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Abstract
Compelling evidence indicates that hippocampal dentate granule cells are generated throughout human life and into old age. While
animal studies demonstrate that these new neurons are important for memory function, animal research also implicates these
cells in the pathogenesis of temporal lobe epilepsy. Several recent preclinical studies in rodents now suggest that targeting these
new neurons can have disease-modifying effects in epilepsy.
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Introduction

The hippocampal dentate gyrus has long been implicated in the

development of temporal lobe epilepsy. Functional studies of

the dentate in rodents demonstrate that this brain region is

important for regulating the flow of excitatory input into the

hippocampus. Physiological studies in animals establish that

this function is impaired in epilepsy.1,2 Both physiological and

anatomical studies reveal extensive restructuring of the dentate

circuitry in animals and humans with epilepsy; restructuring

that is predictive of an increase in excitability.3

Granule cells are unusual—they are generated throughout

life in animals and are the only neuronal type with evidence for

significant adult neurogenesis in humans.4,5 Over the past 2

decades, it has become clear from animal studies that these

newborn granule cells are particularly vulnerable to disruption

in epilepsy and are responsible for many of the abnormalities

observed in the epileptic dentate.6-12 The vulnerability of these

new neurons to disruption, their role in regulating hippocampal

excitability, and their protracted production throughout life has

led to the hypothesis that disrupted proliferation and integration

of adult-generated granule cells mediates the development of

temporal lobe epilepsy (Parent and Kron, 2012).13 Consistent

with this hypothesis, genetic deletion of the mechanistic target

of rapamycin (mTOR) pathway inhibitor phosphatase and ten-

sin homolog (PTEN) from newborn granule cells produces

epilepsy in rodents, demonstrating that disruption of this neu-

ronal population is capable of causing epilepsy.14

Evidence That Adult-Generated Granule
Cells Contribute to Epileptogenesis

Initial studies focused on determining whether adult-generated

granule cells are required for epileptogenesis. These studies

took advantage of existing antimitotic drugs to kill proliferating

granule cells. For example, Jung and colleagues15 found that

the chemotherapy agent cytosine-b-D-arabinofuranoside

reduced the number of abnormal granule cells following pilo-

carpine status epilepticus in rats, leading to a reduction in
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seizure frequency. A later study produced similar results in

pilocarpine-treated rats.16 More recently, Neuberger and col-

leagues17 suppressed neurogenesis after lateral fluid percussion

injury using a vascular endothelial growth factor receptor 2

antagonist and demonstrated that treated animals took signifi-

cantly more time to develop seizures following chemoconvul-

sant challenge with kainic acid.

Advances in the development of transgenic mouse model

systems have provided new opportunities to test the role of

adult neurogenesis in epilepsy. These approaches provide

superior cellular and temporal specificity, overcoming some

of the limitations of pharmacological methods. Cho and col-

leagues18 used a transgenic mouse model to block neurogenesis

beginning 1 month before pilocarpine-induced status epilepti-

cus. Blocking neurogenesis significantly reduced seizure fre-

quency in the animals and improved cognitive function.

Hosford and colleagues19,20 found a similar effect when they

induced expression of the diphtheria toxin receptor in newborn

granule cells 5 weeks prior to pilocarpine-induced status epi-

lepticus, and then ablated the newborn cells expressing the

receptor 3 days or 3 to 4 months after status epilepticus. New-

born cell ablation reduced seizure frequency by about 50%.

Notably, treatment was still effective when applied months

after pilocarpine treatment—after the onset of spontaneous sei-

zures—suggesting that manipulations targeting newborn cells

could be beneficial in the treatment of chronic epilepsy.

Despite promising results in some studies, reducing neuro-

genesis has not always been found to mitigate epilepsy devel-

opment. Pekcec and colleagues21 used a pharmacological

approach to reduce neurogenesis in the self-sustained status

epilepticus model in rats and found no effect of treatment on

seizure frequency. Zhu and colleagues22 used methylazoxy-

methanol acetate in a variation of the pilocarpine model in

mice, and also found no effect. Brulet and colleagues23 used

a transgenic mouse model approach to reduce neurogenesis by

deleting the transcription factor NeuroD1 from granule cell

progenitors. This produced a partial reduction in neurogenesis,

but seizure frequency was similar between control and knock-

out pilocarpine-treated mice. Negative results could be attrib-

uted to off-target drug effects, potential toxic effects of

systemic antimitotic drugs, and/or insufficient reductions in

neurogenesis. However, it is also possible that newborn granule

cells are not required for the development of epilepsy in all

cases. This wouldn’t be a huge surprise, as many epilepsies

exhibit little hippocampal involvement (eg, focal cortical dys-

plasia). Even among temporal lobe epilepsy models, however,

the dentate—and, correspondingly, adult neurogenesis—may

only play a role under certain conditions. Classic work, for

example, shows that ablation of the dentate gyrus with colchi-

cine delays but does not prevent or reverse electrical kindling.

This work demonstrates that early stages of epileptogenesis can

proceed and be maintained without the dentate gyrus.24 Simi-

larly, studies indicating that neurogenesis ceases after intrahip-

pocampal kainic acid injection argue against a role for new

cells in this rodent model of temporal lobe epilepsy,25 although

a role for cells born shortly before the insult cannot be

excluded.26 Neurogenesis also shows complex temporal

dynamics, increasing in the weeks after an insult, but decreas-

ing chronically.27 Based on these considerations, the efficacy

of blocking neurogenesis on seizure development may depend

on both the model used and the time-point targeted.

Evidence for Protective Effects of
Adult-Generated Granule Cells

Further complexity arises from studies examining the role of

adult-generated granule cells in normal animals. Physiological

studies of newborn granule cells in rodents demonstrate that

these new neurons go through a developmental period during

which they preferentially activate inhibitory interneurons in the

dentate.28 Correspondingly, blocking neurogenesis in rodents

can enhance hippocampal excitability29 and increase the sever-

ity of kainic acid and pilocarpine-induced status epilepti-

cus.30,31 These apparently conflicting findings can be

explained by postulating that newborn granule cells play dif-

ferent roles in healthy and epileptic brains. Under healthy con-

ditions, granule cells innervate excitatory CA3 pyramidal cells,

but also innervate large numbers of hilar interneurons and

mossy cells.32 Both hilar interneurons and mossy cells mediate

feedback inhibition of the dentate. In temporal lobe epilepsy,

by contrast, many hilar neurons are lost, and newborn granule

cells form recurrent connections with neighboring granule cells

via sprouted mossy fiber axons and newly formed basal den-

drites.7,12,33,34 The altered network structure of adult-generated

granule cells in the epileptic brain, therefore, could account for

their contrasting effects on hippocampal excitability.

It also appears that a subset of adult-generated granule

cells in the epileptic brain may retain their protective proper-

ties. Morphological studies of newborn cells in epilepsy

reveal a broad diversity in integration patterns.35 Some

migrate to occupy appropriate positions in the granule cell

body layer, while others migrate to ectopic locations in the

hilus or molecular layer. Some newborn cells develop rela-

tively normal axonal and dendritic projections, while others

form de novo connections with neighboring granule cells via

axonal sprouting or formation of aberrant basal dendrites.

This morphological diversity is paralleled by broad physiolo-

gical differences. Ectopic cells exhibit hyperexcitable fea-

tures,36-38 while cells correctly located in the cell body

layer are comparatively normal.39,40 This diversity highlights

a key limitation of current experiments to manipulate new-

born granule cells in epilepsy. Specifically, existing

approaches cannot discriminate between morphologically

abnormal granule cells that are predicted to be pathological,

and morphologically normal granule cells that may be bene-

ficial. Studies showing beneficial effects of granule cell abla-

tion, therefore, may have hit on fortuitous circumstances

where the net effect of the newborn cells is harmful. It is

conceivable that approaches targeting only abnormal cells

will be more effective, and more broadly applicable.
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Targeting Epileptogenesis to Treat Epilepsy

Studies support the conclusion that aberrant granule cells pro-

mote the development of temporal lobe epileptogenesis in

rodents. It is therefore worth considering if neurogenesis could

be targeted as a treatment for epilepsy in humans.

The first question that has to be resolved is whether adult

neurogenesis occurs in humans. Recent studies provide evidence

both for41,42 and against43 the occurrence of adult neurogenesis.

The topic has been covered in depth elsewhere,44,45 and will

ultimately require further studies to fully resolve. It is abun-

dantly clear, however, that abnormal granule cells are present

in patients with temporal lobe epilepsy.46 These abnormal neu-

rons could be generated in adulthood after an epileptogenic brain

injury, as occurs in animal models. Alternatively, abnormal

granule cells in human temporal lobe epilepsy could follow a

different pattern, arising from mature neurons generated in early

development. A third possibility is that abnormal granule cells

observed in patients with adult-onset epilepsy are generated and

develop abnormal features early in development, but remain

clinically “dormant” until adulthood.

Regardless of when aberrant granule cells are generated in

patients with temporal lobe epilepsy, therapeutic strategies

aimed at mitigating the hyperexcitable effects of these neurons

are likely to be similar, because in the majority of clinical

scenarios, these abnormal cells will already be present by the

time most patients are identified as having epilepsy. While

antimitotics could be used to block neurogenesis after an epi-

leptogenic brain injury, as has been done in epilepsy mod-

els,15,22 the low incidence of epilepsy development after most

injury types—and the lack of biomarkers for epileptogenesis—

make this approach impractical. While blocking neurogenesis

in epileptic rodents improves cognitive performance,18 block-

ing neurogenesis in healthy rodents consistently impairs per-

formance,47 and the same can be predicted for humans.

Approaches that could target aberrant granule cells after the

development of clinical epilepsy would have the broadest

applicability. While transgenic mouse approaches used to elim-

inate abnormal granule cells after disease onset are obviously

not translatable to humans, evidence for the efficacy of delayed

treatment is encouraging,20 and suggests that the therapeutic

window extends beyond the first clinical seizure. Advances in

clinically approved viral delivery vehicles, somatic genetic

manipulations, and epigenetic approaches all hold promise for

new ways to target granule cells. Such approaches also offer

opportunity for the selective targeting of pathological granule

cells—if key molecular differences between these cells and

healthy granule cells can be identified and exploited. While

the exact form of such therapies remains uncertain, one could

imagine that approaches to selectively ablate, silence, or mod-

ify aberrant granule cells could change the course of epilepsy.

Conclusion

Identification of disease-modifying treatments for epilepsy is a

critical focus of epilepsy research. Many laboratories are

exploring a variety of promising approaches to disrupt epilep-

togenesis (targeting mTOR, neurotrophins, inflammation, stem

cell therapies, transcriptional regulators etc). Given this diver-

sity of mechanisms linked to epileptogenesis, and the efficacy

of approaches targeting distinct mechanisms in preclinical

studies, it seems unlikely that any single “silver bullet” will

prevent epilepsy in all at-risk patients. Studies targeting dis-

rupted granule cell neurogenesis seem to follow this pattern,

showing promising effects in some animal models, but not

producing complete seizure remission. Nonetheless, promising

results support continued research toward treatments that may

ultimately look more like current clinical treatments for cancer,

in which multiple pathways are often targeted simultaneously

to improve outcomes. Such treatments take advantage of an in-

depth knowledge of cancer mechanisms to target multiple cell

signaling pathways simultaneously, including advances in

understanding mechanisms of cancer development, progres-

sion, compensatory pathways, tumor microenvironment,

immune interactions, and disease evolution over time.48 Our

understanding of epileptogenesis is still in its early stages rela-

tive to cancer biology. As our knowledge of epilepsy expands,

however, such a multipronged, adaptive-treatment approach

may serve as a model for antiepileptogenesis.

Highlights

� Adult-generated granule cells exert anticonvulsive effects in

healthy brains

� During epilepsy development, adult-generated granule cells

develop abnormal morphological and physiological properties

� Animal studies implicate adult-generated granule cells in the

development of epilepsy
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