especially accumulated in the system, which
could be considered as the final product. If the mineralization process reaches complete
total oxidation, the conversion of organic molecules to CO2 and H2O occurs. The TOC
yield removal will be 100% of CO2. Therefore, the TOC removal parameter is directly
associated with the selectivity of CO2. However, partial oxidation commonly occurs, and
this causes the simultaneous presence of intermediates and CO2 in the reaction mixture.
Nevertheless, the increase in TOC removal means that the organic refractory molecule will
be more oxidized to CO2 [74–76].

It was found by our group that CeO2, due to its ability to store and release oxygen and
the effective redox Ce4+/Ce3+ occurring in its oxygen vacancies, plays an important role
in enhancing the CO2 selectivity as explained by several authors. The formation of Ce4+-
O−2 –M at the interface could favor oxygen transfer between the nanocatalyst surface and
the adsorbed species by a redox mechanism. It is important to highlight with our findings
that the excess of Ce loading (50 wt%) increases OSC, which favors the para-oxidation
of phenol and the consequent occurrence of carbon deposit by the polymer formation
from p-benzoquinone and the decrease in the number of Lewis sites. It was established by
our group that the number of total sites increases for the monometallic (Ru/ZrO2-CeO2)
and bimetallic (RuAu/ZrO2-CeO2) catalysts by Ce loading of 10 wt%, and this enhances
the ortho-oxidation of phenol. On the contrary, the number of total sites decreases when
the Ce loading reaches 20 wt% in RuAu/ZrO2-CeO2 catalysts [53]. Another important
contribution by our group is the finding that if the route takes place by the formation of
the quinones, the polymerization on the surface of the catalysts is important; therefore,
the deactivation of the material can be carried out due to the blocking of the superficial
active sites [74,88].

Furthermore, another important application that has been discussed by our group
is the production of biofuels through biomass. The conversion of glucose to produce
5-hydroxymethylfurfural (HMF) using TiO2–ZrO2 binary oxides and Al2O3-TiO2-W has
been researched. The number of acid sites plays an important role in achieving the highest
5-HMF yield [76–79].

4. Conclusions

Four NiWAu supported trimetallic NPS nanomaterials were prepared by a three-step
synthetic method in which the gold addition was the last step via the recharge method.
The effect of the gold addition using the recharge method on the structural and chemical
properties of NiW/Al2O3-CeO2-TiO2 was investigated. The TPD-H2 results obtained
revealed that the addition of gold synthesized by impregnation plus recharge method
improved the dispersion of trimetallic surface species (46% and 50%). The particle size of
gold from XRD and TEM data in NiWAu/ACTU1 was smaller using impregnation plus
ultrasound recharge method than impregnation plus recharge in NiWAu/ACT1.

The recharge method promoted nanostructures of gold nanoparticles <6.5 nm in the
four NiWAu trimetallic catalysts supported on mixed oxides. After the addition of gold in
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the four supported bimetallic NiW systems, the specific surface areas (SSAs) were larger
than those of the bimetallic systems. This method provided the rearrangement of the
metallic surface, which provoked a redispersion effect of the metals on the catalyst surface.
Gold is added in its metallic form due to the reduction produced by the adsorbed hydrogen
in the supported Ni-W bimetallic NPs surfaces.

The gold addition for the supported NiW/ACT1, NiW/ACT2, NiW/ACTU1 and
NiW/ACTU2 bimetallic NPs enhanced the formation of NiAl2O4 nickel aluminate, Ni-W-O
and Ni-Au-O phases, which were shown to be strong metal–support interaction species
that have close intimate interaction between metals and support. These changes could not
be seen in the four bimetallic systems.
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