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Recent findings showed that brain networks far away from a lesion could be altered

to adapt changes after stroke. This study examined 13 chronic stroke patients with

moderate to severe motor impairment and 13 age-comparable healthy controls using

diffusion tensor imaging to investigate the stroke impact on the reorganization of

structural connectivity. Each subject’s brain was segmented into 68 cortical and 12

subcortical regions of interest (ROIs), and connectivity measures including fractional

anisotropy (FA), regional FA (rFA), connection weight (CW) and connection strength

(CS) were adopted to compare two subject groups. Correlations between these

measures and clinical scores of motor functions (Action Research Arm Test and

Fugl-Meyer Assessment for upper extremity) were done. Network-based statistic (NBS)

was conducted to identify the connectivity differences between patients and controls

from the perspective of whole-brain network. The results showed that both rFAs

and CSs demonstrated significant differences between patients and controls in the

ipsilesional sensory-motor areas and subcortical network, and bilateral attention and

default mode networks. Significant positive correlations were found between the paretic

motor functions and the rFAs/CSs of the contralesional medial orbitofrontal cortex

(mOFC) and rostral anterior cingulate cortex (rACC), and remained significant even after

removing the effect of the ipsilesional corticospinal tract. Additionally, all the connections

linked with the contralesional mOFC and rACC showed significantly higher FA/CW

values in the stroke patients compared to the healthy controls from the NBS results.

These findings indicated that these contralesional prefrontal areas exhibited stronger

connections after stroke and strongly related to the residual motor function of the

stroke patients.

Keywords: chronic stroke, structural remodeling, fiber tractography, regional fractional anisotropy, connection

strength, diffusion tensor imaging

1. INTRODUCTION

Structural remodeling of white matter associated with the ipsilesional and contralesional
sensorimotor areas has been demonstrated in both animal models of stroke (1) and stroke patients
(2) and is found to be associated with the level of motor recovery or impairment (2–4). A number
of studies have demonstrated this motor-related structural change in the corticospinal tract (CST)
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and suggested that the structural integrity of the CST is a major
determinant of motor deficit (5). However, in addition to the
brain tissue damage localized at the periphery of the lesion,
recent studies pointed out that the brain network far away
from the lesion could also be altered (6, 7). This alteration
is suggested as a secondary white matter degeneration which
appears in remote regions interconnected, directly or indirectly,
with the primary damaged area (6). Nevertheless, the effect
of this remote alteration on motor control/behavior of stroke
patients is still under exploration. More understanding of the
entire brain adaptation after a stroke might provide a more
comprehensive picture of the interactions between structural
connectivity remodeling and post-stroke motor function. Such
information may be of value in redefining a potential neural
substrate that affects post-stroke motor impairment.

Diffusion tensor imaging (DTI) is a noninvasive magnetic
resonance technique that measures the random motion of water
molecules in brain tissue. It has been used to demonstrate
brain abnormalities in stroke (8). This technique is based on
the extraction and characterization of the changes in diffusion
anisotropy in brain tissue (9), where the diffusion happens to
be unequal in all directions. Combined with fiber tractography,
which is used to visualize and quantify the integrity of fiber tracts,
it might provide a diverse way to reveal the structural remodeling
following a stroke (6).

However, using voxel-based assessment for the post-
stroke structural changes might be quite challenging, since
measurement of the changes can be highly influenced by the
variations in stroke topography among stroke population (6).
Moreover, since brain lesions often disrupt the neighboring
white matter, it might induce erroneous judgment if fiber
tracking is based on seed regions extracted from nonlesioned
neuroanatomy (10). Therefore, we applied weighted undirected
network analysis, which is an alternative and comprehensive
approach of assessing structural connectivity (11), to characterize
structural brain networks. It has been used to identify detailed
abnormalities of network topologies associated with various
brain disorders, such as Alzheimer’s disease, schizophrenia
and Parkinson’s disease (12). In this study, a group of 13
chronic stroke patients were included to study their altered fiber
pathways in contrast to 13 age-comparable healthy controls.

The flow of the structural connectivity analysis involves
dividing up the brain into cortical and subcortical areas to
form the ROIs of the network and measures the connectivity
between ROIs to characterize the properties of fiber tracts (13).
Two main connectivity measures were included to evaluate the
post-stroke structural changes: regional fractional anisotropy
(rFA) and connection strength (CS). These measures can be
used to localize which fiber tracts are affected by the lesions
when compared with healthy controls. Then, we compared
the differences between stroke patients and healthy controls
in terms of rFA and CS from two perspectives, i.e., ROI-wise
and connection-wise comparisons. Furthermore, correlations
between the upper-limb motor function, which were assessed by
clinical assessment scores (Action Research Arm Test [ARAT]
and Fugl-Meyer Assessment for upper extremity [FMA-UE])
and the DTI-derived connectivity measures were evaluated in

strokes to examine the remodeling of structural connectivity. The
results may provide an opportunity to better understand inter-
patient connectional variability and to relate it to differences in
individual motor function impairment levels.

2. METHODS

2.1. Subjects
This study included 13 first-ever stroke patients (12 males
and 1 female, mean age: 54.08 ± 9.01 years) with time since
stroke of more than 8 months. They suffered from moderate-
to-severe upper-limb impairment with FMA-UE scores lower
than 47 (out of 60) (14) (Table 1). Stroke subjects were
excluded if they had history of alcohol or drug abuse or
epilepsy, bilateral infarcts, uncontrolled medical problems,
serious cognitive deficits, comprehensive aphasia or other MRI
contraindications. A total of 13 right-handed healthy controls
(6 males and 7 females, mean age: 57.62 ± 3.78 years) without
cerebral abnormalities were also included to serve as a reference,
and their ages were comparable with the stroke subjects. The data
of healthy controls were extracted from the open database of the
Institute of Psychology, Chinese Academy of Sciences (15). Chi-
square test was used to test the differences in gender-distribution
between the two subject groups, and significant difference was
found in the gender-distribution between the two groups (p
= 0.015). All the subjects were fully informed of the study
protocol and provided the consent form in accordance with the
Declaration of Helsinki. Additionally, this study was approved by
the Joint Chinese University of Hong Kong - New Territories East
Cluster Clinical Research Ethics Committee.

2.2. Clinical Assessments
Each patient was assessed by a blinded assessor on their motor
function scores of the paretic upper limb using ARAT and
FMA-UE. Subdivision was done for FMA-UE score: FMA
shoulder and elbow movements (FMA_SE) and FMA wrist
and hand movements (FMA_WH). These clinical assessments
are used frequently for body function evaluation in upper-
extremity rehabilitation training, and their reliability and validity
in assessing stroke motor functions have been proven (16). High
inter-rater reliability has been shown for FMA-UE score (intra-
class correlation coefficient, ICC= 0.98) (17) and for ARAT score
(ICC= 0.98) (18).

2.3. Image Acquisition
Our stroke subjects were scanned with a 3T MRI scanner
(Achieva TX, Philips Medical System, Best, Netherlands) using
an 8-channel head coil. The following imaging datasets were
acquired: (1) high-resolution T1-weighted anatomical images
were acquired using an ultrafast spoiled gradient-echo pulse
(T1-TFE) sequence (TR/TE = 7.5/3.5 ms, flip angle = 8◦, 308
slices, voxel size = 0.6 × 1.04 × 1.04mm3); and (2) diffusion-
weighted images were acquired using a diffusion-weighted single-
shot spin-echo echo-planar pulse (DWISE) sequence (TR/TE =

3,788/88 ms, flip angle = 90◦, 60 slices, voxel size = 1.5 × 1.5 ×
2mm3). The diffusion-weighted images were acquired along 32
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TABLE 1 | Demographic information of stroke patients.

No. Time since

stroke (years)

Age

range

Sex Lesion

side

Handed-ness Stroke

type

Lesion location ARAT FMA-UE FMA-SE FMA-WH

1 11 55–59 M R R i Brainstem 28 24 17 7

2 7 55–59 M R R i Insula, IFG, PUT, RO, TP 14 20 15 5

3 3 50–54 F L R h Insula, RO, PUT 19 34 22 12

4 11 60–64 M L R i PLIC, PUT 15 22 17 5

5 1 50–54 M L R i PUT, CN 15 24 17 7

6 1 65–69 M R R h Insula, ITG, IOG, PUT 8 13 10 3

7 5 40–44 M R R h Insula, RO, IFG, STG, PUT, TP 9 15 11 4

8 3 40–44 M R R h Insula, MTG, STG, PUT, TP, RO 11 17 10 7

9 1 45–49 M R R i MFG, SFG, precentral, SMAR, SMA 3 19 14 5

10 0.67 45–49 M R R h ITG, MTG, STG, MOG, angular, SMAR 16 17 13 4

11 8 65–69 M L R h Insula, PUT, IFG, TP 10 22 19 3

12 1 45–49 M R R h Insula, PUT 12 34 24 10

13 3 60–64 M R R i Insula, PUT, RO, IFG 4 16 12 4

ARAT, Action Research Arm Test; FMA-UE, Fugl-Meyer Assessment for upper extremity; FMA_SE, FMA shoulder and elbow movements; FMA_WH, FMA wrist and hand movements;

M, Male; F, Female; R, Right; L, Left; PLIC, posterior limb of internal capsule; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; SFG, superior frontal gyrus; SMA, supplementary

motor area; ITG, inferior temporal gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; IOG, inferior occipital gyrus; MOG, middle occipital gyrus; PUT, putamen; RO,

rolandic operculum; TP, temporal pole; CN, caudate nucleus; SMAR, supramarginal; i, ischemic; h, hemorrhage.

different diffusion directions with a b-value of 1000 s/mm2 and
an additional baseline (b= 0) image.

The imaging datasets of healthy controls were extracted
from an open database (http://fcon_1000.projects.nitrc.org/indi/
CoRR/html/ipcas_8.html) and were acquired with a 3T MRI
scanner (Siemens Trio Tim, Erlangen, Germany) with a 12-
channel head coil. High-resolution structural images were
acquired using a magnetization-prepared rapid gradient echo
(MPRAGE) three-dimensional T1-weighted sequence (TR/TE=

2,530/3.39 ms, flip angle = 7◦, FOV = 256 mm, slice thickness
= 1.33 mm). Diffusion-weighted images were acquired using
an EPI sequence (TR/TE = 6,600/104 ms, FOV = 230 mm,
resolution= 1.8× 1.8× 3mm3). The diffusion-weighted images
were acquired along 64 different diffusion directions with a b-
value of 1000 s/mm2 and an additional baseline (b = 0) image.
In addition, all brain images were reconstructed and visually
inspected for major artifacts (e.g., motion, ringing, wrap around,
and neurological abnormalities) before further image processing.

2.4. Diffusion Data Processing and Fiber
Tractography
Raw diffusion imaging data were pre-processed with a MATLAB
toolbox named PANDA (19), which integrates several established
packages, including FMRIB Software Library (FSL), Pipeline
System for Octave and Matlab (PSOM), Diffusion Toolkit and
MRIcron. The processing steps follow a fully automated pipeline,
involving correction for eddy-current effect, brain extraction
and parcellation, and calculation of diffusion parameters, e.g.,
FA, eigenvectors and eigenvalues of the diffusion tensor.
Deterministic diffusion fiber tracking was performed using
standard fiber assignment by the continuous tracking (FACT)
method (20). Tracking stops at predefined thresholds of a
diffusion-weighted image and a turning angle of 45◦ to limit the
detection of spurious fibers. The tracks were finally smoothed

by a B-spline filter to remove any redundant track points
and segments. The imaging datasets of patients with right
hemispheric lesions were flipped so that the left hemisphere was
the ipsilesional hemisphere, whereas the right hemisphere was
the contralesional hemisphere.

2.5. Structural Connectivity Mapping
In this study, network analysis with a whole-brain analysis
approach, which could avoid manually specifying certain seed
regions, was adopted to assess structural connectivity changes.
The whole brain was divided into 68 cortical and 12 subcortical
ROIs, which covered the entire cortices and subcortical structures
of both the left and right hemispheres. Based on the T1-weighted
image, white and gray matter segmentation was performed
in FreeSurfer (Athinoula A. Martinos Center for Biomedical
Imaging, USA) to reconstruct and parcellate brain volume in
order to produce outputs consisting of labels corresponding to
the white matter, the cortex and the deep gray nuclei (21). The
labeled mesh of each individual subject was then aligned with
his/her diffusion dataset.

The outputs of fiber tractography and ROI creation were
combined to map connection matrices of FA and CW. Two
ROIs were connected if at least one fiber’s end-points exist in
both ROIs. The overall processing flow for generating network
matrices FA and CW is shown in Figures 1A–D. The first matrix,
i.e., FA, mapped the average FA along a connection which was
linking two ROIs. This measure is commonly used to assess white
matter properties in relation to the fiber density, axonal diameter,
andmyelination status (22). A decline in FA is found to be related
to loss of axonal integrity, leading toWallerian degeneration (23).
RFA was calculated as the sum of the FAs for each ROI. The
second matrix, i.e., CW, considered the number of fibers, the
length of the fibers and the surface size of each ROI. CW is used
as a means to capture the connection density between two ROIs
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FIGURE 1 | An overall flowchart of this work. (A) DTI data preprocessing and reconstruction of fiber tractography. (B) Partition into 68 cortical and 12 subcortical ROIs

via FreeSurfer segmentation. (C,D) Generation of FA and CW matrices through mapping fiber tractography and segmented ROIs. The generation of CW was based

on FL, FN, and SS of each ROI. (E) Regrouping of 80 ROIs into 12 subnetworks, i.e., SMA, ADN, DMN, ATT, VSN, and SN. (F) ROI-wise comparison of CS/rFA values

between stroke patients and healthy controls. (G) Correlation between CS/rFA values and clinical scores in stroke. (H) Connection-wise comparison of CW/FA values

between stroke patients and healthy controls using NBS. FA, fractional anisotropy; FL, length of fibers; FN, the number of fibers; SS, surface size of each ROI; SMA,

sensory-motor areas; ADN, auditory network; DMN, default mode network; ATT, attention network; VSN, visual recognition network; SN, subcortical network; NBS,

network-based statistics.

(13). A higher value in CW could indicate that the connection
has a shorter path length and/or greater number of fibers. The
CWmatrix was calculated as (13):

CW(u, v) =
2

Su+ Sv

∑

f∈F(u,v)

1

l(f )
(1)

where F(u, v) was the set of fibers connecting ROIs u and v; f
was individual fiber within F(u, v); Su and Sv were the surface
sizes of two ROIs, respectively; l(f ) was the length of fiber f ;
and

∑
f∈F(u,v)

1
l(f )

was sum over all fibers connecting the two

ROIs. As shown in Equation (1), CW was composed of the
(1) surface size of ROIs, (2) length of fiber, and (3) number of
fibers. The surface size was derived from Freesurfer parcellation
results, in which the brain was segmented following the Desikan-
Killiany Atlas. The surface size of each ROI, and the matrices
of fiber length and fiber number from pairs of ROIs were
generated by PANDA (19), which was used for diffusion data
preprocessing and fiber tracking. The raw CWs were then re-
sampled into a Gaussian distribution with a mean of 0.5 and a
standard deviation of 0.1 to normalize the scale of the measure

for each subject (7). CS was calculated as the sum of all the
re-sampled CWs for each ROI, so it can measure the extent
to which the ROI was connected to the rest of the network
(13). A ROI with higher CS had stronger connections (13),
since CS would increase if the connections to the ROI were
more intensive.

2.6. Statistical Analysis
The whole-brain ROIs were regrouped into 12 subnetworks,
including the default mode network, attention network, visual
recognition network, auditory network, sensory-motor areas,
and subcortical network in both left and right hemispheres,
according to the classification method of Tao et al. (24)
(Figure 1E). Tao et al. studied the connectivity measures of
the regions in the subnetworks with similar functions and
dense connections with each other. The subnetworks and their
constituting brain ROIs are shown in S_Table 1. A separate
two-group between-subject multivariate analysis of variance
(MANOVA) was conducted on the CSs and rFAs of the ROIs
within each subnetwork to determine whether there were
any differences between these two groups. The Box’s Test of
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Equality of Covariance Matrices was conducted a priori to
check the assumption of homogeneity of covariance across the
groups using p < 0.001 as a criterion. Univariate analyses
of variance (ANOVAs) were conducted on each dependent
measure separately to determine the locus of the statistically
significant multivariate effect (Figure 1F). To protect against
Type I error, a Bonferroni correction was used to test each
ANOVA at the level of 0.05 divided by the number of
ANOVAs conducted.

Spearman correlation analysis was used to identify the
correlation patterns of structural connectivity properties with
motor function (ARAT and FMA clinical scores) (Figure 1G).
Moreover, in order to find out whether the correlation patterns
would be affected after removing the effects of the CST’s
structural properties, partial correlation analysis was used to
investigate the changes. Partial correlation analysis is often
adopted to measure the degree of correlation between two
variables regardless of other potential factors’ effects. The
posterior limb of the internal capsule (PLIC) area is defined as
the gap between the thalamus and the lenticular nucleus, and the
CST travels through the PLIC in the forebrain before entering
the cerebral crus at the base of the midbrain. The PLIC mask
was generated based on the segmented T1 images in standard
space of the healthy controls. The T1 image in native space
of each subject was first aligned with his/her diffusion image
and then transformed into the standard space, and matrices
for defining the spatial transformations were also generated.
The PLIC mask was aligned to the T1 image in native space
using reverse normalization based on the warp matrix stored
in the header of the T1 image in standard space, and the PLIC
mask was now aligned to the diffusion image in native space.
Visual checking of the alignment between the PLIC mask and
the diffusion image was done for each subject. FA values were
averaged within the PLIC mask, and the averaged FA of the
ipsilesional PLIC was used as the control variable in the partial
correlation analysis. All above statistical procedures were done
using IBM Statistical Package for the Social Sciences (SPSS)
(version 19). The level of statistical significance was set as p
< 0.05, and the p-value was corrected by false discovery rate
(FDR) correction.

Furthermore, network-based statistic (NBS) (25) was used
to identify the significant differences of CW and FA matrices
between stroke patients and healthy controls from the perspective
of the whole brain network (Figure 1H). Large-scale structural
connectivity can be modeled as a graph, the ROIs were
regarded as nodes of the graph and the connections between
the nodes were regarded as edges of the graph. The NBS is
a non-parametric statistical method to deal with the multiple
comparisons issue on a graph. The method is used to control
the family-wise error rate (FWER) when performing mass
univariate hypothesis testing on all graph edges. FWER-corrected
p-values are calculated for each component using permutation
testing. The basic premise of permutation testing is that
the correspondence between data points and their labels can
be randomly rearranged under the null hypothesis without
affecting the test statistic. The NBS is a validated method for
performing statistical analysis on large networks. A number

of studies have used the NBS to identify connections and
networks comprising the human connectome that are associated
with an experimental effect or a between-group difference.
Because the t-test in NBS is one-tailed, we performed two-
dimensional comparisons between stroke patients and healthy
controls, which were “stroke > healthy” and “stroke < healthy”
respectively. T-test was chosen as the statistical test, and
the test statistic threshold was set to 1.8 with the number
of permutations specified as 5000 and the FWER corrected
significance level specified as 0.05. For each permutation, the
steps in the NBS were repeated on the permuted data, involving
(1) testing the hypothesis of interest at every connection using
the same t-test, (2) defining a set of supra-threshold connections
using the same threshold and (3) identifying any connected
graph components.

3. RESULTS

3.1. Demographics and Clinical
Assessment Scores
There was no significant age difference between the chronic
stroke patients and the healthy controls. The stroke patients
had moderate-to-severe upper-limb impairment (ARAT: 12.62
± 6.54, FMA_SE: 15.46 ± 4.43, FMA_WH: 5.85 ± 2.70), with
limited range of motion and functions for the shoulder and elbow
joints, and poor wrist and hand functions. More patients had
lesions in the right hemisphere (n= 9) than in the left hemisphere
(n= 4), and most of the infarcts were in the territory irrigated by
the anterior and middle cerebral arteries. Lesions covered largely
the following regions (ordered by number of patients exhibited):
putamen (n = 10), insula (n = 8), rolandic operculum (n = 5),
inferior frontal gyrus (n= 4) and temporal pole (n= 4) (Table 1).
The lesion distribution of stroke patients was shown in Figure 2.

3.2. ROI-Wise Comparison Between Stroke
Patients and Healthy Controls
MANOVA was conducted to determine whether there were any
differences between subject groups in the connectivity measures
(i.e., CSs and rFAs). From the MANOVA results, significant
differences between healthy controls and stroke patients were
found in both CSs and rFAs of the regions in the following
subnetworks: ipsilesional sensory-motor areas (CS: Wilks’ 3 =

0.55, p = 0.004; rFA: Wilks’ 3 = 0.37, p < 0.001), ipsilesional
subcortical network (CS: Wilks’ 3 = 0.23, p = 0.001; rFA:
Wilks’ 3 = 0.27, p = 0.004), ipsilesional attention network (CS:
Wilks’ 3 = 0.16, p < 0.001; rFA: Wilks’ 3 = 0.22, p = 0.001),
contralesional attention network (CS:Wilks’3= 0.31, p= 0.009;
rFA: Wilks’ 3 = 0.37, p = 0.025), ipsilesional default mode
network (CS: Wilks’ 3 = 0.31, p= 0.018; rFA: Wilks’ 3 = 0.36, p
= 0.04) and contralesional default mode network (CS: Wilks’ 3
= 0.36, p = 0.044; rFA: Wilks’ 3 = 0.32, p = 0.02). None of the
Box’sM values were significant (p ≥ 0.001), indicating that there
were no significant differences between the covariance matrices.
The MANOVA results are shown in Figure 3.

Because MANOVA on some subnetworks showed significant
differences between two groups, we further examined the

Frontiers in Neurology | www.frontiersin.org 5 October 2019 | Volume 10 | Article 1111

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wong et al. Brain Structural Remodeling After Stroke

FIGURE 2 | Lesion distribution of stroke patients. The orange numbers in the color bar represented the number of patients who had lesions in the corresponding

areas. The white numbers beside the axial images represent the slice number in z coordinate (in mm). The imaging datasets of patients with right hemispheric lesions

were flipped, so that the left hemisphere is the ipsilesional hemisphere whereas the right hemisphere is the contralesional hemisphere.

univariate ANOVA results. In the ipsilesional sensory-motor
areas, significant univariate group effects on both CS and rFA (p
< 0.017) were found in the precentral gyrus [CS: F(1, 24) = 17.54,
p < 0.001; rFA: F(1, 24) = 31.99, p < 0.001]. In the ipsilesional
subcortical network, significant univariate group effects on both
CS and rFA (p < 0.006) were found in the hippocampus [CS:
F(1, 24) = 16.31, p < 0.001; rFA: F(1, 24) = 24.21, p < 0.001]. In
the ipsilesional attention network, significant univariate group
effects on both CS and rFA (p < 0.006) were found in the pars
opercularis [CS: F(1, 24) = 17.44, p < 0.001; rFA: F(1, 24) = 16.68,
p < 0.001], pars triangularis [CS: F(1, 24) = 19.43, p < 0.001; rFA:
F(1, 24) = 18.16, p< 0.001] and frontal pole [CS: F(1, 24) = 15.85, p
= 0.001; rFA: F(1, 24) = 12.34, p = 0.002]. In the contralesional
attention network, significant univariate group effects on both
CS and rFA (p < 0.006] were found in the medial orbitofrontal
cortex (mOFC) [CS: F(1, 24) = 12.03, p = 0.002; rFA: F(1, 24) =
11.40, p = 0.002] and pars triangularis [CS: F(1, 24) = 16.66, p <

0.001; rFA: F(1, 24) = 11.18, p = 0.003]. In the ipsilesional default
mode network, significant univariate group effects on both CS
and rFA (p < 0.005) were found in the superior frontal cortex
[CS: F(1, 24) = 11.41, p = 0.002; rFA: F(1, 24) = 10.32, p = 0.004].
In the contralesional default mode network, significant univariate
group effects on both CS and rFA (p < 0.005) were found in the
rostral anterior cingulate cortex (rACC) [CS: F(1, 24) = 10.27, p=
0.004; rFA: F(1, 24) = 14.04, p = 0.001] and caudal middle frontal
cortex [CS: F(1, 24) = 12.81, p = 0.002; rFA: F(1, 24) = 19.6, p <

0.001]. The univariate ANOVA results of CS and rFA are shown
in Figure 4 and demonstrate the ROIs with significant differences
between stroke and healthy controls.

3.3. Correlations Between Paretic
Upper-Limb Motor Functions and DTI
Connectivity
Those ten ROIs, of which the CS and rFA were significantly
different between healthy controls and stroke patients, were

selected and correlated with the paretic upper-limb motor
functions of the stroke patients using Spearman correlation
analysis. Significant positive correlations were found between the
CS/rFA of the contralesional mOFC and the ARAT scores (CS:
rho = 0.729, FDR corrected p = 0.05; rFA: rho = 0.729, FDR
corrected p= 0.05), and between the CS/rFA of the contralesional
rACC and the FMA_WH scores (CS: rho= 0.742, FDR corrected

p = 0.04; rFA: rho = 0.714, FDR corrected p = 0.06 [marginally
insignificant]). Existing studies have proved that the CST damage

correlates with the motor impairment level (26). Therefore,
in order to find out the influence on the correlation patterns
after removing the effects of the CST’s structural properties, we

adopted partial correlation analysis. The rFA of the ipsilesional
PLIC was revealed to be significantly correlated with the ARAT

scores (rho = 0.553, p = 0.05), so it was used to represent and
quantify the structural integrity of the ipsilesional CST, implying
that rFA of the ipsilesional PLICwas the control variable in partial

correlation analysis. The CS/rFA of contralesional mOFC and
rACC still significantly correlated with the clinical scores (mOFC
[CS: r = 0.701, p = 0.011; rFA: r = 0.717, p = 0.009]; rACC [CS:
r = 0.735, p = 0.006; rFA: r = 0.694, p = 0.012]) after removing
the effects of CST. This indicated that the correlation between
these two areas and the clinical scores was independent of the
CST damage. Both CS and rFA of these two ROIs were found
larger in stroke patients compared with the healthy controls. The
correlation results between CS/rFA values and clinical scores are
shown in Figure 4.

The correlations between the clinical scores of motor

functions and the connectivitymeasures of all the 80 regions were

also performed and presented in S_Table 2. Significant positive

correlations were additionally found between the CS/rFA of the
ipsilesional mOFC and the FMA_WH scores (CS: rho = 0.842,

uncorrected p= 0.000; rFA: rho= 0.781, uncorrected p= 0.002).
Additionally, the CS of the ipsilesional amygdala and the rFA
of the ipsilesional entorhinal cortex also significantly correlated
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FIGURE 3 | Comparison of (A) CS and (B) rFA values between stroke patients

and healthy controls among the 12 subnetworks. *p < 0.05, **p < 0.01, and

***p < 0.001. Blue and orange bars represent stroke and healthy controls,

respectively. DMN, default mode network; ATT, attention network; VRN, visual

recognition network; ADN, auditory network; SMA, sensory-motor areas; SN,

subcortical network; L, left; R, right.

with the FMA_SE and the FMA_WH scores, respectively
(uncorrected p < 0.01). After the FDR correction, the correlation
between the CS of the ipsilesional mOFC and the FMA_WH
scores still remained significant (FDR corrected p= 0.024).

3.4. Connection-Wise Comparison
Between Stroke Patients and Healthy
Controls
NBS was applied to both CW and FA matrices to identify the
connectivity differences between stroke and healthy controls.
Both CW and FA showed similar patterns from the results. There
were 70 edges with 47 ROIs where the FAs were found to be
significantly smaller in stroke compared to the controls (“stroke
< healthy”), and there were 37 edges with 32 ROIs where the FAs
were found to be significantly larger in stroke compared to the
controls (“stroke > healthy”). Similarly, there were 68 edges with
47 ROIs where the CWs were found to be significantly smaller in
stroke compared to the controls (“stroke < healthy”), and there
were 37 edges with 31 ROIs where the CWs were found to be
significantly larger in stroke compared to the controls (“stroke >

healthy”). Given the same t-threshold, the number of weakened
connectivity was nearly the double of the number of strengthened
connectivity, covering widespread areas in both ipsilesional and

contralesional hemispheres. The complete information about the
connections with the corresponding t-test values were shown in
S_Table 3. From the NBS results, all the connections linked with
the contralesional mOFC and rACC showed significantly higher
FA/CW values in the stroke patients compared to the healthy
controls (S_Table 2D).

4. DISCUSSION

This study aimed to examine the post-stroke structural
connectivity reorganization by studying the differences in DTI
connectivity measures between stroke patients and healthy
controls, and the correlations between the connectivity measures
and the paretic upper-limb motor functions of the stroke
patients. Altered structural connectivity was found not only
in the ipsilesional hemisphere but also in the contralesional
hemisphere in chronic stroke patients. Our results showed
significant differences between healthy controls and stroke
patients in both CSs and rFAs of the ROIs in six subnetworks,
including ipsilesional sensory-motor areas, the ipsilesional
subcortical network, bilateral attention networks and bilateral
default mode networks. From the correlation results, significant
positive correlations were found between the paretic upper-limb
motor functions and the CS/rFA of the contralesional medial
prefrontal cortex (i.e., mOFC and rACC). These correlations
remained significant even after removing the effects of the
CST’s structural properties. Besides, all the connections linked
with the contralesional mOFC and rACC showed significantly
higher FA/CW values in the stroke patients compared to the
healthy controls.

4.1. Altered Brain Connectivity in
Sensory-Motor Areas
Significant differences between healthy controls and stroke
patients were found in both CSs and rFAs of the ROIs in the
ipsilesional sensory-motor areas. Sensory-motor areas, including
the precentral and postcentral gyri and paracentral lobule, are
involved in the control of motor and sensory innervations of the
contralateral upper and lower extremities. Among these ROIs,
both CS and rFA of the precentral gyrus were found significantly
smaller in stroke patients compared with the healthy controls.
Our findings are in line with the results of some previous studies.
For instance, the study of Wang et al. (27) used graph-theoretical
methods to investigate the efficiency of information exchange
in the motor areas and found reduced regional centrality in the
ipsilesional M1 of the stroke patients. The study of Li et al.
(28) assessed the probabilistic fiber tracking of bilateral M1 and
found reduced probability of structural connectivity within the
pathway connecting the M1 and the contralateral hemisphere in
the corpus callosum of the stroke patients compared with the
healthy controls.

4.2. Altered Brain Connectivity in
Subcortical Network
Significant differences were also found in both CSs and rFAs
of the ROIs in the ipsilesional subcortical network. For our
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FIGURE 4 | Ten brain ROIs showing significant differences in (A) CS and (B) rFA between healthy controls and stroke subjects. The values of the color bar correspond

to negative logarithm of p-values from ANOVA results. Red represents higher CS/rFA values in stroke patients than those in healthy subjects and blue represents lower

CS/rFA values in stroke patients than those in healthy subjects. Significant correlations between CS/rFA of the contralesional mOFC/rACC and the clinical scores are

also illustrated. mOFC, medial orbitofrontal cortex; rACC, rostral anterior cingulate cortex.

stroke patients, most of them exhibited their lesions mainly
at the subcortical areas (e.g., putamen). It is therefore not
surprising to reveal a significant decrease in the connectivity
measures of the overall ipsilesional ROIs in the subcortical
network due to the direct impact of brain damage induced after
stroke. In this network, both CS and rFA of the hippocampus
were found significantly smaller in stroke patients compared
with the healthy controls. The hippocampus is part of the
limbic system, and it facilitates the integration of information
from short-term memory to long-term memory and enables
the navigation through spatial memory. The major input to the
hippocampus originates from the entorhinal cortex through the
perforant path. There are many reciprocal connections between
the entorhinal cortex and the various cortical and subcortical
structures as well as the brainstem. There are also other
connections connecting the hippocampus with the cortical and
subcortical areas including the prefrontal cortex, the septal nuclei

and the hypothalamus. Although there was no infarct located in
the hippocampus, the subcortical damage might influence the
hippocampal circuitry, leading to the decrease in the connectivity
measures of the hippocampus.

4.3. Altered Brain Connectivity in Bilateral
Attention and Default Mode Networks
Apart from the ipsilesional sensory-motor areas and subcortical
network, significant differences were also found in both CSs
and rFAs of the ROIs in the bilateral attention and default
mode networks, in which reduced CSs and rFAs of the lateral
prefrontal cortex and increased CSs and rFAs of the medial
prefrontal cortex were found in stroke patients compared with
the healthy controls. The attention network and default mode
network defined here consist of frontal and parietal areas,
which are mainly associated with attention, cognition, planning,
motivation, sensory information integration and short-term
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memory tasks. It has been suggested that there is a close
relationship between disparate attentional networks and discrete
neural circuitry, and the attentional networks can be affected
by specific brain injuries (29). For instance, attention deficits
were found associated with post-stroke balance and functional
impairment (30), and dysfunctional brain connectivity in the
default mode network was also observed after stroke (31).

The connectivity measures of the bilateral lateral prefrontal
cortex, including the inferior frontal gyrus, middle frontal gyrus
and superior frontal gyrus, were found significantly smaller
in stroke patients compared with the healthy controls. Similar
findings were also observed in previous study showing a
significant decrease in the nodal betweenness centrality of the
inferior frontal gyrus, middle frontal gyrus and superior frontal
gyrus in the stroke patients compared with the healthy controls
(32). The ROI betweenness centrality refers to a fraction of all
the shortest paths in the network that involve a certain ROI.
The ROIs which are involved in a large number of the shortest
paths would have high values of betweenness centrality (33).
The observation of this decreased centrality in the prefrontal
cortex is in parallel with the atrophy pattern of the frontal lobe
after ischemic stroke (34, 35). In our stroke patients, a portion
of them exhibited their lesions in these areas in the lateral
prefrontal cortex, accounting for the decrease in the connectivity
measures of these areas. Reduced connectivity measures were
also found in the contralesional lateral prefrontal cortex, which
can be supported by the findings from the study of Crofts et al.
(6). They revealed reduced communicability, a measure of the
ease of transmitting information across a network, in stroke
patients not only in the perilesional areas in the ipsilesional
hemisphere but also in the homologous areas for a subset
of those areas in the contralesional hemisphere. The results
may be evidence for secondary degeneration of the structural
connectivity interconnecting the remote regions, directly or
indirectly, with the primary damaged areas.

On the contrary, the connectivity measures of the bilateral
medial prefrontal cortex, including the mOFC, rACC and frontal
pole, were found significantly larger in stroke patients compared
with the healthy controls. It is quite common to discover reduced
connectivity or network measures after stroke compared with
the healthy controls due to the destruction of the fiber tracts
by the lesions. However, there are also many studies showing
increased connectivity or network measures after stroke (2, 6,
32). Increased communicability revealed in the contralesional
orbitofrontal cortex has been reported in stroke patients
compared to the healthy controls (6). Greater brain activity in
the default mode network, including the contralesional anterior
cingulate cortex, was also found in stroke patients compared to
the healthy controls during resting-state functional MRI (36).
These changes could possibly reflect adaptations of white matter
structure that responded secondarily to the stroke. Moreover,
there is increasing evidence supporting an idea that the stroke-
damaged adult brain could attempt to repair itself by producing
new neurons even in brain regions where neurogenesis does not
normally take place, such as the cerebral cortex (37). Although
the knowledge about mechanism regulating the stroke-induced
neurogenesis is still incomplete, this potential mechanism for

self-repair could demonstrate the possibility of the damaged
brain undergoing structural reorganization to compensate the
functional loss of primary damaged areas. Interestingly, it is
worth mentioning that we also found a dissociative role of the
medial and lateral prefrontal cortex in structural reorganization
after stroke, revealing decreased connectivity measures in the
lateral prefrontal cortex and increased connectivity measures
in the medial prefrontal cortex. The prefrontal cortex is
recognized to subserve higher executive functions which are
involved in task management and planning. The medial and
lateral prefrontal cortices have been suggested to pertain to
two distinct architectonic trends within the prefrontal cortex
(38): the medial prefrontal cortex is in connection with the
ventral striatum (consists of the nucleus accumbens and the
olfactory tubercle), while the lateral prefrontal cortex is in
connection with the dorsolateral striatum (consists of the caudate
nucleus and the putamen). Since most of our stroke patients
exhibited their lesions mainly at the putamen, the lesions in
the putamen might influence the brain connectivity with the
lateral prefrontal cortex and be associated with its decreased
connectivity measures. Further functional implications in the
findings of medial prefrontal cortex are more elaborated in the
next section.

4.4. Neural Substrates Related to Paretic
Motor Functions
Among the 10 ROIs of which the connectivity measures
were significantly different between healthy controls and
stroke patients, significant positive correlations were found
between the paretic upper-limb motor functions and the
connectivity measures of the contralesional medial prefrontal
cortex, including the mOFC and rACC. These correlations
remained significant even after removing the effects of the CST’s
structural properties. Similar findings have also been reported,
showing strengthened functional connectivity among the M1,
ventral striatum and other regions, such as the orbitofrontal
cortex and anterior cingulate cortex, which belong to the
neural circuits for motivation processing, during functional
recovery of finger dexterity after spinal cord injury (39). These
changes implicate that the neural substrates for motivational
regulation of motor learning are involved in functional recovery,
suggesting the importance of motivation to functional recovery
after damage of the central nervous system such as spinal
cord injury and stroke. Further supports can be found from
a study revealing that the severity of post-stroke depression is
related to the dysfunction of resting-state functional connectivity
in the default mode network, including the anterior cingulate
cortex where a negative correlation was found between the
resting-state functional connectivity index and the severity of
anxiety symptoms (40). Moreover, stroke patients with post-
stroke depression exhibited reduced gray matter volume and
decreased resting-state functional connectivity in the prefrontal
cortex, including the orbitofrontal cortex, compared with the
patients without post-stroke depression (41). Another study also
found a positive relationship between the motor activity level
and the FA of the pathway connecting the rACC with the
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pre-supplementary motor area in people with major depressive
disorder (42). Overall, these findings further support the idea that
altered structural connectivity in these areas could influence the
movement motivation and motor behavior.

In order to further assess connection-wise differences between
stroke subjects and healthy controls, NBS was used to identify
the differences in structural connectivity between the two subject
groups. All the connections linked with the contralesional mOFC
and rACC showed significantly higher FA/CW values in the
stroke patients compared to the healthy controls. The results were
consistent with the results from region-wise comparison and
correlation analysis that the connections with these two regions
were strengthened after chronic stroke.

4.5. Methodological Considerations
Several methodological considerations should be noted while
interpreting the results. First, a main limitation in DTI concerns
the fiber crossings in the same voxel, so that the real fiber
trajectory may not be truly represented by the main diffusion
direction derived from the diffusion tensor model which is
usually used to estimate a single fiber population within a voxel,
and this can in turn lead to erroneous fiber tracking by a
nerve fiber tractography algorithm. The fusions, divisions and
angulations of the nerve fiber bundles could also induce errors in
tractography. Particularly, small fiber tracts and interhemispheric
pathways reaching the lateral cortices may be poorly represented
due to the complexity of the anatomy in the centrum semiovale
and the limited resolution provided by the DTI (13). More
advance diffusion imaging methods such as High Angular
Resolution Diffusion Imaging (HARDI) and q-ball imaging, and
models like multiple tensor or other more complicated fiber
models, can be used to enhance the characterization of crossing
fibers (43), but at a cost of increased acquisition times. However,
our main results focus on large-scale connectivity features that
may not be so sensitive to the variation in the small and complex
fiber connections.

Second, the voxels of the DTI data in both stroke and healthy
groups are not isotropic. It is recommended in much of the
literature to use isotropic resolution instead of non-isotropic
resolution because non-isotropic voxels, with different in-plane
and between-plane resolutions, can cause differential averaging
of fiber orientations. This can make the modeling requirements
more complicated, leading to model inaccuracy (44). Moreover,
FA values measured in regions containing crossing fibers can be
underestimated if non-isotropic DTI is used (45). The DTI data
acquisition with isotropic voxels is more recommended.

Third, small sample size and heterogeneous subject
demographics in this study, including variations in lesion
location and volume, time since stroke and stroke type, gender
imbalance in stroke group, could limit the generalization of the
findings to a larger population and contribute to differences
in the connectivity measures and patterns. These findings may
not be replicated with different groups of stroke patients with
different clinical characteristics. However, based on different
analyses, involving MANOVA, correlation and NBS analyses,
significant differences and correlations were consistently found
in the contralesional rACC and mOFC. The results might

implicate the important role of these areas in relating to the
structural reorganization and the residual motor functions
preserved after chronic stroke.

Fourth, the MRI data of stroke and healthy groups were
acquired from different scanners and imaging sequences. The
variables introduced by different scanners could devalue the
integrity of the results, leading to confusion about whether
the results of between-group analysis were owing to the
scanner (Philips vs. Siemens) factor or the group (stroke vs.
healthy) factor. However, there is an increasing trend toward
studies utilizing and pooling the multi-scanner datasets from
online databases to advance current research. Studies have
been conducted to verify that the scanner differences were
substantially less than the group differences, and no significant
interaction between scanner and disease was found (46, 47).

Fifth, to investigate the similarity between CS and rFA,
bivariate Pearson Correlation was used to check their
relationship in both stroke subjects and healthy controls.
The results showed that there existed significant correlation
between CS and rFA values in both subject groups (stroke
subjects: r = 0.963, p < 0.001; healthy controls: r = 0.963, p <

0.001]. Although the results derived from these two measures
were similar, CS and rFA represent different fiber tract properties.
FA is commonly used to measure fiber integrity between two
ROIs. The limitation of FA is that it does not consider the
surface size of the ROIs, the length of fibers and the number
of fibers. CS, on the other hand, considers these parameters,
and can measure the extent to which the ROI was connected to
the rest of the network. For instance, if only one fiber connects
the two ROIs, the FA value can be large as the connection is
still intact, but the CW value can be small as the connection
density is low. Although the results obtained with rFA and CS
were similar, our findings could provide more information about
the reorganization of structural connectivity from different
perspectives of fiber tract properties.

5. CONCLUSION

In this study, the connectivity measures, both CSs and rFAs,
demonstrated similar patterns, showing significant differences
between healthy controls and stroke patients with moderate
to severe motor impairment in the ipsilesional sensory-motor
areas and subcortical network, and bilateral attention networks
and default mode networks. Particularly, significant positive
correlations were found between the paretic motor functions and
the connectivity measures of the contralesional medial prefrontal
areas, and the correlations remained significant even after
removing the effects of the ipsilesional CST. Further longitudinal
studies in larger sample size are recommended to elucidate the
role of these involved areas in relation to the residual motor
function after stroke.
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