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Abstract: High-performance temperature sensing is a key technique in modern Internet of Things.
However, it is hard to attain a high precision while achieving a compact size for wireless sensing.
Recently, metamaterials have been proposed to design a microwave, wireless temperature sensor,
but precision is still an unsolved problem. By combining the high-quality factor (Q-factor) feature
of a EIT-like metamaterial unit and the large temperature-sensing sensitivity performance of liquid
metals, this paper designs and experimentally investigates an Hg-EIT-like metamaterial unit block
for high figure-of-merit (FOM) temperature-sensing applications. A measured FOM of about 0.68 is
realized, which is larger than most of the reported metamaterial-inspired temperature sensors.

Keywords: liquid metamaterial; temperature sensing; quality factor; figure-of-merit

1. Introduction

Electromagnetic metamaterials are a kind of artificial sub-wavelength composed of
structural materials, with novel electromagnetic properties not found in nature [1–5]. Most
of the electromagnetic metamaterials have intrinsic, strong resonance features, with a
narrow response frequency band and a high-quality factor (Q-factor) [6,7], making them
unsuitable for wide-band electromagnetic wave manipulation applications [8–12]. On
the other hand, due to the high electromagnetic resonance strength and high sensitivity
to changing background parameters [13–16], electromagnetic metamaterials with phys-
ical, chemical, and biological tunable abilities have been widely used to design various
high-performance sensors [17–28]. Until now, the reported metamaterial-inspired sen-
sors included physical sensors [19,20,23,25–28], chemical sensors [21,22], and biological
sensors [17,18,24], etc.

For the various metamaterial-inspired sensors reported, sensing sensitivity and pre-
cision are two vital parameters for high-performance applications. Unfortunately, most
of the reported metamaterial-inspired sensors [17–24], including the reported tempera-
ture sensors [25–28], are based on effective dielectric permittivity, permeability, and/or
refractive index changes in the substrates that are used to construct the metamaterials
under varying background parameters. To realize more sensitive and higher-precision
metamaterial-inspired sensors, researchers have proposed a kind of liquid metamaterial
unit [29–34] based on fluid metals, such as mercury (Hg) [29,30,35,36], EGaIn, and/or
Galinstan [34,37,38]. For the liquid metal-based metamaterial sensors, the electromagnetic
response changes are directly from the effective electric length of the metamaterial unit
itself, thus allowing for maximum sensitivity to be achieved [35,36]. On the other hand, to
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obtain a higher precision-sensing performance, the parameter called figure-of-merit (FOM)
should be carefully considered. Such FOM is widely defined as

FOM =
Sensitivity

3dB − Bandwidth
(1)

In the above equation, the unit of sensitivity for the temperature sensor discussed in
this paper is Hz/◦C and the unit of a 3 dB bandwidth is Hz, and so the unit of the defined
FOM should be /◦C.

From Equation (1), it follows that the designed metamaterial unit should have as nar-
row a bandwidth as possible, equivalent to a higher Q-factor. In recent years, many kinds of
high Q-factor metamaterial units have been reported, including the Fano resonator [39,40],
the toroidal resonator [41,42], the anapole resonator [43,44], the FP cavity resonator [45],
and the electromagnetically induced transparency (EIT) resonator [46]. Parts of these have
been proposed for high-precision sensing applications [17–19,35,36]. However, it is very
hard to maintain high sensitivity and high precision and, at the same time, have a stable
and large, linear sensitivity range for those reported works. In this paper, in contrast to
previously reported liquid metal-based metamaterial sensors [35,36] and high Q-factor
solid metamaterial sensors [17–19], we propose a novel, liquid metal-based EIT-like meta-
material unit block for the high-FOM temperature-sensing applications. The mechanism
analysis operating to achieve high sensitivity and high precision, the numerical investiga-
tions and optimizations, and the experimental demonstrations used to achieve high-FOM
temperature sensing in a large linear range are presented in this paper. Based on a detailed
investigation, the proposed liquid metal based EIT-like metamaterial sensor shows better
sensing performance, including sensitivity and precision, compared with the previously
reported sensors, especially the previously reported temperature sensors, and can be widely
used for temperature sensing in the near future.

2. Structure Design and Numerical Investigations
2.1. Operating Mechanism

According to the theory, electromagnetically induced transparency (EIT) is a kind of
quantum interference effect [46]. The basic principle is that when a coherent electromagnetic
wave acts on a multi-level atomic system, the atoms will have a strong response to the
incident electromagnetic wave with resonance frequency, resulting in the phenomenon of
absorption or enhancement. A typical three-level quantum interference system is shown
in Figure 1a. If an incident electromagnetic wave can make the atom in the ground state
1> transition to the excited state 3> (the transition frequency is A), the electromagnetic field
at this time will be absorbed. At the same time, another incident electromagnetic wave
can make an atom with an energy level in the ground state 2> also transition to the excited
state 3> (the transition frequency is B), and the ground state 1> and ground state 2> of the
atom will be coherent, resulting in the EIT phenomenon.

Based on this theory, in 2018, some researchers designed an EIT-like metamaterial [46],
in which the metal wires along the direction of the electric field would be excited under the
action of electromagnetic waves to form a bright-state mode, while the parallel bimetallic
wire structure along the direction of the magnetic field would have difficulty being excited
by an external electric field, thereby forming a dark state mode. The excited, bright-
mode metal wire structure radiates electromagnetic waves of a specific frequency outward,
thereby exciting the parallel bimetallic wire structure along the direction of the magnetic
field. Therefore, both of them are in an excited state, and the radiated electromagnetic
waves interfere and cancel each other, reducing the radiation loss and generating a higher
Q-factor. Moreover, a novel artificial electromagnetic resonance structure with higher Q
value can finally be realized.
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Figure 1. (a) Theoretical presentation of the EIT operating mechanism, (b) the 3D view of the designed
Hg-EIT-like metamaterial unit with parameter definitions, and (c) transmission curves of the Hg-
EIT-like metamaterial unit under different Hg bar lengths obtained by numerical simulations in the
period boundary condition.

2.2. Initial Strucure Design and Numerical Anslysis

Based on the low radiation loss working principle of the EIT-like metamaterial,
Figure 1b shows the preliminary design of the Hg-based EIT-like metamaterial unit block.
Compared with the original structure of a solid state EIT-like metamaterial [44], the newly
designed Hg-EIT-like liquid metamaterial unit can achieve low radiation loss as well, while
making full use of a large liquid storage structure that can achieve high temperature-sensing
sensitivity [33,34], thereby attain a high Q-factor EIT-like resonance mode. In addition, the
Hg-EIT-like liquid metamaterial unit can maintain stable temperature-sensing characteris-
tics when it is thermally deformed. The initial simulation results of the electromagnetic
wave transmission characteristic curves produced by Ansys HFSS software under different
Hg bar lengths are shown in Figure 1c. In such simulations, the periodic boundaries along
the E- and H-directions and Floquet port excitations along the k-direction are applied to
the free space condition, and the following structural parameters are used: a = 0.4 mm,
rm = 5 mm, and h = 6 mm. The dielectric constant and loss tangent of the used glass are
εr = 3.7, and tanδ = 0.0001, respectively, and the conductivity of Hg is 1.04 × 106 S/m.
Moreover, the solving precision tolerance of 0.005 and the interpolating frequency sweep
type are defined in the HFSS software to ensure the results are more accurate.

Specifically, the more precise simulation results are shown in Figure 2, including the
transmission curves under wider Hg bar changing range, the calculated Q-factors, the
resonance frequency shit, and the sensitivity as a function of temperature. Figure 2b shows
that the Hg-EIT-like liquid metamaterial unit has a high resonance Q-factor, but the Q-factor
fluctuates to a certain extent with changes in temperature.

In Figure 2, the temperature is theoretically calculated based on the thermal expansion
rate of the liquid metal Hg, γ = (1/V0)·(∆V/∆T). Here, V0 is the initial total volume of the
Hg-EIT-like resonator shown in Figure 1b, ∆V is the volume-change amount at temperature
change ∆T. Specifically, based on the structure shown in Figure 1b, the total Hg volume is

V0 = 2πrm
2h + a2(dy + dx) (2)

where rm and h are the radius and height of the Hg cylinder, a is the side length of the cross
section of the square Hg bar, and dy and dx are the Hg bar lengths along the y-axis and the
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x-axis. Therefore, the relationship between the Hg bar length changes and the temperature
changes calculated from the thermal expansion coefficient of Hg is

∆l =
∆V
2a2 =

V0∆Tγ

2a2 (3)
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Figure 2. (a) The simulated transmission curves of the Hg-EIT-like liquid metamaterial unit under
different parameter Hg bar lengths, and (b) the calculated Q-factor, (c) resonant frequency shift, and
(d) temperature sensing sensitivity as a function of changes in temperature.

The Hg bar length at the initial temperature of the Hg-EIT-like liquid metamaterial
unit can be set as =15 mm, and therefore, the initial Hg volume is around 788 mm3.
Figure 2b–d shows that, when the temperature change is 12.4 ◦C, the resonant frequency
offset of the Hg-EIT-like liquid metamaterial unit reaches 370 MHz, and the temperature-
tuning sensitivity is about 17–30 MHz/◦C in the temperature-tuning range. However, as
mentioned before, the temperature-sensing sensitivity is not stable enough, and the relative
change reaches 88%.

2.3. Structure Optimizations

As mentioned in the previous subsection, the initially obtained temperature-sensing
performance is not stable in terms of the Q-factor and the sensitivity under different temper-
ature condition, as shown in Figure 2. Based on the bright-mode and dark-mode coupling
mechanism for the EIT-like metamaterial resonator, the coupling strength should be kept
near-constant at all structural sizes, especially the Hg bar lengths for the Hg-EIT-like liq-
uid metamaterial unit designed in this paper. However, the original configuration shown
in Figure 1 cannot satisfy such a requirement. In order to strengthen the performance stabili-
ties of both the electromagnetic resonance characteristics and the temperature-tuning ability
for the Hg-EIT-like liquid metamaterial unit, the original structure shown in Figure 1b
continues to be improved and optimized to meet the practical application requirements of
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high-performance temperature sensing, and the new structure is shown in Figure 3a,b. For
this new configuration, when the Hg bar length is increased under temperature changes,
the coupling strength between those two bars can be maintained properly so that the
Q-factor should be more stable. Specifically, in order to ensure sufficient coupling of the
two resonant arms under different lengths, one resonator arm is designed as a circular
arc and the other resonator arm is designed as a straight line. The Hg injection channel
communicates with the outside. When the temperature of the structure changes, both the
arc-shaped vibrating arm and the straight resonating arm are correspondingly elongated
or shortened, so that the structure has good temperature-control reconfigurability and
temperature-control sensitivity. After simulation optimization, the size parameters of the
structure are determined. As shown in Figure 3, the basic low-loss glass structure is 48 mm
long and 28 mm wide; the Hg storage cylinder radius is 8 mm high, and the thickness is
8 mm; the arc radius of the arc resonance arm is 3 mm; height is 3 mm; the thickness of the
glass is 8 mm; the corresponding arc angle is θ; the length of the straight resonant arm is l;
and the length of the square side of the cross section of the resonant arm is 0.4 mm.
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ter definitions; (c) the transmission curves under different Hg bar lengths obtained by numerical
simulations in the period boundary condition; and (d–f) the simulated and calculated transmission
2D spectrum, the Q-factor, and the sensitivity results. The insets of panel (d) are the electric field
distributions at the two resonance frequencies.

Based on the above structural parameter definitions, the corresponding relationship
between the total volume, the Hg bar length, and the temperature of the improved new
Hg-EIT-like liquid metamaterial unit is represented as follows:

V1 = πR2h+2πRa2
(

θ

360
− arcsin(R/2r)

180

)
(4)
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V2 = πR2h + a2

(
l − 2

√
R2 −

( a
2

)2
)
− a

(
arcsin(a/2R))

180◦
πR2 − a

2

√
R2 −

( a
2

)2
)

(5)

∆θ =
∆V1·180

aπ
(

r2 − (r − a)2
) =

V1·∆T·γ·180

aπ
(

r2 − (r − a)2
) (6)

∆l =
∆V2

a2 =
V2·∆T·γ

a2 (7)

In the above equations, V1 is the volume of the arc-shaped Hg column structure in the
figure, and V2 is the volume of the straight Hg column structure. The arc-shaped part and
the straight Hg bar can both produce elongation and shortening effects with the change in
temperature. The arc-shaped structure corresponds to the circumference angle θ, and the
straight Hg bar length is represented by l. ∆θ is the variation in the circumferential angle
of the arc part, ∆V1 is the volume change in the length of the straight Hg bar, ∆V2 is the
change in the arc part, and ∆T is the amount of change in the temperature of the entire
liquid metal Hg. According to the improved Hg-EIT-like liquid metamaterial unit and the
corresponding relationship between the structure and temperature shown in Equations
(4)–(7), the initial circumferential angle of the arc-shaped mercury column structure is set as
50 deg; the initial length of the straight Hg bar structure is 18.3 mm; and thus, the calculated
∆θ is about 0.4 deg/◦C and ∆l is about 0.1 mm/◦C.

Here, we further use HFSS software to simulate the transmission coefficients of the
structure under four resonant arm length sizes, as shown in Figure 3c. Here, the period
boundary condition and Floquet port excitation are also applied to the unit cell. We see that,
under the four size conditions, the structure produces two resonance peaks. Taking the size
of the straight resonant arm 18.79 mm as an example, the electric field distributions of the
simulated structure at the frequencies of the two resonance peaks are shown in the inset of
Figure 3d. As can be seen, the arc-shaped resonator arm is excited by the electric field to
generate a bright mode, and the straight resonator arm perpendicular to the direction of the
electric field cannot be directly excited by the electric field into a dark mode. Consequently,
the electric field is coupled back and forth between the dark mode and the bright mode.
At this time, the electric field energy is mainly concentrated around the direct resonance,
resulting in an EIT-like resonance mode. While the structure is at the second resonance peak
frequency, the direct resonance arm is still excited and a strong electric field is generated
around the resonant arm and the arc part. At the same time, the electromagnetic wave
energy is bound around the straight resonator arm and the arc resonator arm, resulting in a
greater resonance intensity.

Through the numerical simulation, the resonance Q-factor of the structure under the
different resonant arm lengths is obtained, as shown in Figure 3d. The resonance Q-factor of
the first resonance peak can be seen to range from 893 to 1500 and the Q-factor of the second
resonance peak ranges from 924 to 1090. The resonance strength of the second resonance
peak is thus better than that of the first resonance peak. Therefore, the second resonance
peak was selected for the follow-up study. Specifically, we took the straight resonant
arm to change ~9.8 µm, and the arc resonator arm to change 0.04 deg. This setting is
analogous to the resonant characteristic changes of the structural unit with the temperature
changing step of 0.1 ◦C and the variation range of 20 ◦C. The transmission coefficient curve
spectrum of the improved Hg-EIT-like liquid metamaterial unit with different lengths is
obtained, as shown in Figure 3e. At the same time, according to the simulation results, the
theoretical linear function of the resonant frequency of the structural unit and the length of
the resonator arm are fitted to the simulation data, as shown in Figure 3f. The figure shows
that the temperature-sensing sensitivity of the improved Hg-EIT-like liquid metamaterial
unit obtained by the simulation has an average Q-factor of about 1000 and a FOM value
of 3.26/◦C.
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3. Experimental Demonstrations

Based on the simulation optimization results and the parameters obtained above, in
this section, we use the silica glass as the low-loss transparency substrate to fabricate the
Hg-EIT-like liquid metamaterial unit. The steps of processing, bonding, and packaging
are shown as follows: (1) using a laser-etching technology to etch the EIT-like structure
channel shown in Figure 3a on the silica glass base cube; (2) using a UV curing glue to
paste another thin glass sheet onto the glass substrate structure engraved with the EIT-like
structure channel; (3) using a UV lamp to curve and encapsulate the bonded two-layer
glass structure; and (4) injecting the liquid metal Hg into the cylindrical liquid storage
tank and the Hg bar channel along the injection flow channel using tools such as thin
syringes and needle tubes. Finally, the processed Hg-EIT-like liquid metamaterial unit is
shown in Figure 4a.
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Next, the prepared Hg-EIT-like liquid metamaterial unit is placed in the center of the
standard-size rectangular waveguide BJ32 (as shown in Figure 4b, the waveguide operating
frequency range: 2.60–3.95 GHz), and the waveguide is connected to the vector network
analyzer (Agilent 5230A). The closed rectangular waveguide used in this paper can help to
concentrate the incident electromagnetic wave [47,48], resulting in smaller radiation loss
and so a higher Q-factor. This will contribute to a stable and better FOM (Equation (1))
by controlling the ambient temperature to slowly increase from 20 ◦C to 40 ◦C (as shown
in Figure 4c) with a temperature-changing step of 0.1 ◦C. The electromagnetic structure
transmission coefficient curves obtained by the vector network analysis are summarized
in Figure 5a,b. The extracted electromagnetic resonance frequency and the resonance
Q-factor changes with increases in temperature are shown in Figure 5c,d. At the same, the
corresponding numerical simulations of the same conditions are shown in Figure 5a for
comparison. The figure shows that the measured |S21| curve at each temperature well
matches the simulated result at the corresponding Hg bar length, especially the resonance
frequency. The measured resonance strength is smaller than the simulated one, which is
due to the unperfect metamaterial unit fabrication and the Hg-injection process, resulting
in additional loss. Moreover, the actual glass container and rectangular waveguide used
will contribute more electromagnetic loss.

As shown in Figure 5b, when the temperature increases from 20 ◦C to 40 ◦C, the
measured resonant frequency of the Hg-EIT-like liquid metamaterial unit decreases from
3.37 GHz to 3.18 GHz, and its average Q-factor is about 210. The electromagnetic resonance
frequency of the improved Hg-EIT-like liquid metamaterial unit has an almost linear
relationship with the rise in temperature. By comparing the simulation results of the unit
structure in Figure 3 to the test results in Figure 5, the Q-factor obtained by the test can to
seen to be lower than the simulation result. This is because the unit structure placed in the
test process does not fully fill the entire rectangular waveguide, and the electromagnetic
leakage causes its Q-factor to drop.
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Figure 5. (a) Simulated and measured |S21| curves at different Hg bar lengths and temperature
values, respectively, and (b) measured transmission 2D spectrum for the fabricated Hg-EIT-like
metamaterial unit; (c,d) the collected resonance frequency shift and calculated Q-factor, and FOM.

4. Discussion

Table 1 summarizes the simulated and measured performance parameters of the
previously reported liquid metal-based temperature-sensitivity metamaterial unit [35,36]
and some other temperature-sensing techniques [49–52] with the proposed structure in
this paper, including the temperature-sensing sensitivity, the resonant Q-factor, and the
FOM. First, it can be seen that the average Q-factors obtained by the actual tests of the
three Hg structures are all smaller than the corresponding simulation results. After the
analysis, as mentioned previously, we found two main reasons. One is the difference
between the rectangular waveguide in the simulation environment and the actual test
environment. Second, there is a difference between the electromagnetic parameters of the
structural material and the prototype assembling actually processed in measurements, and
the electromagnetic parameters of the structure used in the simulations. The temperature-
sensing sensitivity obtained by the test is close to the simulations for all three designs.
However, among them, the EIT-like structure has the highest measured Q-factor, even
though the temperature-sensing sensitivity is the lowest one. As analyzed in the previous
section, the sensitivity can be enhanced by simply enlarging the Hg cylinder tank based
on the theory of the thermal expansion rate of the liquid metal Hg. As shown in Table 1,
because the EIT-like metamaterial unit can achieve the maximum measured Q-factor, the
calculated FOM is thus the largest one compared with other two designs. Therefore, the best
temperature-sensing precision is achieved, and it can be further enhanced by increasing the
Hg cylinder tank volume and by reducing the Hg bar cross-section. However, as shown
in the Hg-EIT-like metamaterial unit configuration, the Hg-bar length enhanced range is
limited due to the limited space in the glass tube. Additionally, if the Hg bar is increased
too much, the EIT-like resonance with high Q-factor performance cannot be kept well.
Therefore, the good sensing sensitivity and precision performances for the proposed Hg-
EIT-like metamaterial unit can be only worked at a limited sensing range. For that reason,
it is preferable to use this discussed temperature sensor for some of the high-precision
temperature-sensing areas with limited temperature varying range.
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Table 1. Performance comparisons for the proposed temperature sensor structures.

Resonant
Structure

Sensitivity Q-Factor FOM (/◦C)

Sim. Mea. Sim. Mea. Sim. Mea.

Fano [35] 15.7 MHz/◦C 16.4 MHz/◦C ~800 ~80 ~6.3 ~0.59
Anapole [36] 16 MHz/◦C 17.14 MHz/◦C ~230 ~65 ~1.53 ~0.3

Benzene-PCF [49] 12 nm/◦C – ~90 – ~0.4 –
LM-PCF [50] 2.15 nm/◦C – ~50 – ~0.061 –
DS-PCF [51] – 5.55 nm/◦C – ~70 – ~0.076
LC-PCF [52] 2.82 nm/◦C – ~20 – ~0.048 –

EIT-like 10.45 MHz/◦C 9.5 MHz/◦C ~1000 ~210 ~3.26 ~0.68

Moreover, most of the other reported sensors [49–52] are achieved by injecting the
temperature-sensitive liquid dielectric materials, including Benzene, specific liquid material
(LM), dimethyl sulfoxide (DS), and liquid crystal (LC), into the single/dual cores of the
photonic crystal fibers. In this way, the sensitivity and FOM can be obtained by detecting
the changes in resonance wavelength induced by the the variations in temperature. As can
be seen, even though those sensors show higher sensitivity at the optical wavelength, the
achieved FOM is much smaller than the Hg-inspired metamaterial sensor configuration,
due to the poor optical resonance Q-factors.

The near-linear temperature-sensing results obtained in the foregoing discussions
are limited to the low-power incident electromagnetic wave condition. However, if the
incident wave power is increased, some new phenomena could arise, which may affect
the sensing performance. First, in contrast to the conventional metamaterial unit, which is
constructed with solid-state metals such as copper, the liquid metamaterial unit discussed
in this paper composed of Hg has a larger ohm loss because of the conductivity of Hg being
1.04 × 106 S/m, which is one order magnitude smaller than copper. Consequently, if the
high power, incident electromagnetic waves acted on the Hg-EIT-like structure, parts of
the energy will be transferred into the structure as ohm heating and, as a result, the Hg
bar length will be increased even though there are no background environmental changes
in temperature. This is a complex, nonlinear dynamic process within the metamaterial
unit [53–55]. In that case, the temperature-sensing sensitivity will be affected slightly and
the real background temperature cannot be measured correctly. Therefore, to maintain the
near-linear sensing performance, low-power incident electromagnetic wave should be used
in this temperature sensor based on the Hg-EIT-like metamaterial unit.

On another hand, due to the interaction between the incident electromagnetic wave
energy and the thermal energy within the Hg metamaterial unit mentioned above, this
designed high Q-factor Hg-EIT-like structure can also be used as an electromagnetic field
strength sensor [56,57].

5. Conclusions

This paper proposes for high-FOM temperature-sensing applications a novel EIT-like
metamaterial unit based on the liquid metal Hg with large temperature-sensing sensitivity
and precision. It discusses the detailed design for a high-performance Hg-EIT-like meta-
material unit and provides the corresponding numerical simulation and optimizations, as
well as the experimental demonstrations to verify the proposed design. A measured FOM
of about 0.68 is realized, which is larger than most of the reported metamaterial inspired
temperature sensors. The proposed Hg-EIT-like metamaterial unit can be widely used for
high-performance temperature sensing in the future.
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