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Abstract

Background: Pentraxin 3 (PTX3), an acute-phase inflammation protein produced by several cell types, has long
been described as a possible biomarker for age-related cardiovascular and cerebrovascular diseases. Although several
mechanisms of action have been identified to date in the vascular and immune systems, the direct effects of PTX3 on
isolated endothelial cells at morphological and metabolic levels remain unknown.

Findings: PTX3 induced cytoplasmic vacuolization and dilution of mitochondrial matrix in isolated, human endothelial
cells. Moreover, metabolic assays revealed that PTX3 increases respiratory capacity in support of mitochondrial function,
and partially sustains the glycolytic pathway.

Conclusions: PTX3 has, per se, a direct action on ultrastructural and bioenergetic parameters of isolated endothelial cells.
This finding can be associated with our previous demonstration of a deleterious effect of PTX3 on the endothelial layer.

More studies are needed to clearly demonstrate any direct correlation between these ultrastructural and bioenergetic
changes with endothelial dysfunction, especially with regard to age-related cerebro- and cardio-vascular diseases.
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Introduction

In the last decade, several inflammatory mediators have
been implicated in the pathogenesis of age-related cere-
bro- and cardio-vascular disorders [1-3]. Moreover, the
growing body of studies linking inflammation to endo-
thelial activation and loss of nitric oxide bioactivity has
promoted investigators to seek evidence on the possible
correlation of acute-phase proteins with endothelial-spe-
cific alterations [4, 5]. On this point, an elevated level of
circulating Pentraxin 3 (PTX3) — a member of a protein
superfamily involved in the innate immune response —
has been described as a marker of poor prognosis in pa-
tients with stable coronary artery disease or heart failure
[6-8]. Other studies have reported that PTX3 levels are
higher in women with preeclampsia, speculating on its
contribution to endothelial dysfunction [9]. Recently, we
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have reported that PTX3 is directly implicated in the
pathogenesis of vascular endothelial dysfunction, through
a P-selectin/matrix metalloproteinase-1 pathway [10],
demonstrating that the exposure of mouse mesenteric ar-
teries to PTX3 leads to alterations of vascular ultrastruc-
tural and impairment of nitric oxide production.
Moreover, circulating levels of PTX3 were found to be in-
creased in hypertensive patients, leading us to candidate
PTX3 as a novel prognostic marker for arterial hyperten-
sion [10]. These findings clearly suggest that the endothe-
lium represents one of the main targets of PTX3 at the
vascular level.

However, although it has been demonstrated that ul-
trastructural alteration of membrane and organelles and
modification of bioenergetic parameters represent im-
portant determinants of endothelial cell malfunction, no
study has focused on the possible modulation of these
parameters by PTX3 in human endothelial cells (ECs).

Here, we demonstrate for the first time that PTX3 induces
cytoplasmic vacuolization and dilution of mitochondrial
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matrix. This finding, in association with modification
of bioenergetics, might reflect a clear state of EC suffering.

Material and methods

Cell culture

Human umbilical vein endothelial cells (HUVECs;
Lonza) were cultured in EBM-2 medium (Lonza) at 37 °C
in 5% CO,/95% air by standard methodologies in 25-cm®
tissue culture flasks (50 ml capacity) (Falcon, Becton Dick-
inson Labware) in the presence of endothelial cell growth
supplement [11]. HUVECsS, used for experiments after 3—
4 passages, were grown to 50—-60% confluence before ex-
posure to PTX3 (20 ng/mL for 1 h or 12 h).

Transmission Electron microscopy (TEM)

HUVEC pellets were fixed in 2% paraformaldehyde and
0.1 glutaraldehyde in 0.1 M PBS, pH 7.4 for 90 min; after
washing in PBS, cells were post-fixed in 1% OsO, for 1 h
at 4°C. Then, cells were dehydrated in ethanol and em-
bedded in Epon—araldite. Ultrathin sections were stained
with uranyl acetate and lead citrate and examined under
a Jeol Jem 100SX transmission electron microscope
(Jeol, Tokyo, Japan).

Mitochondrial bioenergetics and metabolic assays

The bioenergetic profile was measured in HUVEC cells
treated or not with PTX3 (20ng/mL) for 1 or 12h.
Real-time measurements of oxygen consumption rate
(OCR) and extracellular acidification rate (ECAR) were
made using an XFe-96 Extracellular Flux Analyzer
(Seahorse Bioscience). Cells were plated in XFe-96
plates (Seahorse Bioscience) at 20,000 cells/well. OCR
was measured in XF medium (non-buffered DMEM
medium containing 10 mM glucose, 2 mM L-glutamine,
and 1 mM sodium pyruvate) under basal conditions and in
response to 5puM oligomycin, 1.5 M carbonylcyanide-4-
(trifluoromethoxy)-phenylhydrazone (FCCP), or 1 uM anti-
mycin plus rotenone (ant-rot) (all from Sigma-Aldrich).
ECAR was measured in XF medium (according to the
manufacturer’s instructions) under the basal condition and
in response to 10 mM glucose, 5uM oligomycin, or 100
mM 2-deoxy-D-glucose (2-DG). The OCR profiles were
used to determine basal OCR (calculated as the difference
between baseline measurements and ant/rot-induced
OCR), ATP-linked OCR (calculated as the difference
between basal OCR and oligomycin-induced OCR),
and maximal OCR (calculated as the difference be-
tween FCCP-induced OCR and ant/rot-induced OCR).
The ECAR profiles were used to determine basal gly-
colysis (in the presence of glucose), maximal glycolysis
(after the addition of oligomycin), and glycolytic capacity
(calculated as the difference between oligomycin-induced
ECAR and 2-DG-induced ECAR).
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Statistical analysis

Data are expressed as mean + SEM. (n=5 replicates/
sample). Statistical differences were evaluated using the
Wilcoxon matched-pairs test.

Results

First, TEM was used to assess the ultrastructural effects
of PTX3 on isolated HUVECs. PTX3 induced the devel-
opment of large cytoplasmic vacuoles: after 12h of ex-
posure, these were found located particularly close to
the mitochondria (Fig. 1a), which clearly had a diluted
matrix (Fig. 1b). Since the mitochondrial matrix is a
structured, reticular network of proteins that undergoes
geometric rearrangement on the basis of metabolic ac-
tivity and respiratory state [12], we investigated the ef-
fect of PTX3 on cellular bioenergetics, measuring OCR
— an indicator of oxidative phosphorylation (OxPhos) —
and ECAR - an indicator of glycolysis on HUVEC cells
exposed to PTX3 for 1 or 12 h. We found that PTX3 sig-
nificantly enhanced OxPhos, as indicated by increased
basal OCR (Fig. 1c, d). After addition of oligomycin,
ATP-linked OCR was also increased (Fig. 1c), as was
maximal respiratory capacity upon addition of FCCP
(Fig. 1d). These findings suggested that PTX3 increases
respiratory capacity in order to sustain mitochondrial
function under increasing metabolic demand.

We then used the same experimental conditions to
evaluate the effects of PTX3 on the activation of glycoly-
sis, the other key metabolic pathway — together with
OxPhos — needed to generate cellular ATP. We found
that PTX3 induced a tendency to sustain ECAR (Fig. 1e).
More in detail, ECAR was slightly increased by PTX3 only
after 12 h of exposure, with glycolytic capacity showing an
increased, though not statistically significant, trend at both
time points (Fig. 1f). Taken together, these findings
suggest that in the presence of PTX3, ECs attempt to
produce energy preferentially through increasing mito-
chondrial respiratory capacity and by partially sustaining
the glycolytic pathway.

Discussion
The main finding of this study is that PTX3, an acute-phase
inflammation protein, induces morphological and bioener-
getic changes in isolated, human endothelial cells.
Endothelial cells represent a complex and dynamic
system capable of responding to different stimuli, having
a wide range of receptors and the ability to produce a
series of substances that act at multiple levels. Functions
of normal endothelium include the control of vascular
tone, thrombosis, and thrombolysis, the production of
adhesion molecules, and regulation of the inflammatory
response [13]. From this premise, it emerges that ECs
constitute a true endocrine—autocrine—paracrine organ.
Moreover, being made up of only a monolayer of cells,
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Fig. 1 a, b) Effects of PTX3 on HUVEC ultrastructure. Representative micrographs of control (a) and PTX3-treated (b) HUVECs. In (a), mitochondria
are well-conformed, while in a treated cell (b) mitochondria appear with diluted matrices (arrows) and the cytoplasm contains large vacuoles.
M = Mitochondria, N = Nucleus, V=Vacuole. Scale bar = (@) 0.33 um; (b) 0.5 um. ¢, d) Effects of PTX3 on bioenergetic profile. In c), oxygen consumption
rate (OCR) measured in HUVECs exposed or not to PTX3 for 1 or 12 h in real time, under basal conditions and in response to indicated mitochondrial
compounds: oligomycin, carbonylcyanide-4- (trifluoromethoxy) -phenylhydrazone (FCCP), or antimycin A plus rotenone (Ant/Rot), using an XFe-96
Extracellular Flux Analyzer. Indices of mitochondrial respiratory function calculated from the bioenergetic profiles (as described in Materials and
Methods). In d), extracellular acidification rate (ECAR) measured in HUVECs exposed or not to PTX3 for 1 or 12h in real time under basal
conditions and in response to glucose, oligomycin, or 2-deoxy-D-glucose (2-DG). Indices of glycolytic pathway activation calculated from
the bioenergetic profiles (as described in Materials and Methods). Data are expressed as mean + SEM. One representative out of two independent

experiments. Statistical analysis by Wilcoxon matched-pairs test. (*p<0.05; **p<0.0005)

deleterious effect that PTX3 has on vascular endothe-
lium, we decide to investigate here its effects on isolated
ECs at ultrastructural and metabolic levels.

any alteration of the endothelium has the potential of
negatively effecting the cardiovascular system. Thus,
considering our previous study demonstrating the
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Among the numerous morphological changes that ECs
can undergo, there is extensive literature on the role of
vacuolation in the activation of processes such as cell
death, lumen formation, and the response to an insult
[14, 15]. The most accepted opinion on cytoplasmic
vacuolization in ECs is that it represents an adaptive
physiological response for damage limitation, in which
the cell tries to respond to insults by using any available
energy source [16]. Thus, based on this concept and on
previous studies showing that PTX3 inhibits EC prolifer-
ation and migration — and thus candidating it as a poten-
tial anti-angiogenic factor —[17] and that it hampers nitric
oxide production [10], the observation here of cytoplasmic
vacuolization and concomitant mitochondrial matrix dilu-
tion has led us to hypothesize that PTX3 exerts a dam-
aging effect on isolated ECs. In fact, and in agreement
with the literature, dilution of the mitochondrial matrix is
strictly linked to cellular damage and to an increase in
metabolic activity and respiratory state [12].

Data on the role of mitochondrial structural change in
ECs is scarce, probably due to the low content of mito-
chondria in this cell type. However, despite mitochon-
dria composing only 5% of EC volume — contrast this
with 28% in hepatocytes — these organelles play an im-
portant role in endothelial signalling and function [18].
Indeed, the role of mitochondria goes beyond their cap-
acity to generate the molecular fuel, namely ATD, re-
quired for a multitude of cellular processes: they
produce reactive oxygen species, regulate calcium activa-
tion in cell death, and modulate important endothelial
intracellular signalling pathways. Emerging studies sug-
gest that balance in mitochondrial dynamics is relevant
to EC structure and function, and its alteration is ob-
served in the endothelium of patients with cardiovascu-
lar risk factors [19].

Interestingly, our study of EC bioenergetics revealed
that PTX3 induces significant enhancement of cellular
metabolism, increasing OxPhos through mitochondrial
function and stimulating the glycolytic pathway, pro-
cesses that are associated with the morphological
changes observed and that are typical of the suffering
cell in which homeostatic mechanisms to restore the
status quo has been activated [16].

In conclusion, our study demonstrates the direct effect
that PTX3 has on isolated, human endothelial cell homeo-
stasis. The evoked morphological and metabolic changes
might represent a compensatory response to cellular dam-
age. This is in agreement with our previous finding of a
deleterious effect of PTX3 on the vascular system. More
studies are needed to better characterize direct correlation
between the ultrastructural and bioenergetic changes in-
duced by PTX3 with endothelial dysfunction, and to bet-
ter understand the mechanisms involved in age-related
cerebro- and cardio-vascular diseases.
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