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Abstract: The extracellular matrix of the dermis is a complex, dynamic system with the various 

dermal components undergoing individual physiologic changes as we age. Age-related changes 

in the physical properties of collagen were investigated in particular by measuring the effect 

of aging, most likely due to the accumulation of advanced glycation end product (AGE) cross-

links, on the nanomechanical properties of the collagen fibril using atomic force microscope 

nano-indentation. An age-related decrease in the Young’s modulus of the transverse fibril was 

observed (from 8.11 to 4.19 GPa in young to old volunteers, respectively, P,0.001). It is 

proposed that this is due to a change in the fibril density caused by age-related differences in 

water retention within the fibrils. The new collagen–water interaction mechanism was verified 

by electronic structure calculations, showing it to be energetically feasible.

Keywords: collagen, aging, atomic force microscopy, nanomechanics, advanced glycation 

end products, nanotechnology

Introduction
Understanding how the human body ages is complex but timely, as the proportion of 

older population increases. In a recent report by the UK House of Lords,1 it was sug-

gested that children born after 2010 have life expectancies of 96 and 93 years (for girls 

and boys, respectively).2 It is, therefore, essential to understand the nature and impact 

of the aging process on organs, as physiologic and functional characteristics of these 

organs change dramatically. Age-related changes have a deleterious impact on the 

structure and functions of the skin (protection, regulation and sensation).

Although changes can be observed directly at the surface of the skin, their sources 

arise at a molecular level. The skin dermal component is composed mostly of type-I 

collagen, secreted by dermal fibroblasts. The dermis is 2–3 mm thick, making up most 

of the thickness of our skin (80% of which is composed of type-I collagen).3 It is com-

posed of two layers: the papillary dermis (a thin network mesh of type-III collagen) 

and reticular dermis (thick bundles of collagen type-I fibers). These undergo differ-

ent age-related changes.4 Other major components of the dermal extracellular matrix 

(ECM) include elastic fibers (elastin), which provide mechanical elasticity allowing 

responsiveness to physical loading;3,5 proteoglycans, decorin and versican, with a pro-

tein core and sulfated glycosaminoglycan (GAG) chains which are highly hydrophilic 

and provide water retention properties to the ECM;6 and hyaluronic acid (HLA), a 

nonsulfated GAG chain which, due to its hydrophilicity, also has a great capacity to 

bind with water, providing hydration and water transport to the dermis.7,8
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Dermal aging is a complex process with a number of 

changes occurring to the noncollagenous components of 

the dermal ECM (Figure 1). Elastin content declines as it 

is produced less,5 and calcification of elastin fibers occurs, 

causing a deterioration in functional properties.5 With elastin 

turnover approaching a lifespan, structural and physiochemi-

cal changes to the elastin network accumulate with age.9,10 

Decorin and versican undergo changes in their GAG chains, 

with studies showing a reduction in the molecular size of 

their polysaccharide chains.6,11 HLA content in the dermis 

decreases as it is produced less by fibroblasts and disappears 

altogether in the epidermis as a function of age.12 HLA 

synthesized in the dermis also sees a decrease in the size of 

the GAG chain.3

Both collagen and elastin undergo enzymatic and non-

enzymatic cross-links in the ECM as a function of aging13,14 

(Figure 2). Lysyl oxidase (LOX) is an enzyme found in 

the ECM, in fibroblasts in the dermis and keratinocytes in 

the epidermis.15 Following cleavage of collagen N-telopeptide 

and self-assembly of collagen molecules into fibrils, lysine 

and hydroxylysine residues undergo conversion into reactive 

aldehydes which react with other aldehydes or amine groups 

to form immature cross-links, eventually involving further 

amino acids to form mature covalent cross-links such as 

pyridinoline.13 LOX maintains collagen alignment and fibril 

structure16 and is crucial for maintaining homeostasis of 

elastin, with cross-linking preventing excessive elasticity of 

fibers as well as aiding deposition.17 LOX activity is higher 

in skin than in other tissues,18 showing an increase in expres-

sion in aged skin.10 However, the proportion of LOX-derived 

cross-links compared to other covalent cross-links in the 

ECM reduces with age.19 The proportion of nonenzymatic 

(glycation) cross-links, investigated in this study, increases, 

and therefore, they are associated with aging rather than the 

enzymatic LOX-derived cross-links.

Upon secretion of collagen into the dermal ECM for 

assembly into supramolecular structures, collagen can undergo 

an irreversible nonenzymatic glycation reaction, known as the 

Maillard reaction. During this glycation process, aldehyde 

groups from sugars react with amine functional groups found 

Figure 1 Age-related changes to components found within the dermal/epidermal ECM due to intrinsic and extrinsic aging processes.
Abbreviations: AGE, advanced glycation end product; ECM, extracellular matrix; GAG, glycosaminoglycan; HLA, hyaluronic acid; LOX, lysyl oxidase; MMP, matrix 
metalloproteinase; RAGE, receptor for advanced glycation end products; ROS, reactive oxygen species; UV, ultraviolet.
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on the collagen side chains. Further oxidation occurs and 

advanced glycation end products (AGEs) accumulate within 

the collagen matrix.20 Both the rate of collagen turnover and 

the concentration of blood glucose are factors affecting the 

degree of accumulation,19 with some AGEs producing cova-

lent cross-links between the collagen residues.21 Accumulation 

of AGEs due to intrinsic aging has been observed in the human 

skin by immunostaining of histology sections.5

Glucosepane is the most common AGE cross-link (between 

lysine and arginine) resulting from interaction of the collagen 

molecule with glucose, the highest concentrated sugar found 

in vivo.22 Glucose exists mostly in its less-reactive closed 

chain form. Its more reactive open chain form only composes 

0.002% of glucose molecules in vivo; therefore, significant col-

lagen cross-linking requires a prolonged exposure to glucose.23 

A number of other AGE cross-links can also form, such as 

pentosidine,24 DOGDIC (deoxyglucosone lysine–arginine 

cross-link), MOLD (methylglyoxal lysine dimer) and GOLD 

(glyoxal lysine dimer),17,21 among others (Figure 2). Deoxyg-

lucosone and glyoxal are formed due to fragmentation of the 

Amadori product (an intermediate precursor product to an 

AGE in the Maillard reaction) and are highly reactive, although 

they are found in very small concentrations in vivo.17

AGE accumulation affects other components of the ECM 

(Figure 1), including dermal and epidermal homeostasis.25 

First, cell activity can be drastically altered as glycation 

products bind to the receptor for advanced glycation end 

products (RAGE), triggering fibroblast and keratinocyte 

apoptosis through binding of (carboxymethyl)-lysine to 

RAGE21 and senescence.26 Cell signaling is also affected with 

the release of pro-inflammatory and profibrotic cytokines.27 

Second, AGE binding to cells can lead to production of  

reactive oxygen species, which can lead to acceleration of 

further AGE production.28,29 When coupled with exposure to 

ultraviolet radiation (extrinsic aging, brought upon by envi-

ronmental conditions), AGEs such as pentosidine can act as 

photosensitizers, accelerating oxidative damage, resulting in 

increased damage in older skin.30 Third, synthesis of ECM 

components is also affected by RAGE binding, with the gene 

expression of matrix metalloproteinases and integrin being 

upregulated22,25 and that of fibronectin being downregulated.25 

Synthesis of various collagen chains is affected,25 and glycation 

of collagen can have a number of effects on its functional prop-

erties, increasing its resistance to digestion by enzymes.28,31

In this study, we aim to investigate the impact of age-

dependent increased AGE accumulation on the collagen 

mechanical properties using both a nano-histology approach 

combined with computational analysis to test the hypotheses. 

This combined approach brings new insights into the intimate 

relationship between AGE accumulation, collagen fibril 

Figure 2 Products formed from for enzymatic and nonenzymatic covalent cross-linking of collagen.
Note: Data from Saito et al13 and Monnier.14

Abbreviations: LOX, lysyl oxidase; ROS, reactive oxygen species; GOLA, glyoxal lysine amide; GODIC, glyoxal imidazolimine cross-link; GOLD, glyoxal lysine dimer; DOLD, 
deoxyglucosone lysine dimer; MOLD, methylglyoxal lysine dimer; DOGDIC, deoxyglucosone imidazolium cross-link; MODIC, methylglyoxal imidazonlimine cross-link; 
HLNL, hydroxylysinonorleucine; DHLNL, dihydroxylysinonorleucine; LNL, lysinonorleucine; LKLN, lysino-5-ketonorleucine; HLKLN, hydroxylysino-5-kenonorleucine.

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2017:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3306

Ahmed et al

mechanical properties and the role of water within collagen 

fibrils. This study hypothesizes changes in the nanoscale 

mechanical properties of collagen fibrils as a function of 

aging and will explore the potential mechanisms surround-

ing these changes.

Methods
Punch skin biopsies were collected from volunteers of 

Caucasian ethnicity with no known health conditions and of 

age ,30 years (young group, n=3) or older than 60 years (old 

group, n=4). The young group consisted of one female and 

two males and had a mean age of 25.0±2.94 (standard devia-

tion [SD]). The old group consisted of four females and had a 

mean age of 73.5±8.44 (SD). Ethical approval for this project 

was granted by the National Research Ethics Service (NRES) 

Committee London-Hampstead, Health Research Authority, 

Research Ethics Committee London Centre, REC ref 6398, 

and written informed consent was obtained from volunteers. 

Tissue was collected and stored in accordance with the code 

of practice from the Human Tissue Authority.

Punch biopsies (4 mm) were taken from the anterior 

forearm skin (less exposed to sunlight) of the volunteers 

and immediately snapped frozen by immersion in isopen-

tane. Biopsies were embedded in cryo-embedding medium 

(Cryo-m-bed; Bright Instrument Company LTD, Luton, 

UK) and sectioned to 8 µm using a cryo-microtome. Tissue 

sections were physisorbed onto glass slides and stained 

using either Hematoxylin and Eosin or Pico Sirius Red. The 

samples were then stored at 4°C until experimentation.

Nanohistology and nanomechanics
Atomic force microscopy (AFM) imaging (XE-100; Park 

Systems, Seoul, South Korea and Nanowizard II; JPK 

Instruments, Berlin, Germany) was performed in contact 

mode using NP-S10 probes (Bruker, Santa Barbara, CA, 

USA) with a spring constant of 0.3 N m−1 at a scanning rate 

of 1.0 Hz or above. All AFM images were acquired directly 

from the histologic sections without any further processing 

or rehydration. Four sections were taken from each volunteer 

biopsy and a series of AFM images captured at four locations 

in the reticular dermis with scan sizes of 5×5, 10×10 and 

40×40 µm2. Scanning electron microscopy (SEM; XL-30 

FEG SEM; FEI, Eindhoven, the Netherlands) was performed 

on sections coated with Au/Pd, using an acceleration voltage 

of 5 kV. Nanomechanical analysis was performed using a 

Nanowizard II AFM (JPK Instruments) system mounted on 

an Olympus IX71 (Olympus Corporation, Tokyo, Japan) 

inverted microscope. All AFM mechanical measurements 

were acquired directly on the histologic sections without 

any further processing or rehydration. All force–distance 

curves were acquired using RFESPA probes (Bruker) with a 

spring constant k=3 N m−1 used to indent radially individual 

collagen fibrils. All forces curves were then analyzed using 

a custom Matlab® algorithm, following the Oliver–Pharr 

modeling method to calculate the Young’s modulus (E) for 

fibrils.30

Statistical analysis
Young’s modulus of fibrils from the volunteers was com-

pared using two-sided hypothesis testing with a significance 

level α=0.001. For unpaired comparison of young and 

old volunteer groups, two-tailed Student’s t-test was used 

(Statistical Package for the Social Sciences 22) with an 

F-test to check for equality of variance. For comparison of 

volunteers within the young and old volunteer groups, one-

way analysis of variance was used (Statistical Package for 

the Social Sciences 22).

Computational study
Computational geometry optimization of glucosepane water 

complexes was performed on an initial starting geometry 

taken from the final frame of a 60 ns explicitly solvated 

all-atom Molecular Dynamics simulation from a previous 

study.32 Electronic structure calculations were performed 

using GAUSSIAN-98.33 Using the integral equation formal-

ism polarizable continuum model, all structure optimiza-

tions were performed in an implicit water solvent model. 

The modern density function theory (DFT) hybrid meta-

generalized gradient approximation wb97xd functional, 

which contains empirical dispersion terms and long-range 

corrections, was used for all electronic structure optimizations 

and energy calculations in conjunction with the 6-311++g 

(2df,2p) basis set. Tight convergence criteria were adopted 

throughout, along with an ultrafine integration grid. Vibra-

tional frequency analysis was performed for each optimized 

structure to verify that an energy minimum had been found. 

We used a zero-point corrected relative interaction energy 

value as a measure of hydrogen bond strength using the 

wb97xd functional. This was followed by a single-point 

energy calculation using the Møller–Plesset, MP2, post 

Hartree–Fock ab initio functional with the basis set aug-

cc-pVDZ (correlation consistent double-zeta augmented 

with diffusion functions). Efforts were made to include a 

triple-zeta basis set, but due to the system size, this was not 

possible. To enable a fair comparison between DFT and ab 

initio interaction energies, the MP2 total system energy was 
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adjusted using the zero-point energy from the comparable 

DFT frequency calculation. The relative interaction energy, 

∆E
rel

, was calculated using the equation:

	
∆ ∆ ∆ + ∆E E E E

rel comp H O AGE
  ( ),

2 �

where ∆ E
comp

 is the total energy of the glucosepane–water 

complex, ∆ E
H O2

 is the total energy of the water molecule 

in isolation and ∆ E
AGE

 is the total energy of glucosepane 

in isolation.

Results
Impact of aging on dermal collagen 
ultrastructure
Age-related changes in the structure of skin samples were 

investigated through a transverse section of the dermal layer. 

Figure 3 shows the optical images obtained from stained 

histologic sections of young, that is, 28-year-old volunteers 

(Figure 3A and B), and old, that is, 82-year-old volunteers 

(Figure 3C and D). Differences in dermis ultrastructure were 

observed using a standard light microscope (20× objective). 

Images in Figure 3A and C obtained from the Hematoxylin 

and Eosin-stained samples showed significant variation 

in the epidermis layer thickness (darker pink layer) in the 

older volunteer, whereas this remained homogenous in the 

younger volunteer. The biggest structural difference was 

observed in the Pico Sirius Red-stained sections. The overall 

ultrastructure of the collagen scaffold within the dermis 

varied considerably; older dermis appeared porous with large 

gaps intercalated between collagen-stratified layers, while 

younger dermis was denser, though discrete large gaps were 

found within the section.

To investigate the impact of aging on the quaternary 

structure of dermal collagen, both AFM and SEM imag-

ing were carried out in the reticular region of the dermis. 

Figure 4A–D shows the representative images illustrating the 

ultrastructure of collagen scaffold found in the reticular der-

mis of the younger volunteer (28 years old). Figure 4A and B  

shows the SEM images of dense collagen sheets present in 

that region. The presence of cracks in Figure 4A is due to the 

vacuum-related desiccation and is an imaging artifact. How-

ever, highly ordered collagen fibrillar structure was observed 

in the cross-section of this histologic section (Figure 4B). 

Figure 4C shows highly contrasted D-banding periodicity, 

the fingerprint for collagen quaternary structure. Figure 4D 

shows the intersection of two dense collagen planes, showing 

that dense, banded collagen is also present deep within the 

dermal matrix. Overall, the ultrastructure of the collagen scaf-

fold from younger volunteers can be summarized as a dense, 

compact scaffold with highly contrasted D-banding periodicity. 

Figure 3 Histology sections stained in hematoxylin and eosin (A, C) and Pico 
Sirius Red (B, D) for a 28-year-old (A, B) and an 82-year-old volunteer (C, D), 
respectively.

Figure 4 SEM images of volunteers aged ,32 years (A, B). AFM images of 
volunteers aged ,32 years (C, D). SEM images of volunteers aged .60 years (E–G). 
AFM image of volunteers aged .60 years (H).
Abbreviations: AFM, atomic force microscopy; SEM, scanning electron microscopy.
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Collagen ultrastructure of older tissue sections varied signifi-

cantly. Figure 4E–H shows the representative images present-

ing collagen scaffold found in the reticular dermis of an older 

volunteer (82 years old). Figure 4E is an SEM image of the 

collagen ultrastructure present in the reticular dermis. Fibrillar 

structure was fragmented with no overall cohesion; the scaf-

fold was porous with a cluster of interstitial gaps appearing in 

between the fibril bundles. This is corroborated by Figure 4F 

taken by AFM in the same region, in which fibrils are randomly 

distributed and oriented. Figure 4G presents the remains of a 

large collagen sheet with fibril register and packing. Changes 

in the quaternary structure of collagen are exemplified in 

Figure 4H, which shows the collagen fibrils in a degraded state 

without the characteristic D-banding periodicity. Overall, the 

ultrastructure of the collagen scaffold from older volunteers 

can be summarized as a porous, fragmented scaffold with some 

loss of D-banding fibrillar periodicity.

Impact of aging on mechanical properties
Using AFM, it was possible to carry out systematic 

mechanical measurements directly on the histologic sections 

obtained from the seven volunteers. A series of localized 

force–distance curves were collected exclusively on the 

collagen fibrils, which is presented diagrammatically in 

Figure 5A. The measurement of collagen mechanical prop-

erties by AFM34 has been shown to change depending on 

the level of fibrillar hydration.35,36 To evaluate the impact 

of hydration on the mechanical properties of collagen, two 

sets of measurements were carried out on the same sections: 

first, in a dehydrated environment, followed by a repeat of 

the same measurements after 10 minutes rehydration in 

phosphate-buffered saline (PBS). The variation in fibrillar 

Young’s modulus independent of age followed trends in 

the literature, which found a significant increase in fibril 

modulus upon dehydration.36 In the case of hydrated fibrils, 

the mean hydrated fibril modulus of the young volunteer 

was E
y-hyd

 =  (1.24±0.09) MPa N
fibrils

 =63 (Figure 5B) and 

for the old volunteer E
o-hyd

 =  (0.89±0.05) MPa N
fibrils

 =64 

(Figure 5C). In the case of air-dried, dehydrated fibrils, 

the mean fibril modulus for young volunteers was found to 

be E
y-dehyd

 = (6.84±0.64) GPa N
fibrils

 =128 (Figure 5D), and 

for old volunteers E
o-dehyd

  =  (4.03±0.38) GPa N
fibrils

  =126 

Figure 5 Nanoindentation of collagen fibrils.
Notes: Indentation of a fibril in radial direction (A). Distribution of Young’s modulus for hydrated collagen fibrils for a young volunteer (B). Distribution of Young’s modulus 
for hydrated collagen fibrils for an old volunteer (C). Distribution of Young’s modulus for hydrated collagen fibrils for a young volunteer (D). Distribution of Young’s modulus 
for dehydrated collagen fibrils for an old volunteer (E). Relationship between Young’s modulus of dehydrated fibrils and age (F).
Abbreviation: E, Young’s modulus.
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(Figure 5E). As expected, there was a sharp increase in the 

stiffness of the collagen fibril as a result of sample dehy-

dration. However, the values of moduli for both hydrated 

samples (young and old) did not fit the criteria for being 

significantly different, (P=0.001), shown in Figure 5B and 

C, whereas the values of moduli for both dehydrated samples 

(young and old) were significantly different, (P0.001) 

and illustrated in Figure 5D and E. It was interesting to 

note that Figure 5D exhibited a bimodal distribution in 

Young’s Modulus with the first mode centering on a mean 

E
y.dehyd.mode.1

 =3.31 GPa, similar to the older volunteer’s mean 

Young’s Modulus. A second mode is observed centring on 

a mean E
y.dehyd.mode.2

  =5.70 GPa. Experimentally, rehydra-

tion of the histological sections had a significant impact on 

stability of the sample, as over 9/10 of histological sections 

desorbed from their original cover slide upon rehydration. 

As a result of the high rate of desorption of the section, it 

was decided to perform all the measurements on air-dried 

sections and explore whether the transverse Young’s Modu-

lus values were independent of volunteer age. AFM-based 

nano-indentation was carried out on air-dried sections 

from all 7 volunteers and the transverse Young’s Modulus 

was plotted as function of the volunteers’ age as shown in 

Figure 5F. The mean Young’s Modulus for young volun-

teers was E
y
= (8.11±0.46) GPa, N

fibrils
 =362 and the mean 

Young’s Modulus for older volunteers was E
o
= (4.19±0.21) 

GPa, N
fibrils

 =477 showing a statistically significant reduction 

in Young’s modulus with age (P0.001). The variance of 

the Young’s Modulus was also found to decrease for older 

volunteers (σ
y

2=65.77 GPa, σ
o

2=17.56 GPa). There were 

no significant differences found between volunteers within 

each cohort, young or old (P0.001). 

Deciphering glucosepane–water 
interaction by computational 
methodology
Nanomechanical measurements suggested a possible change 

in fibril hydration, so a computational approach was deployed 

to investigate favorable water-binding sites at the atomistic 

glucosepane structure. An all-atom structure of glucosepane 

proposed by Biemel et al37 was extracted from the final frame 

of an earlier Molecular Dynamics study.32 The backbone atoms 

were removed and a methyl group terminated the α-carbon 

atom on both aliphatic chains. This procedure reduced 

the computational expense and ensured the isolation of an 

explicit water molecule to the polar binding regions of the 

glucosepane compound rather than the polypeptide backbone. 

An explicit water molecule was manually positioned 1.8 Å 

from each polar site. As per the visual depiction of the final 

optimized structures (Figure 6), a water molecule was ori-

entated to act as an electron acceptor to each nitrogen in the 

imidazole group, resulting in structures I and II, as an electron 

donor to each hydroxyl group, resulting in structures III and 

IV, and as an electron acceptor to each hydroxyl group to 

form structures V and VI. Electronic structure optimization 

of single water-bound glucosepane hydrates, unbound glu-

cosepane and a single water molecule was performed using 

the wb97xd functional with a 6-311++g(2df,2p) basis set 

Figure 6 I–VI show various optimized electronic structure calculations of glucosepane in coordination with a single water molecule. Intermolecular distance between the 
hydrogen bond acceptors and donors are labeled appropriately. Aliphatic side chain tails have been removed for clarity.
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to a tight convergence on an ultrafine integration grid in an 

implicit water solvent. Optimized structures are presented in 

Figure 6, and relative interaction energies are presented in 

Table 1, all of which present a stable and energetically favor-

able interaction between water and glucosepane. MP2 single 

point entry (SPE) calculations using the aug-cc-pVDZ basis 

set and corrected using the zero point energy (ZPE) value 

from the DFT frequency calculations complement the trend 

in the DFT energy calculations. All ZPE calculations were 

approximately 308 kcal mol-1.

The interaction between an electron donor molecule with 

a strong polar group, OH, typically results in a change in O–H 

bond length, denoted by Δd(O–H). In addition, these interac-

tions are usually identified with distances between 1.3 and 

2.3 Å. The optimized coordination of water to the nitrogen 

presented in structure I resulted in a Δd(O–H) of 0.01931 Å 

and presented an intermolecular distance of 1.8835 Å. Upon 

coordinating water with the opposite nitrogen, structure II, we 

noted a decrease in the intermolecular distance by 0.1086 Å 

when compared with the intermolecular distance observed in 

structure I and a Δd(O–H) of 0.02903 Å. The greater distance 

between the hydroxyl group in question in structure II from 

the lysine nitrogen results in an increase in electronegativity 

on the hydroxyl oxygen, thus promoting further stability by 

as much as 1.4031 and 0.3397 kcal mol-1 according to DFT 

and ab initio calculations, respectively.

The optimized structure of an energetically favorable 

coordination of a single water electron acceptor, 1.7977 Å  

from the hydroxyl group, can be seen in structure III. 

Attempts at the mono-coordination of the second hydroxyl 

group resulted in a single water molecule acting as an electron 

acceptor to both hydroxyl group donors (seen in structure IV), 

due in part to the inherent orientation of one hydroxyl group to 

the neighboring hydroxyl group resulting in an intramolecular 

noncovalent interaction. A similar network of noncovalent 

intramolecular interactions has been observed in glucose 

derivatives.38 With the electronegativity of the oxygen 

shared between both electron donors, the intermolecular 

distance was increased to 1.9120 and 1.9475 Å. In addition, 

neither hydroxyl group experiences a significant O–H bond 

stretch, reporting a Δd(O–H) of only 0.00732 and 0.00708 Å,  

respectively. Yet, the paired intermolecular coordination 

resulted in a significantly more stable structure.

Coordinating water as an electron donor to the lone 

pairs on the hydroxyl group resulted in a single intermo-

lecular association, structure VI, and a dual intermolecu-

lar association, structure V. The structures demonstrated 

Δd(O–H) of 0.00403, 0.00848 and 0.01022 Å, respectively, 

while reporting intermolecular distances within expected 

hydrogen bond cutoffs. Furthermore, each structure yielded 

relative interaction energies indicative of a stable water 

association. Compared with the single association between 

water and glucosepane in structure VI, structure V pertains 

to a stable conformation from an additional bond resulting 

in a decrease in relative interaction energy by 0.8289 and 

0.1778 kcal mol-1, according to DFT and ab initio calcula-

tions, respectively.

Discussion
The porosity or fragmentation of the dermis observed in 

stained histology sections has been reported previously in a 

study involving volunteers (aged 2–85 years with 121 skin 

samples).39 Bonta et al reported changes in the morphology of 

collagen fibers in volunteers over the age of 50, including frag-

mentation and disorganization of thick collagen fibers, lysis 

of thin fibers and an overall decrease in matrix density.39

The changes in quaternary structure observed in this 

study through SEM and AFM imaging showed an age-related 

decrease in collagen matrix density and loss of homogene-

ity of fibers. This supports earlier reports of changes at the 

macroscale40 as well as a previous AFM study reporting 

nanoscale morphologic changes with age. In Fenske and 

Lober’s study, collagen fibrils in young skin (age 21) were 

also found to be tightly packed and aligned in comparison 

to sparse, fragmented and disorganized fibrils in old skin 

(age 55).41

The lack of statistically significant difference in Young’s 

modulus of hydrated fibrils between young and older 

volunteers suggests that transverse moduli for collagen in 

fully hydrated environments are not impacted by the age of 

volunteers. However, it is likely that complete rehydration 

is not physiologically relevant. As collagen fibrils become 

saturated with water, it leads to increases in fibril diameter.42 

There is little evidence that this water saturation happens 

Table 1 Relative interaction energies (kcal mol-1) derived from 
optimized electronic structure calculations

Name ∆Erel (wb97xd) ZPE (wb97xd) ∆Erel (MP2)

I -5.3269 308.94 -6.5946
II -6.7300 308.59 -6.9343
III -3.9414 308.65 -4.6669
IV -5.8710 308.69 -6.5539
V -4.1610 308.47 -4.4244
VI -3.3321 308.94 -4.2465

Notes: Energies calculated using the wb97xd functional were corrected using a 
zero-point energy correction value obtained from vibrational frequency analysis. 
MP2 ab initio calculations were derived from single-point energy calculations and 
corrected using the zero-point energy of the DFT frequency calculation.
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in vivo, therefore the results of the mechanical investigation 

of fully hydrated fibrils have to be considered carefully.

The age-related reduction in air-dried fibril stiffness 

is not consistent with earlier reports investigating the 

biomechanical properties of skin, which have overwhelm-

ingly reported increases in stiffness.26 A number of in vitro 

and ex vivo studies have investigated the mechanical proper-

ties of various tissues as a function of AGE accumulation due 

to both aging and diabetes (severe AGE accumulation occurs 

due to elevated blood glucose concentration20). An age-

related stiffening of tissue was observed in tendon, vascular 

and myocardial tissue, cartilage and skin.9,10,18,43 A stiffening 

of tissue was also observed in diabetic volunteers. A notable 

in vitro study reported an increase in stiffness of rabbit ten-

don incubated with glucose.44 Ex vivo measurements of skin 

autofluorescence have shown that the concentration of AGEs 

in skin increases greatly with age,9 with an age-dependent 

stiffening observed26 supporting earlier reports.45

There were, however, a number of ex vivo studies looking 

at non-AGE-specific age-related changes in Achilles tendon16 

and gastrocnemius tendon,25 which reported a decrease in stiff-

ness with age. One report investigating the Young’s modulus 

of dermal matrix for volunteers aged between 26 and 66 years 

(n=20) reported an increase in stiffness in the dermis for the 

26–55 age group, followed by a reduction in stiffness for vol-

unteers aged in their 60s, though this was not investigated or 

explained in further detail.46 This study measured stiffness of 

hydrated samples, indenting with a 5 µm glass sphere mounted 

to a soft (k=0.02 N m-1) cantilever. Thus, indentation of skin 

measured overall stiffness of the collagen matrix including 

other components of the skin (elastin, HLA and proteogly-

cans), and so, the macroscale mechanical properties of the 

bulk tissue rather than those of individual fibrils.

In this study, collagen fibrils were indented radially rather 

than longitudinally along the fibril axis. Thus, the Young’s 

modulus obtained is the transverse modulus measuring 

indirectly the density of the fibril as it is compressed. The 

age-related reduction in transverse stiffness, therefore, relates 

to a change in the density of the fibril. Since all the samples 

were dehydrated passively in air, it is likely that any fibrillar 

interstitial water is no longer present. A previous study42 

performed dehydration experiments on model collagen 

scaffolds to evaluate the impact of one subset of cross-links 

(riboflavin mediated) and concluded that the collagen with 

cross-links retained water longer upon dehydration, when 

compared to non-cross-linked collagen, implying a cross-

link-dependent collagen–water interaction. Taking this into 

consideration as well as the experimental data obtained, we 

proposed that the decrease in density of the collagen fibril 

with age is related to the level of water retained within the 

fibril. The presence of a bimodal distribution with a sharp 

peak at low Young’s modulus complemented by a broad 

distribution of stiffer fibrils (Figure 5B) indicates the young 

volunteer has two distinct groups of fibrils, glycated and 

nonglycated, while the old volunteer has primarily one group 

of fibrils, glycated. However, to validate this hypothesis, it is 

necessary to understand the mechanisms by which collagen 

fibrils may retain water and whether this mechanism evolves 

as a function of aging.

Proposed relationship between stiffness 
and fibril hydration
The relationship between hydration and age-related changes 

in stiffness could be directly related to the accumulation of 

AGEs in dermal collagen. The hydrophilic properties of the 

AGE cross-links (such as glucosepane) play a central role 

in retaining the water molecules through interactions with 

the hydroxyl groups found on the AGE complex. It is at the 

nanoscale fibrillar level where water retention influences 

the stiffness of collagen. Three currently accepted forms of 

collagen hydration are shown in Figure 7A. Glucosepane is 

present in human tissues at levels 10–1,000 times higher than 

any other cross-linking AGE, and is currently considered to 

be the most important cross-linking AGE.23 Glucosepane 

has two hydroxyl groups, leading to the possibility of 

water interaction due to its hydrophilic nature, as illustrated 

by Figure 7B. Therefore, as the volunteer ages and more 

glucosepane cross-links accumulate, more water molecules 

may be bound within the fibril as shown in Figure 7B. As 

water binds within the fibril, its density decreases, leading to 

a decrease in the radial stiffness of the fibril. The indentation 

process rather than compressing the collagen fibril directly 

begins probing the properties of water flow within the fibril 

(Figure 7C) before indentation of the fibril occurs. The overall 

indentation, therefore, is constituted by both a collagen fibril 

compression component and a water flow component, thus 

reducing the transverse Young’s modulus. This hypothesis 

resides on an affinity between interstitial water present in the 

fibrils and AGE-mediated cross-links such as glucosepane.

Computational analysis of the 
glucosepane–water model suggests 
heterogeneous noncovalent interactions
A systemic approach of electronic structure optimization and 

single-point energy calculations of glucosepane within close 

proximity to a single water molecule helped identify stable 
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single water molecule coordination. Although coordination of 

water as a hydrogen donor produced a stable conformation, 

stability through the coordination of the glucosepane hydroxyl 

groups as hydrogen donors resulted in lower relative inter-

action energy. In addition, coordination with the imidazole 

nitrogen furthest from the lysine side chain yielded the greatest 

decrease in interaction energy, resulting in the strongest identi-

fied hydrogen bond. Providing water can access glucosepane 

within the fibrillar environment; it will associate through a 

weak electrostatic attraction, which could potentially result 

in a region of ordered water around the AGE.

Increased collagen–water interaction, 
a response to aging?
The increased accumulation of AGE cross-links coincides 

with age-dependent changes of other major components of the 

dermis, primarily the reduction of GAG and HLA. The effect 

of GAG reduction is threefold; first, loss of the hydrophilic 

GAG chain reduces the water storage capacity within the 

dermis. Second, decorin GAGs bind to type-1 collagen, aiding 

fibrillogenesis and maintaining the fibril structure.15,47 Third, 

decorin binding has been shown to inhibit cleavage of collagen 

by matrix metalloproteinase (the loss of decorin GAGs may 

result in increased enzymatic degradation of collagen fibrils,42 

leading indirectly to a change in the collagen matrix).

Conclusion
The loss of HLA and GAG chains from proteoglycans results 

in a significant age-related reduction of the capacity of the 

dermis to retain water, dramatically changing the mechanical 

properties of the ECM. This study suggests that the accumu-

lation of AGE cross-links, which increase the interaction of 

water with collagen, could be a response to the loss of water 

retention capacity elsewhere in the dermal ECM.

Figure 7 Illustrations for the three known modes of water interaction with collagen molecules: (A) covalently bonded to the molecule (a, green), water bridges between 
molecules (b, purple) and free-flowing water (c, blue). (B) The proposed mode of water interaction: water retention caused by glucosepane accumulation (d). (C) Proposed 
mechanism of water flow within the collagen fibril caused by nano-indentation.
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This study is the first to identify using AFM unique 

nanoscale morphologic differences found in collagen fibril 

structure as a function of aging in skin. In addition, this 

study was the first to observe an age-dependent decrease in 

the transverse stiffness of collagen fibrils. A proposed water 

retention mechanism was verified by electronic structure 

calculations showing single water molecule association in an 

implicit solvent to be energetically stable. It is proposed that 

the properties of collagen in skin are responsive to adapt to 

changes in other major components of dermal ECM to pre-

serve its functional properties. Further studies are required to 

characterize water retention using other techniques, as well as 

investigate this phenomenon in other collagenous tissues.

As discussed earlier, there are multiple processes that 

the various components of the dermis undergo during aging. 

This study focused specifically on changes occurring in 

collagen fibril morphology and mechanical properties from 

accumulation of AGE products. The impact, however, of the 

other age-dependent processes on the results in this study 

are not known.
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