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Abstract

Surveying invasive species can be highly resource intensive, yet near-real-time evaluations of invasion progress are
important resources for management planning. In the case of the soybean rust invasion of the United States, a linked
monitoring, prediction, and communication network saved U.S. soybean growers approximately $200 M/yr. Modeling of
future movement of the pathogen (Phakopsora pachyrhizi) was based on data about current disease locations from an
extensive network of sentinel plots. We developed a dynamic network model for U.S. soybean rust epidemics, with counties
as nodes and link weights a function of host hectarage and wind speed and direction. We used the network model to
compare four strategies for selecting an optimal subset of sentinel plots, listed here in order of increasing performance:
random selection, zonal selection (based on more heavily weighting regions nearer the south, where the pathogen
overwinters), frequency-based selection (based on how frequently the county had been infected in the past), and
frequency-based selection weighted by the node strength of the sentinel plot in the network model. When dynamic
network properties such as node strength are characterized for invasive species, this information can be used to reduce the
resources necessary to survey and predict invasion progress.
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Introduction

Invasive species are a global problem in natural, agricultural,

and human health systems, and there is a corresponding great

need for optimized strategies for detection of invasive species

movement [1]. For human pathogens, it may be possible to

integrate standard records collected in clinics in an analysis of

spatial spread. For many invasive species, however, time-

consuming field surveys performed by trained personnel are

needed to track invasions. Despite the cost, information about

invasive spread is critical for managers at many levels, from policy

makers to individual land managers. The trend toward large

research networks, such as the US National Ecological Observa-

tory Network (NEON), is another motivation for identifying

optimal approaches to sampling across large linked ecological

systems [2]. Sampling strategies and strategies for identifying

points for management of invasive species will often have

significant overlap. The spatial structure of landscapes to be

sampled is an important consideration in constructing ecological

sampling designs and measures of invasion [3,4]. Taking into

account the dispersal mechanisms of invasive species in combina-

tion with the connectivity of the landscape for invasion has the

potential to improve management efforts [5,6]. For example,

particular natural or artificial water bodies may function as

invasion hubs, so that management of invasives in those lakes may

have greater impact [7,8]. Human transport hubs may also have

important roles in invasions [9] and models of vaccination

programs in human and other animal populations may often be

relevant to invasions in plant landscapes [10,11,12,13,14].

The rapid development of network modeling approaches

promises new insights into spatial and temporal components of

biological invasions. In typical applications of network models to

spatial processes, locations or individuals are ‘nodes’ and the

probability of encounters or movement between any two nodes is

described by the weight of the ‘link’ that joins the two nodes.

Network model applications in biology have included movement

of animals among habitat patches and movement of pathogens

through a host population [15]. The connectivity of a network

plays an important role in determining the dynamics of epidemics

[16].

Recently, network models have been explored for a range of

plant epidemics [17,18,19,20,21,22,23]. For example, Margosian

et al. [24] considered a network of US counties, with links between
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adjacent counties weighted as a function of crop densities, and

analyzed the connectivity of the landscape based on different

threshold density levels. However, this model was limited to

identifying more and less strongly connected regions and did not

directly predict the course of an invasion process. Balcan et al. [25]

is an example of national and global scale modeling of human

epidemics based on human movement, but there is a need for

a network modeling platform for large-scale landscapes outside

human transportation networks.

The prediction of the progress of an epidemic can be

mathematically represented using many different models. In SEIR

models, individuals in the population are categorized as Suscep-

tible (S), Exposed (E), Infected (I), or Recovered (R). Depending on

the selected subset of possible compartments, SI, SIR, SEIR, or

SIS models can be considered, which can be appropriate for

different infectious processes. A set of differential equations can be

written to represent the change in the fraction of the population in

each compartment over time. In a SIR model, the existence of

a threshold for the aggressiveness of the infection above which

a major outbreak will occur was proved by Kermack and

McKendric in 1927 [26]. When the population is not very large,

deterministic models are not accurate enough, so probabilistic

models were proposed where a set of differential equations can be

written to represent the change in the probability that a single

node is in a given compartment. For some probabilistic models, an

epidemic threshold can be defined [27]. When the homogeneity

assumption is not realistic, a further refinement can be obtained by

the use of the concept of a contact network; a given node is only in

contact with the subset of nodes to which it is linked. Using

a network to represent the contacts among nodes, model

predictions can become more accurate at the expense of increased

complexity. Furthermore, depending on the scale of the repre-

sentation of the population, nodes can represent not only

individuals but also groups of individuals. In the latter case the

models are called meta-population schemes and include in-

formation about the movements of subpopulations between nodes.

A network is characterized by an adjacency matrix (a matrix of

link weights or indicators for the presence or absence of a link

between two nodes) and by features such as the node degree (the

number of links connected to a given node), shortest path (the

shortest distance between any given pair of nodes), and the

diameter (the longest shortest path). For all the network-based

models, the topology of the network plays a key role in

determining the characteristics of the spreading process [28].

Considering for example scale free networks, networks where the

degree distribution follows a power law, Pastor-Satorras and

Vespignani [29,30] proved the absence of the epidemic threshold.

In other words, all the infections can cause epidemics in infinite

scale free networks, and for this reason such networks are very

vulnerable. Conversely, regular networks, with almost constant

node degree, and networks with a large diameter show robustness

with respect to virus spread [31]. For general networks, Van

Mieghem et al. [32] and Wang et al. [33] proved that the epidemic

threshold is proportional to the inverse of the largest eigenvalue of

the adjacency matrix. The model proposed by Wang et al. [33],

and further extended by Schumm et al. [34] to weighted networks,

serves as the basis for our model development below.

The structure of network models uses information about the

status of individual nodes in an explicit way, suggesting their

potential for analysis of sampling strategies. Strategies for

identifying nodes in epidemic networks that are particularly

important for vaccination efforts have been the subject of several

studies (e.g., [10,11,12,13,14]). And in the context of computer

network analyses, strategies for sampling the most important links

have been evaluated (e.g., [35]). However, strategies for sampling

invasive species in the resource-intensive context we have

discussed here represent additional challenges

[36,37,38,39,40,41,42,43,44,45]. In this study, we present what

is, to our knowledge, the first continental-scale test of the utility of

network metrics for optimizing sampling strategies under limited

resources, based on one of the most extensive data sets for an

invasive species. The soybean sentinel plot network has been held

up as an example of what can be accomplished in integrated

national research programs such as the US National Ecological

Observatory Network (NEON) [46]. The sentinel plot dataset is

also an important resource for evaluating optimal sampling

approaches for use in programs such as NEON.

Our first objective was to develop a dynamic network model for

soybean rust in the USA, using the sentinel plot dataset and local

information about host availability and wind speed and direction.

We went a step beyond the model of Margosian et al. [24], by

estimating parameters to describe the probability of movement

between county nodes based on a subset of the sentinel plot dataset

and by validating the model using another subset. Unlike the

models of Balcan et al. [25], our model was based on probabilities

of invasive species dispersal outside human transportation net-

works. Our second objective was to use this model to evaluate a set

of strategies for sampling invasive movement under increasing

limits on sampling resources. Beginning with the complete sentinel

plot network, we evaluated the error in predictions when a smaller

subset of the sentinel plots was retained following each of the

following four strategies: (i) random selection of the subset, (ii)

weighted probability of inclusion based on geographic zone, (iii)

selection of the subset based on historical frequency of infection,

and (iv) selection based on frequency of infection weighted by node

strength (where the node strength of a given node is the sum of all

link weights linked to that node, so that higher node strength

indicates a node that is more ‘connected’).

One of the most intensely studied invasions has been that of

soybean rust in the USA, an invasion of interest for several

reasons. First, this invasive pathogen, Phakopsora pachyrhizi, is of

great economic importance to soybean production. The disease

had already caused great losses in other countries [47]. For

example, in Brazil huge losses were reported in 2003 [48]. P.

pachyrhizi can also infect over 95 other leguminous species [49], so

its impact on native legumes is yet to be fully appreciated. Second,

the ecology of the pathogen in the US allows for the study of

‘replicate’ invasions. The disease overwinters in the southeastern

US, where the weed kudzu acts as a reservoir, and migrates

annually to the north by windblown spores [50]. Third, the data

set assembled by the impressive team studying soybean rust is one

of the most substantial available for the study of invasive species.

Significant efforts in modeling of soybean rust began about two

decades ago [51] and the disease was detected in the continental

United States in 2004 [52]. A network of hundreds of sentinel plots

was organized by soybean researchers and organizations [53], as

discussed in more detail below. An integrated aerobiological

modeling system (IAMS) was developed to use the sentinel plot

data for predicting progress of soybean rust, as described in Isard

et al. [54,55,56]. For soybean rust, a critical decision for farmers is

whether and when to apply a fungicide. If a fungicide is applied

too early or in areas that will not be reached by the pathogen, the

fungicide is wasted; if fungicide is not applied when needed,

soybean yields will be substantially reduced [57]. Estimates of

savings to U.S. soybean growers that have resulted from the

extensive monitoring system in combination with the IAMS vary

greatly [53,57] and include a conservative calculation of ca. $200

million per year [58].

Highly Connected Counties to Study Invasive Spread
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Methods

Invasion/Epidemic Model
As an overview, we developed a weighted dynamic network

model in which the weights on the links were based on wind speed

and direction and host density, which are driving factors for the

spread of aerially dispersed pathogens. The centroid of each

county in the US was considered to be a node or vertex. Some

counties, most commonly in the southeastern US, contained

sentinel plots, and thus functioned as ‘informative nodes’. The

model presented here is a SI model within seasons. Also taken into

account was the presence of the introduced weed kudzu (Pueraria

montana) which acts as a reservoir for the pathogen and results in

faster movement of the disease in regions where the weed is

abundant. The rust status data collected from the soybean sentinel

plots in the United States formed the basis for the construction and

validation of the prediction model. The weight parameters were

selected based on the construction data sets such that they gave

reduced errors over the construction datasets. The selected weights

were then applied to predict the progress of the disease for the

validation datasets. The model was then used to compare four

strategies for predicting epidemic spread when the number of

informative nodes was systematically reduced. The strategy that

performed best allowed good epidemic predictions for our

observation years when the number of sentinel plots was reduced

from approximately 500 to approximately 12.

Computing link weights and infection

probabilities. Within a year, we used an SI model with nodes

classified as being susceptible or infected. We considered the

pathogen as spreading in a directed graph G(N, L) where N is the

set of nodes and L is the set of links, and observed the system in

discrete time steps t[f1,2,::,Tg. We assumed the pathogen moves

across crop fields mainly by wind. We incorporated static as well as

dynamic features of the network into the model, the approximately

static component within a year being the host density (soybean

crop density and kudzu weed density in our case study) and the

dynamic component, including factors such as wind conditions

which can be different at each time step. We modeled the link-

weights as a function of these components where the weights

varied at each time step (Table 1).

The key parameters of the link model are vij and bij(t) which are

combined into a single parameter uij(t) that signifies the link-

weight. Here, vij is a function of the parameters that are

considered constant during the season: distance between nodes,

and total crop density. In our first model, vij has a linear

relationship with density and decays exponentially with distance.

The exponential model and the power law model have frequently

been used to model dispersal of plant pathogens over shorter

distances [59,60]. Equation 1 gives this exponential model where

density is incorporated as a product, following a gravity law model

of density effects [61].

vij~a1(didj)e
{a2lij ð1Þ

Here di is the proportion host density (area of host/total area) in

node i, lij is the distance between nodes i and j, and a1 and a2 are

two parameters. Two potentially useful variations on this model

could be considered. One would include variations on exponential

or power law models for dispersal. Another more general version

of this model would incorporate two more parameters, such that di
and dj are taken to different powers reflecting the potentially

different importance of source and destination node densities.

These two parameters and potentially a parameterization allowing

selection between exponential and power law models could be

useful additions when there is sufficiently extensive data available

at a large scale to estimate the parameters well.

The effect of an environmental variable such as wind can be

incorporated in the model by considering infection rate bij(t) as
a function of wind speed and direction, set to be proportional to

the scalar projection ŵwi(t) of the wind in the direction of the link

between the two nodes i and j (equation 2). Relevant functions

might include the maximum wind speed for a given direction or

average wind speed.

bij~a3ŵwi(t) ð2Þ

We combined vij and bij(t) into a single parameter uij(t)

representing the link-weight as in the following equation 3.

uij(t)~a1ŵw(t)(didj)e
{a2lij ð3Þ

Many other different types of interactions among the distance,

host density and wind could be considered. In a variation of the

link model (equation 4), we considered another model for

comparison in which the host density at source and destination

nodes was added:

uij(t)~a1ŵw(t)(dizdj)e
{a2lij ð4Þ

This might be appropriate in some cases, if the distribution of

densities between source and destination nodes is not important,

Table 1. Symbols used in the network model of pathogen invasion.

Symbol Definition

bij(t) Wind-based component of infection rate between nodes i and j at time t

vij Density- and distance-based component of infection rate between nodes i and j at time t

uij(t) Link-weight based on distance, density and wind between nodes i and j at time t

pi(t) Probability that node i is infected at time t

fi(t) Probability that node i will not receive infection from its neighbors at time t

lij Distance vector between nodes i and j

wi(t) Wind vector at time t at node i

doi:10.1371/journal.pone.0037793.t001
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and fitting this second model allows us to evaluate the

improvement in fit through use of the product of the densities.

Describing now the epidemic model on the weighted network,

the probability of a node becoming infected depends on the

number of infected neighbors. Under a mean field approximation,

the probability fi(t) of a node vi not receiving infection from its

neighbors is

fi(t)~ P
j[Ni

1{uij(t)pj(t)
� �

ð5Þ

where pj(t) is the probability of node j being infected at time t, link

weights uij[½0,1�represent the level of contact, and Ni is the set of

neighboring nodes of node i. As a consequence, the probability pi(t)

of node i being infected at time t is expressed as in equation 6.

pi(t)~1{(1{pi(t{1))fi(t) ð6Þ

Over time we updated the value of bij(t) as a function of the wind

data, and computed the probability of infection of each node at

each time step.

Error definition. For the observed dataset, a value of 1 is

assigned to the nodes which are observed as being infected and

a value of 0 is assigned to the nodes which are observed not infected

at time t. The simulation generates the predicted probabilities for

infection of each node in the next time step. We define the error as

the absolute difference between the data, considered as 1 if the

node is infected or 0 if the node is healthy, and the correspondent

infection probability computed by the model at the same time.

Considering the errors related to infected nodes and the errors

related to healthy nodes separately, the total error Ein(t) in

observed-infected nodes for time t can be computed as

Ein(t)~
XNin(t)

i~1

(1{pi(t)) ð7Þ

where Nin(t) is the total number of infected nodes at time step t.

Similarly, the total error in observed-healthy nodes Ehn(t) for the

time-step t can be computed as

Ehn(t)~
XNhn(t)

i~1

pi(t) ð8Þ

where Nhn(t) is the total number of healthy nodes at time step t.

The average error can be calculated for comparison across time

steps where sampling effort may vary. The mean error in infected

nodes for time step t can be computed as

ÊEin(t)~

PNin(t)

i~1

(1{pi(t))

Nin(t)
ð9Þ

and the mean error in healthy nodes for time step t can be

computed as

ÊEhn(t)~

PNhn(t)

i~1

pi(t)

Nhn(t)
ð10Þ

Finally, the total error is obtained using a convex sum of error in

the observed-infected nodes and the error in observed-healthy

nodes

ÊE~aÊEinz(1{a)ÊEhn ð11Þ

where a is selected to assign different weights to errors in observed-

infected nodes and errors in observed-healthy nodes.
Strategic reduction of invasion monitoring nodes. Once

a model has been created, strategies can be developed to reduce

the number of informative nodes necessary for predicting invasive

movement accurately. One criterion for selecting a subset of nodes

is to maximize the information obtained about the whole system.

This can be performed through maximum entropy sampling.

Unfortunately, this problem has been proven to be NP-Hard, such

that the complexity grows rapidly with the size of the network [62].

Therefore, heuristic approaches are necessary to solve the

problem.

When only a limited number of nodes can be sampled, there are

several potential methods for selecting the most useful nodes. Here

we discuss four methods in increasing order of information needed

for implementation. Random selection of nodes is one approach,

but does not make use of any information about the system. It may

be used as a reference or ‘control’ method for determining the

improvements in sampling performance provided by other

methods. A second candidate approach is to sample progressively

more heavily in zones where there is an a priori reason to expect

that disease is more likely to occur. A third candidate approach is

to select nodes that have been observed to be invaded more

frequently in the past. A fourth candidate approach is to use

information about the network traits, themselves, where a network

trait such as node strength might be used as a measure for selecting

nodes for sampling.

The Case of Soybean Rust in the United States
Data. We used the most extensive and coordinated data set

currently available for any plant disease, and an exceptional data

set for any invasive species, which illustrates the potential for

NEON and similar megaprojects. The data from the US network

of soybean sentinel plots from the years 2005 to 2008, publicly

available from the ipmPIPE website (www.ipmpipe.org), was used

to fit and validate our model. Soybean rust was first detected in the

continental U.S. in early November 2004 after the soybean

harvest. The sentinel plot monitoring system was established prior

to the onset of the subsequent growing season in 2005. The rust

dataset for each of the years from 2005 to 2008 was comprised of

rust status (whether infection was found or not) for a given sentinel

plot and the date of observation. The majority of sampling was

done on a weekly to biweekly basis. Two soybean cultivars, one

from the maturity group typically used in the surrounding area

and the second from an earlier maturing cultivar group were

generally planted on dates 1–2 weeks earlier than those in the

surrounding commercial soybean fields. Scouting generally

occurred on a weekly basis once the soybean plants began to

flower and continued until they began to senesce. Prior to

flowering scouting was usually less frequent. The sentinel plot

network focuses on eastern counties (Fig. 1). Infection has been

concentrated in the Southeastern United States, in part because of

the presence of the weed kudzu in this region and the potential for

overwintering in this perennial host.

The sentinel plot dataset did not include data from all counties

at each time interval. There are many ways to estimate missing

data in a map, with different types of assumptions and levels of

complexity and accuracy. We estimated the soybean rust status for

Highly Connected Counties to Study Invasive Spread
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counties without observations using a simple but effective

approach, as follows. If a node had previously been infected that

season but had no new observations, it was assumed to continue to

be infected. Our rationale was that once a county had been

infected, even if soybean rust was no longer found in the sentinel

plot it was likely to be present somewhere in the county. For nodes

that had not been infected that year, we identified any other

observed nodes within a distance d, increasing d from 0.5 degrees

as necessary to encounter an observed node, and replaced the

missing value with the mode of the neighboring nodes.

The soybean abundance data for the years 2005 to 2008 were

accessed from the US National Agricultural Statistics Service

(http://www.nass.usda.gov/Data and Statistics/index.asp). The

data included for each year and county the FIPS identification

number unique to a county, and the corresponding soybean area

in acres. The soybean density was computed by normalizing the

soybean acreage with the total county acreage. We also used

kudzu abundance data with the corresponding kudzu area by

county, using a data set compiled by Darryl Jewett in 2000 in

which approximately 2 million acres of kudzu were reported. The

density of kudzu was obtained by normalizing the kudzu acreage

with the total county acreage. Wind data from first order weather

stations were obtained from the National Climatic Data Center’s

website. These data included the daily average resultant wind

speed and wind direction for US first order weather stations,

generally based at airports. Because first order weather stations are

limited in number, we used the average wind velocity in space and

time for each state.

Soybean rust model. There were approximately 500 in-

formative nodes at each time step. We worked with one month

time steps beginning in May and ending in September, the periods

where data were generally available, giving four time steps per

year and a total of 16 time steps across all the years.

We used the weight uij(t) as in equations 3 and 4, where vij here

is a function of the parameters which are constant during the

season, such as distance between the nodes, and soybean density

and kudzu density added together, to provide a total host density.

In the case of soybean density, we considered a constant level

during the growing season. We used a linear relationship between

the wind-based infection rate, bij(t), and the wind as a specific case

for equation 2,

bij~a3w
_

i(t)~a3
~llij :~wwi(t)

Dlij D
ð12Þ

where~llij is the distance vector between the two nodes i and j, ~wwij(t)

is the wind vector at a time t and w
_

i(t) is the nonzero scalar

projection of the wind vector at time t in the direction of the link

between the two nodes, which was normalized by 13 mph (a speed

determined based on the maximum monthly-average wind speed

observed in any county during any month of the years considered).

We estimated parameters for the two models: a multiplicative

model with gravity law for host densities (eq. 3), and a multipli-

cative model with sum of host densities (eq.4) based on the 2007

construction data set and validated the model with the 2005, 2006,

and 2008 data sets. We used equations 5 and 6 to compute the pi
for each time step. The parameters in the model were estimated by

evaluating model fit for a grid of parameter values representing

a wide range of combinations. The set of parameters which gave

the least total error was selected, following equations 9, 10, and 11.

For most time steps, a range of parameter values all gave the

lowest error, so a single parameter value could be used for the set

of four 2007 time steps. The observed-infected nodes were given 9

times more weight than the observed-healthy nodes for evaluating

the final error, i.e., a=0.9. Thus, the error if all nodes were

predicted infected would be approximately 10%. The gravity law

model was selected as the one providing minimum error.

Soybean rust prediction. We applied our model to make

predictions for the summer months of the years 2005 to 2008. We

chose to focus on the summer months from the beginning of May

to the end of September because soybean rust was less active

during the other months which were not suitable for the pathogen

to survive and propagate in much of the country. We used year

2007 data for construction of the model and years 2005, 2006,

2008 for validation of the model. For the one-step predictions, we

used data from a first time-step to predict the next time-step, and

the second time-step to predict the third and so on (Table 2). This

approach is similar to what would be used when predictions are

made into the near future as a support tool to help farmers decide

Figure 1. Observed soybean rust status in the United States in August 2007. Red nodes represent counties where infection was observed at
least once during the time period, green nodes represent counties where no infection was found in sampling during the time period, and grey nodes
represent counties where no observation was made during the time period.
doi:10.1371/journal.pone.0037793.g001
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about fungicide use depending on the prediction. For multi-step

predictions, a single time-step could be used to predict many time-

steps into the future, for example when predictions are needed for

an entire season or year or farther into the future even if data are

not available for intermediate steps. Shown in Figures 1, 2 are

examples of the maps for observed rust status and the prediction

for the next time step.

The parameter estimates for the multiplicative model with

a gravity model for source and destination densities for all the year

2007 monthly steps over summer months (i.e., May 2007 to June

2007, June 2007 to July 2007, July 2007 to August 2007, and

August 2007 to September 2007) were a1=0.01 and a2=1. For

the multiplicative model with the sum of source and destination

densities they were a1=0.01 and a2=10.

Evaluation of importance of host density and wind

velocity data in the model. In order to test the importance

of host density and wind as model components, we randomly

sampled the densities and wind values with replacement for all the

counties. We compared the performance of models for the

observed variables and for the randomized variables. First, the set

of observed county host density values were randomly reassigned

with replacement, maintaining the original observed wind speeds

and directions for each county. The host densities were randomly

reassigned in 500 independent simulations, and the error

associated with predictions (based on the parameter estimates for

the observed densities) for each simulation was recorded. The

observed error was compared to the distribution of errors from the

simulations. The errors from the simulations were ranked from

smallest to largest and the position of the observed error within the

list was noted. The rank of the observed error among the 500

values of the bootstrap distribution from randomizing host density

was found to be 1 for all time-periods, indicating that the original

observed host density data gave the least error. All the simulated

reassignments of host densities degraded the performance. Second,

the set of wind speeds and directions was randomly reassigned

with replacement, maintaining the original observed host densities.

The observed error was compared to the distribution of errors

from 500 simulations based on the randomly reassigned wind data.

The rank of the observed error among the 500 values of the

bootstrap distribution from randomizing wind velocity was found

to be 1 for all time-periods, which indicates that the original wind

velocity data gave the least error. Again, all other simulated

reassignments of wind velocities degraded the performance.

Inclusion of the actual host density and wind data improved the

model predictions.

Strategic Reduction of Soybean Rust Sentinel Plot
Network
We implemented the four approaches to selecting sampling

nodes discussed above for the soybean rust sentinel plot network.

For this data set, the number of sentinel plots sampled in each

monthly transition typically varied between 400 and 600. We

based the reduction in percentage plots available for each monthly

transition on the number of plots with information available for

that transition. We evaluated the error resulting when a reduced

percentage of the original observed sentinel plot network was used

for making model predictions for the 16 monthly transitions that

had substantial observation numbers and higher numbers of

infected nodes. For cases where sampling nodes were removed at

random, we generated 50 realizations.
Random selection of informative nodes. The simplest way

to reduce the total number of sentinel plots is to randomly sample

the entire observed set of sentinel plots. We evaluated the error

resulting when x% (10%, 25%, 50%, 75% and 100%) of the

original observed sentinel plot network was used for making model

predictions. This analysis represents a type of ‘control’ for

evaluation of other methods, since it is based on, in effect, no

strategy.
Zonal selection. In this method, we exploit the fact that

disease has most commonly been found in the Southeastern US

and has rarely reached the north or the west. Here, we have more

nodes in the Southeast and fewer nodes in the remaining regions.

Table 2. Error percentages for different time steps for the network models considered, where 2007 time steps were used for
model construction and other years were used for model validation.

Year Time step
Multiplicative model with gravity
model for densities

Multiplicative model with sum
of densities

2005 May–June

June–July 2.1 2.9

July–Aug 2.5 2.5

Aug–Sept 3.3 4.3

2006 May–June 2.5 4.0

June–July 3.5 4.5

July–Aug 1.1 3.7

Aug–Sept 2.1 5.0

2007 May–June 1.1 10.0

June–July 1.5 14.6

July–Aug 2.7 3.0

Aug–Sept 4.4 4.0

2008 May–June 3.4 3.3

June–July 2.6 2.1

July–Aug 3.1 3.1

Aug–Sept 0 1.2

doi:10.1371/journal.pone.0037793.t002
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This way we have a higher density of plots in regions of greater

observed frequency of infection. We divided the country into three

zones as follows:

1. Region1 between 25.61 and 38 degrees latitude and 298 and

267.63 degrees longitude. This is the Southeastern region with

highest infection frequency.

2. Region2 between 38 and 44 degrees latitude and 2110 and

298 degrees longitude.

3. Region3 between 44 and 48.77 degrees latitude and 2124.15

and 2110 degrees longitude.

We maintained a density of 80%, 10% and 10% of the total

number of informative nodes in the network for region 1, 2 and 3,

respectively.

Infection frequency based selection. In this method, we

calculate the frequency with which each node has been observed

infected (Fig. 3), and then order the nodes from highest to lowest

values of frequency. The resulting network consists of nodes with

non-zero frequency or frequency above a certain number.

Combination of past infection frequency and selection

based on node strength. In this method, infection frequency

and node strength were weighted in the ratio 80:20 (after they had

been scaled to be between 0 and 1) for each node, and the nodes

were ordered in decreasing order of this weighted value. Only the

highest x% of the whole set of nodes were considered. The

rationale for this weighting was that it was still useful to emphasize

counties where the epidemic was typically active, but that the

‘highly connected’ nodes should also be emphasized.

Results

Results for Strategic Reduction of Informative Nodes or
Sentinel Plots
We analyzed the effects of the random sampling approach on

the error in prediction using our model for reduction to 10%,

25%, 50%, and 75% of the total set (compared to 100%) and

plotted the results for 50 runs for each of the 16 month-to-month

transitions. There is rapid decay in performance for random

sampling when the percentage sentinel plots retained goes below

50% (Fig. 4). With strategic zonal sampling, a marked improve-

ment in the performance is achieved (Fig. 4). This summary of

random selection of monitoring nodes and zonal selection strategy

was constructed using the average percentage errors over 50 runs

at each time step from 2005 to 2008 for both strategies.

Sentinel plot subsets selected using infection frequency and

combined infection frequency and node strength gave lower

prediction errors. The addition of node strength information to the

infection frequency information yielded lower errors in prediction

(Fig. 5). The total number of nodes at each time step was about

400 to 600, hence 10% of nodes is about 40 to 60 nodes.

The summary of random selection of monitoring nodes and

zonal selection strategy was constructed using the average

percentage errors from all time steps from 2005 to 2008 for both

strategies. For the infection frequency based selection, the

frequencies varied from zero to ten. Since this strategy could not

be evaluated for the exact same percentage of original nodes as the

other strategy, the values were plotted by taking the percentage

nearest but lower to x-axis mark-up percentages. The node

property based selection strategies outperformed the random and

zonal selection strategies. The addition of node strength in-

formation to the infection frequency information improved the

performance substantially, with prediction errors below 5% even

for when only 2.5% of the original sentinel plots were maintained

(approximately 12 sentinel plots at each time step).

Discussion

We developed and validated what is, to our knowledge, the first

national-scale dynamic network model for an invasive species

moving outside of human transportation networks. We compared

two models for the link weights. Overall, the multiplicative model

with densities multiplied as specified by the gravity law [61,63]

performed best over a wide range of time periods. The gravity

model may not be the most useful in all invasive scenarios [64], so

for invasive species that are markedly different than soybean rust it

may be useful to start by comparing a range of model types. The

multiplicative model does not allow direct analysis of the

Figure 2. Prediction for soybean rust infection in the United States in September 2007 based on 2007 observations through
August. Dark red nodes represent counties which were predicted to be infected with high probability, green nodes represent counties which were
predicted to be uninfected with negligible probability of infection, and all other shades from green to dark red represent increasing probability of
infection.
doi:10.1371/journal.pone.0037793.g002
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Figure 3. The frequency of soybean rust infection observed at each county node in the United States during our study intervals.
Colors represent infection frequencies: lilac ($10), dark pink (5–9), red (4), orange (3), gold (2), yellow (1) and grey (0).
doi:10.1371/journal.pone.0037793.g003

Figure 4. Summary of the performance of sentinel plot subsets for predicting soybean rust infection, where subsets were
determined using random selection and zonal selection, over all the years. Red plots indicate results of random selection, and blue plots
indicate results of zonal selection. Strategic zonal selection gives lower errors compared to random selection. Each box indicates the distribution of
the means for each of the 16 time steps analyzed.
doi:10.1371/journal.pone.0037793.g004
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importance of the different factors involved as does an additive

model, as we cannot change the weights associated with the

distance, density and wind independently. But a resampling

analysis demonstrated that both host density and wind speed and

direction were important components of the model. The pre-

diction errors for the model were generally low. This is in part

a reflection of the fact that the disease was not observed to make

substantial ‘hops’ during the observations available for modeling;

that is, it was not common to have large uninfected regions

dividing infected areas. This made fitting easier. (When the disease

did move into the interior of the U.S., spores were rained out

along the entire route of the long-distance incursions, but those

spores landing in the more southern locations along the route

resulted in more rapid disease progression due to warmer autumn

temperatures that were more disease-conducive. Thus the disease

appeared to spread along the route from south to north without

leaving large gaps in its distribution (S. Isard, personal observa-

tion).) Our definition of prediction error, with a heavy weight on

observed-infected nodes compared to observed-uninfected nodes,

means that a few nodes incorrectly predicted to be infected will

have negligible effect on the prediction error. The rationale for this

choice in weights was that (1) it is more important to correctly

predict infection than to correctly predict absence of infection, (2)

absence of infection in a sentinel plot may occur even when

infection does occur within the county represented by the sentinel

plot, while infection of the sentinel plot is sufficient to prove

infection within the county, and (3) the observations include a large

number of sentinel plots in the north that have never been

infected, so it is ‘too easy’ to correctly predict their absence of

infection.

While models such as that of Wang et al. [33] consider a network

to be homogeneous, our model also takes into account the weights

associated with the links [34] and we used observed field data to fit

these weights and test the model performance. The crop network

model developed by Margosian et al. [24] considers links between

adjacent counties and the effect of crop density in these counties.

Our model enhances such a network model by not only

considering the adjacent counties but also those that are further

apart based on a flexible threshold on the distance, and we also

incorporated the effect of wind speed and direction and the

availability of an alternative host (kudzu) as a reservoir for the

pathogen. While the model currently takes into account the effect

of wind in carrying the spores from one location to another, other

factors like temperature [65], moisture [66], and UV radiation

[67] could also be incorporated. Incorporating spore trap data in

the model as a measure of amount of inoculum present in an area

could further improve the predictions. Another potential improve-

ment, when data are available, would be information about what

decisions farmers have made for disease management; if farmers to

the south are commonly using fungicides to manage soybean rust,

disease risk in the north may be reduced. Ultimately models of

farmer decision-making in response to dynamic weather systems

[68,69,70,71] may be merged with network models of disease for

evaluation of linked epidemic and decision-making networks [23].

A related measure, and also potentially expensive to obtain, would

be information about infection severity within counties.

In the evaluation of strategies for selecting subsets of sentinel

plots under resource limitations, the use of a network model

metric, node strength, proved to be valuable. The strategy that

combined use of past frequency of infection with node strength

allowed predictions of epidemic progress with errors below 5%

Figure 5. Summary of the performance of sentinel plot subsets for predicting soybean rust infection, where subsets were
determined by infection frequency based selection and weighted infection frequency and node strength based selection
(weighted in the ratio 80:20), over all the years. Red plots indicate results of infection frequency based selection, and blue plots indicate results
of weighted infection frequency and node strength based selection. Addition of node strength information to the infection frequencies of the nodes
lowers the errors significantly. Note that the range of errors depicted is narrower than in Figure 4. Each box indicates the distribution of the means for
each of the 16 time steps analyzed.
doi:10.1371/journal.pone.0037793.g005
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even when the number of sentinel plots was reduced from

approximately 500 per time step to approximately 12 per time

step. This information allows maintenance of prediction quality

with a much smaller resource demand. Obtaining the initial

information about frequency of infection is a prerequisite and is,

itself, potentially expensive. However, once reliable information

about frequency of infection over time is available, the additional

information about node strength is relatively inexpensive to obtain

through modeling.

The greatest efficiency for predictions will be obtained when

models and parameter estimates can be adjusted for new systems

without the requirement for parameterizing models completely de

novo. This type of modeling approach has general application for

other plant or animal epidemics or insect infestations studied

across large or small landscapes [72]. The disease prediction

model can potentially be applied to other wind-borne invasives

with minor species-specific adaptations or modifications. For

example, the new race of the wheat stem rust pathogen, Ug99,

may be introduced to the US in the near future, where effective

disease resistance is not common in wheat varieties [73]. This

pathogen will likely exhibit a similar pattern of annual invasion,

overwintering in the south, in this case further west in south Texas

and northern Mexico, and moving northward in the US during

the wheat growing season. (A simplifying factor for soybean rust

modeling is that effective disease resistance is not yet available. For

other pathogens, such as wheat rust fungi, the host landscape will

be disrupted through the deployment of different disease resistance

genes.) The approach for reduction of the number of monitoring

sites can also potentially be generalized to wheat stem rust and

other monitoring networks, by identifying those locations a priori

which are most likely to be frequently infected and which are most

likely to have high node strength. Future work for strategic

positioning of monitoring sites may also involve sampling based on

other node characteristics such as betweenness and clustering

coefficients.

Soybean rust is a dramatic example of a pathogen for which

agricultural and unmanaged host systems are linked, through

soybean, kudzu, and other legume species [49,50,74]. Network

models have also been used to study movement of Phytophthora spp.

through landscapes of multiple host species [41]. Network models

may also prove useful for studying large scale epidemics of other

pathogens shared among host systems, such as Barley yellow dwarf

virus, which impacts competition among California native grasses

and invasive weedy grasses [75,76], and Macrophomina phaseolina,

where populations are shared among tallgrass prairie and Great

Plains agricultural systems [77]. While increased host biodiversity

may generally provide disease regulation as an ecosystem service,

the presence of different types of hosts in landscapes may in some

cases increase disease risk [78].

Evaluation of invasion networks will be an important compo-

nent of climate change scenario analyses at continental scales

[79,80,81]. Once a region is saturated with inoculum due to

disease-conducive weather conditions, the effects of breaks in host

connectivity may be less important for slowing disease [82]. Many

small-scale forecasting models exist for reproduction of plant

pathogens, arthropods, and other species as a function of weather,

where these may be rescaled for use in national or continental

network models [83]. The effect of host community variability on

epidemics has been evaluated in many agricultural systems at

smaller scales, where connectivity may be manipulated experi-

mentally most readily within fields of mixed cultivars or species

[84]. For example, the effect of disrupted host connectivity

through cultivar mixtures was higher for a wheat rust than another

facultative biotroph wheat pathogen in a direct experimental

comparison [85].

Dynamic network models are likely to prove an important tool

for integrating information from national and global monitoring

systems such as the proposed US National Ecological Observatory

Network program and new programs in response to potential new

invasives such as wheat stem rust race Ug99. There are a number

of programs for continental ecological studies such as NEON that

might benefit from the example of the coordinated soybean rust

sentinel plot network and analyses [46,86,87,88] and from the use

of network models to guide analysis of the relationships among

communities in different zones of an observatory network [2]. As

part of the educational and citizen science programs of national

ecological studies such as NEON [89], links with farmers and

extension agents who have strong interests in the analysis of

invasive pathogens has potential to create new synergies. The new

technologies for broad geographic analyses of remote sensing data

in programs such as NEON [90,91] may also contribute as an

information source for tracking plant infection processes, especially

for cases where the confidence associated with distinguishing

effects of pathogens from other stressors is high.
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