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Abstract

Various methods of reconstructing transcriptional regulatory networks infer transcriptional regulatory interactions (TRIs)
between strongly coexpressed gene pairs (as determined from microarray experiments measuring mRNA levels).
Alternatively, however, the coexpression of two genes might imply that they are coregulated by one or more transcription
factors (TFs), and do not necessarily share a direct regulatory interaction. We explore whether and under what
circumstances gene pairs with a high degree of coexpression are more likely to indicate TRIs, coregulation or both. Here we
use established TRIs in combination with microarray expression data from both Escherichia coli (a prokaryote) and
Saccharomyces cerevisiae (a eukaryote) to assess the accuracy of predictions of coregulated gene pairs and TRIs from
coexpressed gene pairs. We find that coexpressed gene pairs are more likely to indicate coregulation than TRIs for
Saccharomyces cerevisiae, but the incidence of TRIs in highly coexpressed gene pairs is higher for Escherichia coli. The data
processing inequality (DPI) has previously been applied for the inference of TRIs. We consider the case where a transcription
factor gene is known to regulate two genes (one of which is a transcription factor gene) that are known not to regulate one
another. According to the DPI, the non-interacting gene pairs should have the smallest mutual information among all pairs
in the triplets. While this is sometimes the case for Escherichia coli, we find that it is almost always not the case for
Saccharomyces cerevisiae. This brings into question the usefulness of the DPI sometimes employed to infer TRIs from
expression data. Finally, we observe that when a TF gene is known to regulate two other genes, it is rarely the case that one
regulatory interaction is positively correlated and the other interaction is negatively correlated. Typically both are either
positively or negatively correlated.
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Introduction

If two genes share a transcriptional regulatory interaction (TRI),

one or both of them must be a transcription factor gene (TF gene)

which can produce a protein called a transcription factor (TF) that

regulates the mRNA expression of the other gene. The collection

of genes and TRIs work as a dynamic network enabling cells to

function and cope with changes in their environment [1]. The

increased availability of high-throughput gene expression data has

led to a variety of approaches for inferring TRIs [2–6]. A typical

assumption of these approaches is that strongly correlated mRNA

expression profiles (coexpressed profiles) indicate TRIs between

two genes if one or both genes is a TF gene. More sophisticated

methods of inferring TRIs integrate gene expression with other

information, e.g. position weight matrices from sequence motif

analysis, as in [7]. Here, we study the use of gene expression alone

in determining TRIs. In particular, we focus on the z-score metric

used in the CLR algorithm (described in the Methods section).

This metric has been argued to give good performance in inferring

TRIs [2]. On the other hand, it has been shown in the case of

Saccharomyces cerevisiae that gene pairs with a high degree of positive

coexpression according to the Pearson correlation coefficients may

indicate coregulation by TFs [8]. This raises the question of how to

biologically interpret high levels of coexpression between gene

pairs, particularly in the case of non-time-course data. In this

study, we use publicly available prokaryotic bacterium Escherichia

coli (E. coli) and eukariotic Saccharomyces cerevisiae (yeast) microarray

expression data (these data are collected under different experi-

mental conditions) along with established TRIs to evaluate the

accuracy of different predicted gene pairs. In particular, we

consider gene pairs that are coexpressed above a selected threshold

level. By comparing these gene pairs to the TRIs in the established

networks, we obtain estimates of the precision and recall for the

prediction that these pairs are TRIs and the alternate prediction

that these pairs are coregulated. Our goal is to provide researchers

with information that will aid them in evaluating the reliability of

using coexpression data to predict transcriptional regulatory

interactions and/or coregulation.
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In addition, we will also study and classify fan-out motifs [1]:

subgraphs composed of a TF gene that coregulates two genes that

do not interact directly. In some algorithms using coexpressed

profile data to infer TRIs, these coregulated gene pairs are

identified as TRIs if they have coexpressed profiles and one of the

genes is a TF gene. Different approaches have been applied to

identify non-interacting gene pairs in triplets of significantly

coexpressed genes, where the main motivation has been to lower

the false positive rate of inferring TRIs [3,9–12]. In this paper, we

compare the performances of two prominent approaches. One

approach is based on application of the data processing inequality

(DPI) [3,13]. The DPI is a general result that can be rigorously

derived and states that if, gene X2 interacts with both genes X1 and

X3 and X1 and X3 do not interact, then the mutual information

between X1 and X3 is smaller than the mutual informations of

either of the other two gene pairs. More formally, if x1, x2, x3 are

the expression levels of genes X1, X2, X3, then the DPI is valid if

the probability densities for simultaneously observing expression

levels x1 and x3 given x2 satisfy P(x1,x3jx2)~P(x1jx2)P(x3jx2).
That is, for fixed x2, the expression levels x1 and x3 are

uncorrelated, and the probability of measuring an expression level

x1 (or x3) depends only on x2 and not on x3 (or x1). (We

emphasize that the satisfaction of this condition of non-interaction

of X1 and X3 is not clear for actual gene interactions, and we will

discuss this subsequently in the Results section.) In contrast to

methods assuming applicability of the DPI, another approach

claims that the non-interacting gene pairs in fan-out motifs have

the maximum mutual information of gene pairs in the triplet [12].

Although [14] points out that application of the DPI in the former

approach can fail when mRNA and protein levels of the TF are

weakly correlated, this does not necessarily imply the failure of that

approach, and the DPI continues to be used by some researchers

[3,13]. One purpose of our study is to address the extent to which

the DPI is useful in this context by evaluating its performance

using both gene expression and established TRI data. Given these

data, we extract fan-out motifs in which at least one of the two

non-interacting genes is a TF gene (as is the case when the DPI is

commonly applied) and coexpression levels of all gene pairs are

above certain thresholds. For each such threshold, we calculate the

fraction of the non-interacting gene pairs having the largest,

intermediate and smallest mutual information of all pairs in the

triplet.

A previous study showed that coregulated gene pairs with a high

degree of coexpression tend to be positively correlated [8]. We also

explore whether a similar tendency exists in expression correla-

tions between the TF gene and each of the coregulated genes in

the datasets we study. In this case, we consider fan-out motifs

regardless of whether or not the two coregulated genes interact

directly and look for patterns in expression correlations among

genes in these three gene subgraphs. To do this, we divide these

subgraphs into different types according to the signs of Pearson

correlations between gene pairs in the subgraph. There are six

such possibilities which we call ‘correlation motifs
0
. Also, we

investigate the classification of these motifs in relation to our

obtained mutual information and z-score metrics.

In the following, we first describe the data and the z-score

similarity measure. Next, we compare the performance of using

coexpression to infer TRIs to that of using coexpression to infer

coregulated gene pairs. We then investigate the DPI in fan-out

motifs, and we classify these motifs on the basis of the correlations

between pairs of genes in the motifs. Conclusions are drawn in the

final section.

We emphasize that one of our purposes focuses on testing the

validity of the DPI method for pruning indirect interactions, and

we have not attempted to test other pruning methods, although

our testing techniques could possibly be applied to them. For

example, alternative proposed pruning techniques include

MRNET [9], conditional mutual information [10], and condi-

tional independence [11]. Also, see Ref. [15] for a comparison of

the DPI with some of these methods.

Methods

Microarray expression data
We use gene expression microarray data from the Many

Microbe Microarray Database (M3D) [16] to analyze both E. coli

and yeast. The expression data consist of a compendium of 445 E.

coli and 247 yeast Affymetrix Antisense2 microarray expression

profiles for 4345 and 5520 genes, respectively. These microarray

data were collected under different experimental conditions:

different genetic backgrounds, media, growth conditions and

perturbing chemicals.

Known transcriptional regulatory interactions
We use RegulonDB for the established network for E. coli and

four databases for yeast. We summarize these databases in Table 1.

For E. coli, we obtain an established network of TRIs from

RegulonDB version 6 [17]. 2% of the genes involving in TRIs

from RegulonDB cannot be found in our microarray data. We

remove interactions related to those genes from our TRI

established network, as well as self-regulatory TRIs. This results

in a TRI established network data set consisting of 3458

interactions between 171 TF genes and 1410 genes.

For yeast, a single, generally accepted standard TRI database

(analogous to RegulonDB for E. coli) has not been established.

Therefore, we use four sources of inferred TRIs. As with E. coli, we

filter out self-regulatory interactions and interactions with genes

that are not found in our microarry data.

The first database (Lee 02A (Chip-chip)) [18] was obtained

using the technology of chromatin immunoprecipitations in vivo

with microarray (Chip-chip) to identify the binding of TFs to

promoter regions in yeast. This database contains 3747 links

(bindings) between 96 TFs and 2007 target genes. (Note that the

physical bindings of a TF to the promoter regions of a gene does

not necessarily imply a regulatory relationship between the TF

producing gene and target gene.)

The second yeast database (Harbison 04 (Chip-chip/Sequence

motif)) [19] was constructed via several steps. First, cis-regulatory

sequences, which may act as recognition sites for TFs were

identified by combining information from genome-wide location

data by Chip-chip, phylogenetically conserved sequences and

previously published evidence. Motif discovery methods were

applied to these regions in order to discover significant TF-related

sequence motifs. Two standards have to be met for these

significant motifs in order to conclude the binding of a TF to a

promoter region: first, the binding pair is required to have been

assigned a high confidence score (pƒ0:001) by Chip-chip; second,

the promoter sequences are required to be conserved among sensu

stricto Sccharomyces species. The data set thus obtained includes 3186

interactions between 99 TF genes and 1732 genes.

The third yeast database (Milo 02 (Compilation)) [20] was

extracted from the Yeast Proteome Database (YPD) [21]. This

data set, a compilation from various sources in the literature,

provides a list of TRIs including 800 interactions between 73 TF

genes and 550 genes and is available to download at www.

weizmann.ac.il/mcb/UriAlon.

The forth yeast database (Lee 02B (Compilation)) [18] is also a

compilation of previously discovered TF-gene bindings (proved by
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in vivo binding, in vitro binding, indirect binding and sequence

analysis). This collection of interactions is used to compare with

the TF-gene binding data from Chip-chip experiments. The result

yields 1017 TRIs between 87 TF genes and 400 target genes and

can be downloaded at http://web.wi.mit.edu/young/regulator

network.

Among our four TRI yeast databases, we believe that the first

two (Chip-chip and Chip-chip/Sequence motif) are of generally

better quality. We also note that these first two databases (in

contrast to the other two) cover almost the whole genome.

However, since the four yeast databases may reflect different

aspects of the true TRIs, we will give results of analyses using all

four.

Quantifying the similarity of expression profiles
For each pair of genes, we characterize the similarity between

their mRNA expression profiles by three metrics: Pearson

correlation (r), mutual information (MI), and z-score (z). The z-

score is used by the CLR algorithm and is related to the empirical

distribution of MI values. We here provide a brief review of these

metrics.

The Pearson correlation r. Given m genes (including all TF genes),

we compute an estimate of the m(m{1)=2 Pearson correlations

between gene Xi and Xj , r(Xi,Xj), using

r(Xi,Xj)~

Xn

k~1
(xik{�xxi)(xjk{�xx

j
)

(n{1)sisj

,

where xik(xjk) is the gene expression level of gene Xi(Xj ) in the kth

experimental condition, and n denotes the number of conditions.

�xxi(�xxj ) and si(sj ) are the mean and standard deviation of the gene

expression level of gene Xi(Xj ).

The mutual information, MI. We compute an estimate of the

mutual information between genes Xi and Xj based on the

formula,

MI(Xi; Xj)~
X
xi[Xi

X
xj[Xj

p(xi,xj)log
p(xi,xj)

p1(xi)p2(xj)
, ð1Þ

where xi(xj ) is the variable denoting the expression level of gene

Xi(Xj ). Also, p(xi,xj) is the joint probability distribution, and p1(xi)

and p2(xj) are the marginal probability distribution function for

each gene. The expression levels from our databases are continuous

variables. To compute the mutual information between continuous

random variables, we use a B-spline mutual information estimation

code from the M3D website [16], where this code used a B-spline

smoothing and discretization method with 10 bins and third order

B-spline to estimate the probabilities in (1) [16,22].

The z-score. The CLR algorithm [2] is an extension of the

Relevance network method based on mutual information [3] and

uses the z-score between two genes to infer TRIs. The z-score,

Z(Xi; Xj), is defined as

Z(Xi; Xj)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

i zZ2
j

q
,

where

Zi~
MI(Xi; Xj){MIi

si

;

MIi and si are the mean and standard deviation of the set of

values of MI(Xi; Xk), k~1,:::,m.

Error bars on a fraction
For a sample population of size N, and ~NNvN of these

measured to have some specific property, the standard error of
~NN=N is estimated to be

½ ~NN(N{ ~NN)�1=2=N3=2: ð2Þ

Results

As detailed in the Methods section, we obtain microarray

expression data for E. coli and yeast from M3D [16], and

established transcriptional regulatory interaction data sets from

RegulonDB [17] for E. coli and from four data sets [18–20] for

yeast. We use these data in two different types of analyses. In the

first type of analysis, we use the z-score metric (described in

Methods Section) to determine strongly coexpressed gene pairs,

and we compare these with gene pairs in our established TRI data

sets. In the second type of analysis, we use the established TRI

data together with expression correlation values (using different

metrics) to obtain different types of three-gene interaction motifs.

Signatures of coregulation
There is a question as to whether the degree of coexpression is a

predictor of a transcriptional regulatory interaction (TRI), a

coregulated gene pair, or both. A high degree of coexpression, as

measured by Pearson correlation, has been claimed to indicate

coregulated gene pairs [8]. We also note that, a high degree of

coexpression between expression profiles of TF-gene pairs, as

measured by a high z-score, has been argued to represent TRIs

between TF genes and target genes [2]. A benefit of using the z-

score to measure the degree of coexpression is that it takes into

account the noise in gene expression levels and is therefore

Table 1. The number of TFs, regulated genes and edges in our established TRI data set of known TRIs for E. coli and yeast.

Species Data set of known TRIs No. of TFs No. of regulated genes No. of edges

E. coli RegulonDB 171 1410 3458

yeast Lee 02A (Chip-chip) 96 2007 3747

yeast Harbison 04 (Chip-chip/Sequence motif) 99 1732 3186

yeast Milo 02 (Compilation) 73 550 800

yeast Lee 02B (Compilation) 87 400 1017

doi:10.1371/journal.pone.0031969.t001
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considered to be a better measure of coexpression than raw MI. In

what follows, we use the z-score to investigate the above question.

We find that a high degree of coexpression is more likely to predict

coregulated gene pairs for yeast, while it is more likely to predict

TRIs for E. coli.

When using coexpression to infer TRIs, a TRI is predicted

when a gene pair has at least one TF gene and a z-score above a

chosen cutoff. When using coexpression to infer coregulation, a

gene pair is predicted to be coregulated if its z-score is above a

chosen cutoff. To evaluate the quality of these predictions, we use

several quantitative measures, namely, the precision (pr), the recall

(re), and the F-score. For coregulated gene pairs/TRIs, the

precision (pr) is defined as the ratio of the number of correctly

predicted coregulated gene pairs/TRIs to the total number of

predicted coregulated gene pairs/TRIs. The recall (re) is defined

as the ratio of the number of correctly predicted coregulated gene

pairs/TRIs to the total number of coregulated gene pairs/TRIs.

Then F-score defined as 2Pr|Re=(PrzRe), is a measure of the

quality of the prediction that reflects the tradeoff between

precision and recall. Figure 1 shows plots of F-score versus z-

score cutoff for E. coli (Fig. 1A) and for yeast (Figs. 1B–E) for three

different predictions (the red, green and blue curves). For E. coli

(Fig. 1A), the F-score for the prediction of coregulated gene pairs

(blue curve) is larger than that for TRIs (red curve) when the z-

score cutoff is smaller than 3. However, when the z-score cutoff is

greater than 3, prediction of TRIs performs better. For the four

established TRI data sets of yeast (Figs. 1B–E), F-score values for

the prediction of coregulated gene pairs (blue curves) are

significantly larger than those for the prediction of TRIs (red

curves) for all z-score cutoff, so indicating that the performance of

using z-score to predict coregulated gene pairs is better than that of

using z-score to predict TRIs. Also, for both predictions of

coregulated gene pairs and TRIs (Figs. 1D–E), the plots

corresponding to the Milo 02 and Lee 02B TRI data sets have

F-score peaks around z-score cutoffs of 3–4 while the other two

plots have their maximum F-score at z-score cutoffs of 1. This is an

indication for the differences among the TRIs in the four

established TRI data sets.

In addition to exploring the incidence of coregulation in all gene

pairs with z-score above a certain value, we separately consider

only the set of gene pairs with at least one TF gene and z-score

above a said value. The corresponding F-score curves are plotted

in green in Fig. 1 for both E. coli and yeast. For E. coli, this green F-

score curve is always below that of prediction of coregulated gene

pairs from non-restricted coexpressed gene pairs (blue curve). Also,

it is below the red F-score curve for prediction of TRIs when z-

score cutoff is greater than 2. For yeast, considering Figs. 1B and

1C, we see that the F-score curve for prediction of coregulated

gene pairs from restricted coexpressed gene pairs is below that of

prediction of coregulated gene pairs from non-restricted coex-

pressed gene pairs, but above the F-score curve for prediction of

TRIs. This indicates that, for both E. coli and yeast, coregulated

gene pairs with at least one TF are likely to have smaller z-score

compared to the unrestricted coregulated gene pairs. We have also

studied the precision-recall graphs for all the prediction for both E.

coli and yeast and the same results are obtained (Shown in

Supplementary Figure S1). Our studies reveal that when we go

from E. coli to yeast, the performance of predicting TRIs using z-

score degrades. However, the performance of using z-score to

predict coregulated gene pairs from coexpressed gene pairs

without restriction is reasonable for both E. coli and yeast.

Because the microarray sample size for E. coli is much larger

than that for yeast, we also employed a sampling approach to

demonstrate that the difference in sample sizes does not bias the

above conclusions. Specifically, we have recomputed Fig. 1A using

randomly selected sets of E. coli samples comparable in size to that

for our yeast results (Figs. 1B–E). This result, given in the

supplementary material (Fig. S2B), shows that the E. coli patterns

using the smaller sample size are virtually identical to that in

Fig. 1A.

Also, TRIs are relatively easier to justify for E. coli than for yeast

since E. coli is a much simpler organism than yeast. This might

suggest that the yeast TRI databases are more noisy than the

RegulonDB database. In order to demonstrate that noise in yeast

TRI databases does not bias our conclusions, we recompute the E.

coli result (Fig. S2B) with artificially added noise. This was done by

randomly deleting 10% of the links in RegulonDB and then

replacing each deleted link by a link from a randomly selected TF

gene to a randomly selected gene. This result, given in Fig. S2C of

the supplementary material, shows that the E. coli patterns in

Fig. 1A are robust to adding noise to the TRI database.

The above tests (decrease of the E. coli sample size and addition

of noise to RegulonDB) confirm the robustness of our conclusion

(based on Fig. 1) that when we go from E. coli to yeast, the

performance of predicting TRIs using z-score degrades while the

performance of predicting coregulated gene pairs from coex-

pressed gene pairs without restriction is reasonable for both E. coli

and yeast.

MI-motifs
Given an established TRI data set, we can identify all fan-out

motifs, where a fan-out motif is defined as a subgraph formed by

two non-interacting genes and a TF gene that coregulates them.

Here we only consider fan-out motifs in which one of the two

coregulated genes is itself a TF gene. The three gene pairs in each

fan-out motif are assigned values according to their respective

mutual information values. Then we define the three types of MI-

motifs shown in Fig. 2A, MI1, MI2 and MI3, which refer to the

case that the value of MI of the non-interacting gene pair is the

largest, intermediate and smallest as compared to that of the two

TF-gene pairs respectively. If more fan-out motifs are identified as

MI3-motifs, the data processing inequality(DPI) is a good tool for

inferring the non-interacting gene pairs in fan-out motifs.

Conversely, if MI1-motifs dominate, the non-interacting gene

pairs predominantly have the largest MI values within their fan-

out motifs, and one might predict that the largest MI indicates

coregulation in such a situation, we call this the ‘max MI

approach
0

[12].

In order to address the utility of the DPI in this context, we

compare the relative abundances of the three MI-motifs in the set

of fan-out motifs described above, and we assess how the

coexpression levels of gene pairs in fan-out motifs is related to

these relative abundances. To do this, we generate different groups

of fan-out motifs as we vary the z-score cutoff. For each z-score

cutoff, we include only those fan-out motifs in which all gene pairs

have a z-score above the cutoff. For each group of fan-out motifs,

we compare the relative abundance of the three MI-motifs. We

plot the fractions of the three MI-motifs found as a function of the

z-score cutoff on all gene pairs. Figs. 2B–F show results for both E.

coli and yeast. For E. coli (Fig. 2B), the relative abundance of MI3-

motif is always higher than 40% while that of MI1-motif is always

lower than 25%. When the z-score cutoff is larger than 2, the

relative abundances of MI1, MI2 and MI3-motifs have no

distinguishable differences. For the analyses of the Lee 02A,

Harbison 04 and Lee 02B data sets of yeast (Figs. 2C, D and F),

the relative abundances of MI3-motif are always lower than 30%
while those of MI1-motif are always higher than 40%. Especially,

for the analyses of the Lee 02A and Harbison 04 data sets, the

Interpreting Patterns of Gene Expression
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Figure 1. F-score vs. z-score cutoff. F-score versus z-score cutoff for prediction of coregulated gene pairs and TRIs are plotted in blue and red
respectively. Also, the F-score curves for the prediction of coregulated gene pairs in coexpression gene pairs with at least one TF gene is plotted in
green. The five subplots correspond to the five established TRI data sets for E. coli and yeast (Table 1), A) RegulonDB, B) Lee et al. 2002 (Chip-chip), C)
Harbison et al. 2004 (Chip-chip/sequence motif), D) Milo et al. 2002 (Compilation) and E) Lee et al. 2002 (Compilation).
doi:10.1371/journal.pone.0031969.g001
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relative abundances of MI1-motif are always around 50%.

However, for the analysis of the Milo 02 data set (Fig. 2E), the

relative abundances of the three MI-motifs are similar and cannot

be distinguished. For all four yeast databases, there is no obvious

increasing/decreasing trend for these relative abundances with

increasing z-score cutoff. This implies that the DPI in the case of

E. coli works better than the max MI approach and the random

prediction for inferring non-interacting gene pairs in fan-out

motifs (relative abundance of each MI-motif is equal to one-third

in random prediction). However, the performances of the DPI and

the max MI approaches are the opposite for yeast. The max MI

approach works better than the random case while the DPI fails in

inferring non-interacting gene pairs in fan-out motifs. (i.e., the DPI

prediction is more often false than a random unweighted guess of

the non-interacting links).

Similar to Fig. S2, of the supplementary material, we show in

Fig. S3 that the main important features of Fig. 2B are robust to

decrease of the E. coli sample size to be comparable to the yeast

sample size, and also robust to add noise to the E. coli TRI

database.

In order to demonstrate that our results are not sensitive to the

method used for mutual information estimation (a B-spline

estimator), we have recomputed Fig. 2B for E. coli and Figs. 2C–

F for yeast using both empirical [9] and Miller-Madow [23]

estimators with both equal-width and equal-frequency binning (10

bins for both). We choose these two estimators because it has been

shown that the ARACNE inference method (a method based on

DPI) gives the better performance when using these two estimators

with equal-frequency binning [15]. The results are given in the

supplementary material (Figs. S4, S5, S6, S7, S8), and show that

Figure 2. Fractions of MI-motifs vs. the z-score cutoff of non-interacting gene pairs. Non-interacting gene pairs in fan-out motifs are
restricted to gene pairs with at least one TF gene. A) MI-motifs in which the non-interacting gene pair has the largest, intermediate and smallest MI.
Fractions of MI1 , MI2 and MI3- motifs are plotted in blue, red and green respectively for B) E. coli and C–F) yeast. The five subplots correspond to the
five established TRI data sets for E. coli and yeast (Table 1), B) RegulonDB, C) Lee et al. 2002 (Chip-chip), D) Harbison et al. 2004 (Chip-chip/sequence
motif), E) Milo et al. 2002 (Compilation) and F) Lee et al. 2002 (Compilation).
doi:10.1371/journal.pone.0031969.g002
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both the E. coli and yeast results recomputed using the empirical

and Miller-Madow mutual information estimators with both

equal-width and equal-frequency are similar to those in Fig. 2B

and Figs. 2C–F. In particular as before, for E. coli the DPI

approach for pruning the non-interacting links in fan-out motifs

works better than random and the max MI approach, but it works

worse than random in yeast in general.

Regarding the strikingly poor performance in yeast, we note

that the DPI, while a rigorous result, only applies when the

hypothesis under which it was derived applies (see Introduction

Section), and it is unclear to what expect this is the case for gene

expression data. One mechanism violating the necessary hypoth-

esis is the possible imperfect correlation between a TF’s mRNA

level and the production rate of its protein (see Ref. [14]). Another

mechanism that would have an equivalent effect is that it can take

considerable time for mRNA to be translated into its protein, and

thus there can be a significant time lag between the expression

levels of a TF and that of its target genes. Still another mechanism

that might be relevant is that the expression of target genes may be

dependent, not only on the presence of the TF protein involved in

the fan-out motif considered, but may also be strongly influenced

by other fluctuating factors. Our results suggest that at least one

mechanism like those above is most often operative in yeast, but

not in E. coli. Therefore, the applicability of the data processing

inequality may be organism-dependent.

Correlation-motifs
A previous study showed that coregulated gene pairs with a

large magnitude of Pearson correlation coefficient between their

expression profiles tend to be positively correlated [8,24]. In our

study, instead of using Pearson correlation, we will use the z-score

metric to measure the degree of coexpression. An initial question is

whether the previously found pattern in expression correlation of

coregulated gene pairs [8,24] also appears when the z-score metric

is used to quantify coexpression. Figure 3 shows a plot of Pearson

correlation versus z-score for E. coli. In this figure, gene pairs that

are coregulated and not coregulated according to RegulonDB

compilation are plotted as blue and red dots respectively (plots for

yeast turn out to show similar features to the plot for E. coli and are

not shown here). To meaningfully represent relative densities of

coregulated (blue) and not coregulated (red) pairs in the presence

of overlapping of the printed points, we plot points one by one,

alternating between blue and red and selecting the gene pairs in

the chosen group (blue and red) randomly. This plot shows that a

high z-score (z-score w6) is associated with positive correlation

and that high z-score gene pairs are likely to be coregulated [the

density of blue dots (coregulated gene pairs) is higher than that of

red dots (gene pairs that are not coregulated) when the z-score is

high]. Motivated by this finding, we consider the situation when a

TF gene regulates two other genes, and we ask whether other

patterns exist in expression correlation between the TF gene and

each of the coregulated genes when coregulated gene pairs have a

high degree of coexpression.

We refer to the TF gene and the two genes that it regulates as a

coregulation subgraph and we identify these subgraphs from the

established TRI databases. However, in contrast to fan-out motifs

(discussed in the last section), coregulated genes in these

coregulation subgraphs may or may not interact directly. To

further explore the correlation and coexpression among genes in

coregulation subgraphs, we define six correlation-motifs (C-motifs)

by classifying the coregulation subgraphs into different types

according to the combinations of the signs of Pearson correlation

between the expression of coregulation subgraph genes. There are

six such types as shown in Figs. 4A and 4G, where C denotes the

TF gene and the other two genes are denoted A and B. The z

and { signs on the links denote positive and negative Pearson

correlation. We apply Fisher’s z-transformation to the coefficients

of Pearson correlation and obtain the 95% confidence intervals for

all coefficients [25]. Among all coregulation subgraphs, we only

consider cases where all Pearson correlation coefficients have

confidence intervals indicating they have less than a 5%
probability to be of the opposite sign.

Next we investigate how the relative abundances of the six C-

motifs depends on the z-score between the A and B genes. We first

generate different groups of coregulation subgraphs using different

z-score cutoffs on the coregulated gene pairs, and for each group,

we calculate the relative abundances of the six C-motifs amongst

all coregulation subgraphs. Figures 4B–F show plots of the

fractions of different C-motifs as a function of the z-score cutoff

on coregulated gene pairs for both E. coli and yeast. Only the

fractions of C1, C2 and C3-motifs are shown (respectively plotted

in red, blue and green) as those of the other C-motifs (Fig. 4G) are

very small at all z-score cutoffs. For E. coli (Fig. 4B), when the z-

score cutoff is above 2, the fractions of C1 and C2-motifs are

always about 75% and 18% respectively, and the fraction of C3-

motifs is always lower than those of C1 and C2-motifs and

decreases to near zero around a z-score cutoff of 5. For yeast

(Figs. 4C–F), the C1 and C2-motifs are again the most abundant,

while C3-motifs are the least abundant and their fractions decrease

to near zero when the z-score cutoffs are high enough (around 6).

In particular, for the analysis using the Lee 02A TRI data set

(Fig. 4C), C1-motifs are more abundant than C2-motifs when the

z-score cutoff is higher than about 5.5, but they are less abundant

than C2-motifs when the z-score cutoff is lower than 5.5. For the

analyses using the other three TRI yeast data sets (Figs. 4D, 4E

and 4F), C1-motifs are generally more abundant than C2-motifs

(except for Fig. 4F for the cutoffs greater than 8, where they are

approximately equal). The observed differences between the

analyses of the four different yeast TRI data sets indicates that

there may be significant differences in coregulated genes in

Figure 3. Pearson correlation vs. z-score. Gene pairs that are
coregulated are represented by blue dots and those that are not
coregulated are represented by red dots for E. coli.
doi:10.1371/journal.pone.0031969.g003
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different data sets. Overall, results from both E. coli and yeast are

consistent with our Fig. 3 in that coregulated gene pairs with a

high degree of coexpression are more likely to be positively

correlated. In addition, these results also imply that when

coregulated gene pairs have a large enough z-score, the

correlations between the TF gene and the two other genes in

the coregulation subgraphs both have the same correlation sign

(i.e., they are C1 or C2 motifs).

Figure 4. Fractions of C-motifs in a group of subgraphs of coregulation vs. z-score cutoff on coregulated gene pairs in the group. A)
C1 , C2 and C3-motifs. B–F) The fractions of C1 , C2 and C3-motifs are plotted in red, blue and green respectively. The five subplots correspond to the
five established TRI data sets for E. coli and yeast (Table 1), B) RegulonDB, C) Lee et al. 2002 (Chip-chip), D) Harbison et al. 2004 (Chip-chip/sequence
motif), E) Milo et al. 2002 (Compilation) and F) Lee et al. 2002 (Compilation). G) C4, C5 and C6-motifs.
doi:10.1371/journal.pone.0031969.g004
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Figure 5. Mutual information vs. z-score for coregulated gene pairs in C1 and C2-motifs. A) C1 and C2-motifs. B–F) Data points for
coregulated gene pairs in C1 and C2-motifs are plotted in red and blue respectively. The five subplots correspond to the five established TRI data sets
for E. coli and yeast (Table 1), B) RegulonDB, C) Lee et al. 2002 (Chip-chip), D) Harbison et al. 2004 (Chip-chip/sequence motif), E) Milo et al. 2002
(Compilation) and F) Lee et al. 2002 (Compilation).
doi:10.1371/journal.pone.0031969.g005
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We now further characterize the difference between the

coregulated gene pairs in C1 and C2-motifs used in the plots of

Figs. 4B–F. For each coregulated gene pair, we find their

respective mutual information and z-score. Then we construct

scatter plots of mutual information versus z-score for all these

coregulated gene pairs for both E. coli and yeast (Fig. 5) where

points corresponding to C1-motifs are plotted in red and those

corresponding to C2 motifs are plotted in blue. There are more

C2-motifs (blue) than C1-motifs (red). Since overlapping is present,

the order in which we plot the points is significant (as for our

previous figure, Fig. 3). In the present case we proceed as follows.

We first plot randomly selected blue (C2-motifs) points until the

number of remaining unplotted C2-motifs is equal to the number

of the C1-motifs. After that, points are plotted one by one,

alternating between randomly selected C1-motifs and randomly

selected C2-motifs. For E. coli, data points for coregulated gene

pairs in C1-motif are well mixed with those for coregulated gene

pairs in C2-motif in Fig. 5B. Thus there is no apparent distinction

observed between coregulated gene pairs in C1 and C2-motifs for

E. coli. Our analyses of the Lee 02A and Harbison 04 yeast data

sets (Figs. 5C and 5D) show that mutual information is

approximately linearly related to z-score for both groups of

coregulated gene pairs (corresponding to blue and red), and that,

the slope of the linear relationship for C2-motifs (blue) is larger

than that for C1-motifs (red). However, distinct slopes are not

observed in the analyses of the other two yeast established TRI

data sets (Figs. 5E and 5F). We do not presently have a good idea

as to a mechanism leading to the observed distinctive C1 and C2

patterns seen in Figs. 5C and 5D.

Regarding a possible reason for the presence of the splitting

observed in Figs. 5C and 5D versus the lack of such a splitting in

Figs. 5E and 5F, we note that the links in the Milo 02/Lee 02B

databases (used for Figs. 5E and 5F) are very different from those

in the Lee 02A/Harbison 04 databases (used for Figs. 5C and 5D).

In particular, the Lee 02A and Harbison 04 TRI databases are

based on Chip-chip experiments, while links in Milo 02 and Lee

02B are inferred by several different methods. It has been shown

that different TRI inference methods, such as Chip-chip, targeted

gene disruption, and overexpression of TFs, capture distinct facets

of the transcriptional regulatory program, and uncover disparate

biological phenomena [26]. The fact that a splitting feature is

observed in Figs. 5C and D but not in Figs. 5E and 5F may be

because different biological processes are reflected in their

database constructions.

Discussion

Our study demonstrates that the performances of prediction of

coregulated gene pairs and transcriptional regulatory interactions

determined by coexpression levels are organism dependent. For

Escherichia coli, the prediction of transcriptional regulatory

interactions outperforms prediction of coregulated gene pairs

when the predictions are determined by coexpression with z-score

greater than 3. However, the situation is very different for

Saccharomyces cerevisiae, with the prediction of coregulated gene pairs

outperforming the prediction of TRIs for all z-score cutoffs. Many

methods of inferring transcriptional regulatory interactions or

coregulated gene pairs have been developed and shown to give

excellent performance in specific organisms. However, based on

our study, applications of these methods to other organisms should

be conducted with caution as their predicting powers may depend

on the organism studied.

The Data processing inequality (DPI) has been applied to the

prediction of transcriptional regulatory interactions after excluding

highly coexpressed gene pairs that do not interact directly. The

results show that the application of the DPI to Escherichia coli data

works better than random prediction of gene pairs. However, the

performance of the application of DPI in Saccharomyces cerevisiae is

worse than that of random prediction. The strong failure of

applying DPI to yeast data suggests that factors/mechanisms exist

in yeast that lead to an imperfect correlation between the protein

and mRNA levels of TFs.

In our study investigating patterns of expression correlation

among genes in coregulation subgraphs, we find two distinct types

of coregulated gene pairs: one in which the correlation between

the expression of the TF gene and both its two target correlated

genes are positive and another in which they are both negative. In

particular, we present scatter plots of mutual information versus z-

score for these two types of gene pairs. The plots for yeast reveal

that the two types of coregulated gene pairs split into two parts,

thus characterizing the differences between these two types of gene

pairs. Further studies are needed to explain the mechanism

leading to this behavior.

Motivated by the increasing availability high-throughput gene

expression data, a variety of approaches have been developed to

infer TRIs or gene coregulation. Our studies in this paper reveal

that some approaches which apparently lead to useful prediction

in some model organisms may fail in other organisms.

Supporting Information

Figure S1 Precision vs. recall. A–E) Precision versus recall

for prediction of coregulated gene pairs and TRIs are plotted in

blue and red, respectively. Also, the precision-recall curve for the

prediction of coregulated gene pairs in coexpression gene pairs

with at least one TF gene is plotted in green. The five subplots

correspond to the five established TRI data sets for E. coli and

yeast (Table 1), A) RegulonDB, B) Lee et al. 2002 (Chip-chip), C)

Harbison et al. 2004 (Chip-chip/sequence motif), D) Milo et al.

2002 (Compilation) and E) Lee et al. 2002 (Compilation).

(TIFF)

Figure S2 F-score vs. z-score cutoff for E. coli. F-score

versus z-score cutoff for prediction of coregulated gene pairs and

TRIs are plotted in blue and red, respectively. Also, the F-score

curves for the prediction of coregulated gene pairs in coexpression

gene pairs with at least one TF gene is plotted in green. A B-spline

estimator is used to calculate the mutual information. The three

subplots, A, B and C, correspond to different number of samples,

A) uses 445 samples (this figure is the same as Fig. 1A in the

manuscript), B) uses 194 samples, and C) uses 194 samples and

adds noise. The number 194 is derived from 247 (samples for yeast

in the data used to derive Figs. 1B–E) | 4345 (E. coli genes) 7
5520 (yeast genes) = 194. For B), the smaller number of samples

was obtained by random selecting from the 445 E. coli microarray

samples used in A). For C), the number of sample is the same as B),

and 10% of the links in RegulonDB are deleted and each deleted

link is replaced by a link from a randomly selected TF gene to a

randomly selected gene. The fact that these figures are virtually

identical confirms that any difference between our result in A) with

the corresponding yeast results (Figs. 1B–E) is not due to the larger

sample size of the E. coli microarray database or to lower noise in

the RegulonDB database relative to our yeast databases.

(TIFF)

Figure S3 Fractions of MI-motifs vs. the z-score cutoff
of non-interacting gene pairs for E. coli. Non-interacting

gene pairs in fan-out motifs are restricted to gene pairs with at least

one TF gene. A) MI-motifs in which the non-interacting gene pair
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has the largest (MI1 schematic), intermediate (MI2 schematic) and

smallest (MI3 schematic) MI. Fractions of MI1, MI2 and MI3

motifs are plotted in blue, red, and green, respectively. A B-spline

estimator is used to calculate the mutual information. As in Fig.

S2, the three subplots, B, C and D, correspond to B) 445 samples

(this is the same as Fig. 2B in the manuscript), C) 194 samples, and

D) 194 samples plus noise.

(TIFF)

Figure S4 Fractions of MI-motifs vs. the z-score cutoff
of non-interacting gene pairs for E. coli with using
different MI estimators as in Fig. 2B. A) MI-motifs in which

the non-interacting gene pair has the largest, intermediate and

smallest MI. Fractions of MI1, MI2 and MI3 - motifs are plotted in

blue, red and green respectively. The five subplots correspond to

the use of different MI estimators and discretization methods, B)

B-spline (this is the same figure as in Fig. S3C), C) Empirical [9]

and equal width (eqw), D) Miller-Madow (MM) [23] and equal

width (eqw), E) Empirical and equal frequency (eqf) and F) Miller-

Madow (MM) and equal frequency (eqf). These plots show that the

conclusion that the green plot is generally above the red and blue

plots is independent of the MI estimator that is employed.

(TIFF)

Figure S5 Fractions of MI-motifs vs. the z-score cutoff
of non-interacting gene pairs for Lee 02A (Chip-chip) of
yeast as in Fig. 2C. A) MI-motifs in which the non-interacting

gene pair has the largest, intermediate and smallest MI. Fractions

of MI1, MI2 and MI3 - motifs are plotted in blue, red and green

respectively. The five subplots correspond to the use of different

MI estimators and discretization methods, B) B-spline (this is the

same figure as in Fig. 2C), C) Empirical [9] and equal width (eqw),

D) Miller-Madow (MM) [23] and equal width (eqw), E) Empirical

and equal frequency (eqf) and F) Miller-Madow (MM) and equal

frequency (eqf). These plots show that (in contrast to Fig. S4) the

green plot is consistently below the blue plot independent of the

MI estimator that is employed.

(TIFF)

Figure S6 Fractions of MI-motifs vs. the z-score cutoff
of non-interacting gene pairs for Harbison 04 (Chip-
chip/Sequence Motif) of yeast as in Fig. 2D. A) MI-motifs

in which the non-interacting gene pair has the largest, interme-

diate and smallest MI. Fractions of MI1, MI2 and MI3 - motifs are

plotted in blue, red and green respectively. The five subplots

correspond to the use of different MI estimators and discretization

methods, B) B-spline (this is the same figure as in Fig. 2D), C)

Empirical [9] and equal width (eqw), D) Miller-Madow (MM) [23]

and equal width (eqw), E) Empirical and equal frequency (eqf) and

F) Miller-Madow (MM) and equal frequency (eqf). These plots

show that (in contrast to Fig. S4) the green plot is consistently

below the blue plot independent of the MI estimator that is

employed.

(TIFF)

Figure S7 Fractions of MI-motifs vs. the z-score cutoff
of non-interacting gene pairs for Milo 02 (Compilation)
of yeast as in Fig. 2E. A) MI-motifs in which the non-

interacting gene pair has the largest, intermediate and smallest MI.

Fractions of MI1, MI2 and MI3 - motifs are plotted in blue, red

and green respectively. The five subplots correspond to the use of

different MI estimators and discretization methods, B) B-spline

(this is the same figure as in Fig. 2E), C) Empirical [9] and equal

width (eqw), D) Miller-Madow (MM) [23] and equal width (eqw),

E) Empirical and equal frequency (eqf) and F) Miller-Madow

(MM) and equal frequency (eqf). These plots show that (in contrast

to Fig. S4) the green plot is consistently below the blue plot

independent of the MI estimator that is employed.

(TIFF)

Figure S8 Fractions of MI-motifs vs. the z-score cutoff
of non-interacting gene pairs for Lee 02B (Compilation)
of yeast as in Fig. 2F. A) MI-motifs in which the non-

interacting gene pair has the largest, intermediate and smallest MI.

Fractions of MI1, MI2, and MI3 - motifs are plotted in blue, red

and green respectively. The five subplots correspond to the use of

different MI estimators and discretization methods, B) B-spline

(this is the same figure as in Fig. 2F), C) Empirical [9] and equal

width (eqw), D) Miller-Madow (MM) [23] and equal width (eqw),

E) Empirical and equal frequency (eqf) and F) Miller-Madow

(MM) and equal frequency (eqf). These plots show that (in contrast

to Fig. S4) the green plot is consistently below the blue plot

independent of the MI estimator that is employed.

(TIFF)
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